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Abstract—The paper aims to identify and control the coupled
mass-spring-damper system. A nonlinear discrete polynomial
structure is elaborated. Its parameters are estimated using
Recursive Least Squares (RLS) algorithm. Moreover, a feedback
stabilizing control law based on Kronecker power is designed.
Finally, simulations are presented to illustrate the effectiveness
of the proposed structure.
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I. INTRODUCTION

System identification is an important tool which can be
used to improve control performance [1] [2]. It is the process of
developing a mathematical representation of a physical system
based on observed data with sufficient accuracy.

Identification of complex systems has stilled a major prob-
lem in automatic control because there is no general method
for studying high order processes. Indeed, it has received
considerable attention and several types of models have been
proposed during the last decades [3] [4] [5] [6] [7]. Such
as Volterra model [8] [9], Wiener model [10], Hammerstein
model [11], Nonlinear AutoregRessive with eXogenous in-
put (NARX) model [12], Nonlinear AutoregRessive Moving
Average with eXogenous input (NARMAX) model [13] [14],
etc. However the elaboration of a suitable feedback stabilizing
control using the proposed models remain difficult.

Nonlinear discrete polynomial structure is general enough
to describe many physical systems [15] [16]. It presents the
advantage to permit the use of the kronecker product and power
of matrices and vectors, which allows important algebraic
manipulations [17]. Moreover, it allowed to design a feedback
stabilizing control law [18].

In this work, a suitable nonlinear discrete polynomial struc-
ture was elaborated. Recursive Least Square (RLS) algorithm
is used for parameters estimation. The polynomial model
allowed to design an efficient feedback stabilizing control law.
A CMSD system illustrated the proposed nonlinear parametric
estimation and structures.

This paper is organized as First, the nonlinear identification
procedure is defined. Second, the feedback stabilizing control

is presented. Third, the proposed identification method is
applied to CMSD system and finally a conclusion is made.

II. SYSTEM IDENTIFICATION

In automatic control applications, a compact and accurate
description of the dynamic behavior of the system under
consideration is needed. Nonlinear models can be constructed
from theoretical modeling on the basis of a priori knowledge
on the nature of the systems. However, these white-box models
are very complex and difficult to derive because they require
detailed specialist knowledge which is practically or totally
unavailable in practical situation [19].

An alternative way of building models is by system iden-
tification. It is the process of improving a mathematical repre-
sentation of a physical systems based on observed input/output
data with sufficient accuracy which can be used to improve
control performance and achieve robust fault tolerant behavior.

The identification procedure is summarized as follows:

• collection of the inputs and outputs measurements,

• selection of the model,

• choice of the identification algorithm in order to
estimate the parameters that describe the model,

• validity of the obtained model is evaluated.

There are several types of models that describe complex
systems. Nonlinear discrete polynomial structures is one of
the most performers models. Hence, it can approach with
satisfactory accuracy any analytical nonlinear system and
thus ensure the mathematical description of a wide range of
physical process [18] [20] [15]. Moreover, the description of
polynomial systems can be simplified using the Kronecker
product and power vectors and matrices.

A. Nonlinear discrete polynomial structures

We consider in this paper the discrete nonlinear polynomial
systems described by a state equation of the following form
[16]:

Xk+1 = F (X k) + G (X k) U k (1)
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where F (Xk) and G (Xk) are a polynomials vectors
functions. They are given by [15]:

F (Xk) =
∑
i≥1

AiX
[i]
k (2)

G (Xk) =
∑
i≥0

Bi

(
Im ⊗ X

[ i]
k

)
(3)

with Xk = (x1, k , x2, k , . . . , xn,k)
T ∈ Rn, X [ i]

k is the
Kronecker power of the vector Xk defined as: X

[ 0]
k = 1

X
[ i]
k = X

[ i−1]
k ⊗ Xk = Xk ⊗ X

[ i−1]
k

for i ≥ 1

(4)

where ⊗ designates the symbol of the Kronecker product,
Ai and Bi are respectively

(
n × ni

)
and

(
n × mni

)
matrices. Im is the identity matrix of order m. We assume
that the pair (A1, B0) is completely controllable.

Parametric estimation using recursive algorithms is one of
the most important areas in system and signal processing. The
RLS algorithm is one of the most popular ones and widely
used for the parameter estimation because of his capability
to approximate a large class of systems and his simplicity of
implementation [21].

B. RLS algorithm

RLS algorithm allows to estimate the model parameters by
minimizing a measure of the model prediction error given by
[22]:

ε k = y k − ŷ k (5)

where ŷ k is the prediction of the scalar measured output
y k. It is given by:

ŷ k = θ̂ Tk ψ k (6)

θ̂ k is the vector of estimated parameters and ψ k is the
regression vector containing old inputs and outputs of the
system to be identified.

The RLS algorithm can be written in following form:


θ̂k = θ̂k−1 + Pkψkεk

Pk = Pk−1 − Pk−1 ψk ψ
T
k Pk−1

1 + ψ T
k Pk ψk

εk = yk − ŷk

(7)

with P k is the gain matrix. It is given by:

Pk =

(
k∑

i=n+1

ψi ψ
T
i

)−1

(8)

C. Performance indicators

The performance of the models is assessed using the Mean
Square Error (MSE) and the Variance-Accounted-For (VAF)
indicators [12]:

MSE =
1

N

N∑
k=1

(ys, k − y k)
2 (9)

V AF = max

{
1− var (ys, k − y k)

var (ys, k )
, 0

}
× 100 (10)

where ys, k and y k are respectively the system and the
model output, N present the number of iterations and var (.)
denotes the variance of a signal.

III. NONLINEAR FEEDBACK STABILIZING CONTROL

In this section, we propose to determine a stabilizing
control law of the system in the following form [18]:

Uk = H (Xk) (11)

where H (Xk) is an analytical vectorial function from Rn

into Rm .

It is expressed by generalized Taylor series:

H (Xk) = −
∑
j ≥ 1

Kj X
[ i]
k (12)

where Kj , j = 1, . . . , r are
(
m × ni

)
matrices. Thus,

the controlled system equation can be written as [18]:

Xk+1 =
∑
i≥1

Ai X
[i]
k

−
∑
i≥0

∑
j≥0

Bi

(
Im ⊗X [i]

k

)
Kj X

[j]
k

(13)

Our objective is to determine the control function so
that the stability of the null equilibrium (Xk = 0) of the
system. The best solution of such a problem consists in the
determination of the matrices Kj , j ∈ N . The matrix K1

is obtained using the Discrete Linear Quadratic Regulator
(DLQR) state feedback design.

DLQR is one of the optimal control techniques. It takes
into account the states of the dynamical system and control
input to make the optimal control decisions. This is simple as
well as robust [23] [24]. The discrete state equation is given
by:

Xk+1 = A 1Xk + B 0 U k (14)

then, the state feedback control Uk is defined as:

U k = −K 1X k (15)

which leads to:

Xk+1 = (A 1 − B 0 K 1) Xk (16)

K 1 is derived from minimization of the cost function:

J (X k) =
1

2

∞∑
i= k

(
XT
i QXi + UTi RUi

)
(17)
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where Q and R are positive semi-definite and positive
definite symmetric constant matrices, respectively. The DLQR
gain vector K 1 is given by:

K 1 =
(
R + B T

0 PB 0

)−1
B T

0 PA 1 (18)

where P is a positive definite symmetric constant matrix
obtained from the solution of matrix Algebraic Riccati Equa-
tion (ARE):

AT
1 PA 1 − P +Q

−AT
1 P B 0

(
R + B T

0 PB 0

)−1
B T

0 PA 1 = 0
(19)

However, the matrices K j , forj ≥ 2, are given by the
following relation [18]:

K j = −B +
0

(
A j +

j−1∑
i = 1

B i (K1− i ⊗ In i)

)
(20)

where B +
0 designates the Moore-Penrose pseudo-inverse

of the matrix B 0.

IV. ILLUSTRATIVE EXAMPLE: COUPLED
MASS-SPRING-DAMPER SYSTEM

A. CMSD system description

The CMSD system, shown in Figure 1, is composed of
two nonlinear springs, two weights and two dampers. Since
the upper mass m1 is attached to both springs, there are two
nonlinear springs restoring forces acting upon it: an upward
force fr1 exerted by the elongation, or compression, x1 of
the first spring; an upward force fr2 from the second spring
resistance to being elongated, or compressed, by the amount
(x2 − x1).

Fig. 1 – Mechanical model of the CMSD system

The second mass m2 only feels the nonlinear restoring
force from the elongation, or compression, of the second
spring. Allowing the system to come and to rest in equilibrium,
we measure the displacement of the center of mass of each
weight from equilibrium, as a function of time, and denote
these measurement by x1 and x2 respectively. System param-
eters are presented in Table 1 [25].

TABLE I – Parameter Description of CMSD System

Parameter Description Value
k(N/m) spring constant k1 = 2

5 , k2 = 1
x(m) displacement x1, x2

m(Kg) mass of the weight m1 = 1, m2 = 2
δ(Ns/m) damping coefficient δ1 = 1

10 , δ2 = 1
5

µ nonlinear coefficient µ1 = 1
6 , µ2 = 1

10

1) Mathematical model: The continuous nonlinear equa-
tions of the CMSD system are given by:


m1ẍ1 = −δ1ẋ1 − k1x1 + µ1x

3
1 − k2 (x1 − x2)

+µ2(x1 − x2)
3

+ u1

m2 ẍ2 = −δ2 ẋ2 − k2 (x2 − x1)

+ µ2(x2 − x1)
3

+ u2

(21)

2) Proposed identification and feedback stabilizing control
using polynomial structures: The proposed nonlinear discrete
polynomial structure that describes perfectly our system is as
follow, the sampling time Te = 0.01 s and the initial conditions
of the state variables
Xk (0) = ( 0.7 0 0.1 0 )

T , with x1, k displacement of
the first mass, Ω1, k velocity of the first mass, x2, k displace-
ment of the second mass and Ω2, k velocity of the second mass:

Xk+1 = A1Xk + A2 X
[ 2 ]
k + (B0 + B1Xk) Uk (22)

with:

Xk =

 x1,k

Ω1,k

x2,k

Ω2,k

 , Uk =

(
u1 , k

u2 , k

)
,

A 1 =

 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 ,

AT
2 =



a15 a25 a35 a45

a16 a26 a36 a46

a17 a27 a37 a47

a18 a28 a38 a48

04×4

a19 a29 0 a49

07×4

 , B 0 =

 b011 b012

b021 b022

b031 b032

b041 b042



and B1 =

 b111 b112 b113 b114

b121 b122 b123 b124

b131 b132 b133 b134

b141 b142 b143 b144

b211 b212 b213 b214

b221 b222 b223 b224

b231 b232 b233 b234

b241 b242 b243 b244

 .

The performance of the proposed polynomial structure is
assessed using the MSE and the VAF indicators, is presented
in Table 2.
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TABLE II – Performance Indicators

MSE VAF %

x1, k 1.5833 10−9 99.8068

Ω1, k 5.9269 10−13 99.9999

x2,k 1.1949 10−9 93.7454

Ω2, k 1.7374 10−10 99.9608

To stabilize the CMSD system, we consider the following
nonlinear control law:

Uk = − K1Xk − K2 X
[ 2 ]
k (23)

with:

K1 =

(
8.2253 10.2009 0.7640 −0.0844
0.9997 0.1870 8.1414 9.2730

)

and KT
2 =



−0.2407 0.0139
−0.1001 0.0322
0.1504 −0.0529
0.0119 −0.0044
−0.1708 −0.0004
−0.0791 0.0034
0.0645 0

0 0
0.0003 0.0106
−0.0059 0.1479
0.0048 0.0004

0 0
0.0014 −0.0190
0.0007 0.1685
−0.0005 0.0005

0 0



.

3) Simulation results: For parameters estimation of CMSD
system, we choose the causal signals u1, k = 1

3 sin(k π Te) and
u2, k = 1

5 sin(k π Te), as inputs of the CMSD system.

The responses of real and estimated state variables x1,k

and x2,k, as well as, the errors are presented from Figures 2
and 3, respectively.
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Fig. 2 – Displacement of the first mass x1,k in the open-loop
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Fig. 3 – Displacement of the second mass x2,k in the open-loop

Figure 4 shows the control signals u1,k and u2,k. The
responses of the state variables x1,k and x2,k of the CMSD
system using nonlinear feedback stabilizing control technique,
equation 23, are depicted in Figure 5.
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Fig. 4 – Control signals u1,k and u2,k
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Fig. 5 – Closed-loop displacements x1,k and x2,k evolution

V. DISCUSSION

The main concern of the paper was to determine suitable
nonlinear discrete polynomial structure of complex systems,
which allowed to design a feedback stabilizing control law.

As can be seen from Figures 2 and 3, the identified
outputs tracks the behavior of the real ones perfectly. The

modeling errors range of x1, k and x2, k are from −0.05 to 0.5
and −0.001 to 0.005, respectively. As well as, the indicator
performance values given in Table 2, the elaborate model
applied to the CMSD system can achieve a sufficiently high
modeling accuracy.

The convergence of the nonlinear discrete polynomial
model parameters values obtained using the RLS algorithm is
presented, in Appendix A, Table 3. Indeed, Figure 4 shows that
by applying the proposed structure to design feedback gains
based on Kronecker power, suitable inputs can be produced
for CMSD system that make state variables track equilibrium
point rapidly, as given in Figure 5.

VI. CONCLUSION

A nonlinear discrete polynomial structure has been elabo-
rated. RLS algorithm has been used for the parameters estima-
tion. The polynomial structure allowed to design a feedback
stabilizing control law based on Kronecker power for complex
systems. The proposed structure has been applied successfully
to model and stabilize CMSD system.

Simulation results demonstrate that the identified model
has allowed to elaborate a feedback stabilizing control law,
which had provided a satisfactory performance in stabilizing
the CMSD system at the equilibrium points.

APPENDIX A

TABLE III – Polynomial Structure Parameters Values

Iterations k = 1000 k = 2500 k = 3000
a 11 , k 0.8964 0.9889 0.9999
a 12 , k 0.0064 0.0094 0.0100
a 13 , k 5.0711 10−5 5.0647 10−5 5.0668 10−5

a 14 , k 2.4375 10−7 3.6931 10−7 5.1578 10−7
a 15 , k 6.9419 10−6 6.9371 10−6 7.0247 10−6

a 16 , k 3.7207 10−7 6.9149 10−7 1.0616 10−6
a 17 , k −3.8943 10−6 −3.9178 10−6 −4.1106 10−6

a 18 , k −4.4732 10−7 −4.6420 10−7 −4.9244 10−7
a 19 , k −2.0127 10−6 −1.9510 10−6 −1.8830 10−6
a 21 , k −0.0116 −0.0128 −0.0136
a 22 , k 0.9858 0.9978 0.9988
a 23 , k 0.0088 0.0096 0.0099

a 24 , k 5.3704 10−5 9.2341 10−5 1.3632 10−4

a 25 , k 9.9317 10−4 0.0010 0.0010

a 26 , k 1.3510 10−4 2.4317 10−4 3.6300 10−4

a 27 , k −9.2512 10−4 −9.3906 10−4 −9.8158 10−4

a 28 , k −1.0911 10−4 −1.1247 10−4 −1.1889 10−4

a 29 , k −1.5265 10−4 −1.4477 10−4 −1.3337 10−4

a 31 , k 9.9534 10−5 9.9533 10−5 9.9535 10−5

a 32 , k 7.7758 10−8 1.1050 10−7 1.2859 10−7
a 33 , k 0.9889 0.9987 0.9999
a 34 , k 0.005 0.008 0.01

a 35 , k −4.8452 10−6 −4.8423 10−6 −4.8277 10−6

a 36 , k −3.5350 10−6 −3.4305 10−6 −3.2950 10−6

a 37 , k 5.4944 10−6 5.4922 10−6 5.5046 10−6

a 38 , k −7.2677 10−7 −6.1974 10−7 −5.3975 10−7
a 41 , k 0.0186 0.0190 0.0196

a 42 , k 5.7104 10−5 5.6609 10−5 5.5627 10−5
a 43 , k −0.0184 −0.0191 −0.0194
a 44 , k 0.9948 0.9954 0.9958

a 45 , k −3.0969 10−4 −3.3269 10−4 −3.3269 10−4

a 46 , k −2.2553 10−4 −2.4861 10−4 −2.8341 10−4
a 47 , k 0.0008 0.0010 0.0011

a 48 , k 9.8465 10−4 1.0059 10−5 8.9020 10−5

a 49 , k −5.6627 10−4 −5.5898 10−4 −5.3928 10−4
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Iterations k = 1000 k = 2500 k = 3000

b 0
11 , k 4.9719 10−5 4.9751 10−5 4.9796 10−5

b 0
12 , k −1.9145 10−7 −1.7296 10−7 −1.4859 10−7

b 0
21 , k 0.005 0.008 0.01

b 0
22 , k 3.2638 10−4 3.2440 10−4 3.2376 10−4

b 0
31 , k 7.3450 10−8 4.6762 10−8 2.2880 10−8

b 0
32 , k 1.0049 10−4 1.0046 10−4 1.0042 10−4

b 0
41 , k −2.2969 10−5 −2.9023 10−5 −3.5136 10−5

b 0
42 , k 0.0190 0.0194 0.0198

b 1
11 , k 1.4001 10−6 1.2392 10−6 1.1519 10−6

b 1
12 , k 6.3145 10−6 6.4188 10−6 6.5700 10−6

b 1
13 , k 4.2077 10−7 3.0541 10−7 3.0630 10−7

b 1
21 , k 1.8451 10−4 1.6802 10−4 1.6751 10−4

b 1
22 , k 9.2558 10−5 8.0139 10−5 7.7278 10−5

b 1
23 , k −8.0191 10−5 −6.8981 10−5 −6.3339 10−5

b 1
31 , k 10−6 2 10−6 2 10−6

b 1
32 , k 3 10−7 4 10−7 5 10−7

b 1
41 , k 3.8 10−4 4.2 10−4 4.4 10−4

b 1
42 , k 6.4 10−5 7.2 10−5 8.2 10−5

b 2
11 , k −6.17 10−6 −5.63 10−6 −5.64 10−6

b 2
12 , k −6.17 10−6 −5.63 10−6 −5.47 10−6

b 2
13 , k 5.09 10−8 1.42 10−7 1.44 10−7

b 2
21 , k −1 10−3 −1.18 10−3 −1.3 10−3

b 2
22 , k −2 10−4 −3 10−4 −4 10−4

b 2
23 , k 1.54 10−5 1.86 10−5 1.82 10−5

b 2
31 , k 3.82 10−6 4.3 10−6 4.45 10−6

b 2
32 , k 6.86 10−7 8.46 10−7 1 10−6

b 2
41 , k 6 10−4 7.5 10−4 9 10−4

b 2
42 , k 0.5 10−4 1.5 10−4 2 10−4
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