
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

64 | P a g e

www.ijacsa.thesai.org

Web Security: Detection of Cross Site Scripting in

PHP Web Application using Genetic Algorithm

Abdalla Wasef Marashdih
1
, Zarul Fitri Zaaba

1
* & Herman Khalid Omer

2

1
School of Computer Sciences,Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

2
Computer Science and Information Technology Department, Nawroz University, Iraq

Abstract—Cross site scripting (XSS) is one of the major

threats to the web application security, where the research is still

underway for an effective and useful way to analyse the source

code of web application and removes this threat. XSS occurs by

injecting the malicious scripts into web application and it can

lead to significant violations at the site or for the user. Several

solutions have been recommended for their detection. However,

their results do not appear to be effective enough to resolve the

issue. This paper recommended a methodology for the detection

of XSS from the PHP web application using genetic algorithm

(GA) and static analysis. The methodology enhances the earlier

approaches of determining XSS vulnerability in the web

application by eliminating the infeasible paths from the control

flow graph (CFG). This aids in reducing the false positive rate in

the outcomes. The results of the experiments indicated that our

methodology is more effectual in detecting XSS vulnerability

from the PHP web application compared to the earlier studies, in

terms of the false positive rates and the concrete susceptible

paths determined by GA Generator.

Keywords—Web Application Security; Security Vulnerability;

Web Testing; Cross Site Scripting; Genetic Algorithm

I. INTRODUCTION

Software systems have been deployed to the public with
unexpected security holes. The reason for these security holes
is mainly the short time frame of this program‟s development
[1]. Although research on security programs is modern,
effective solutions are highly demanded because of the
importance of creating programs that are secure and less
vulnerable to attacks [2,3].

By injecting malicious scripts into web applications, cross-
site scripting (XSS) vulnerabilities are one of the most
common security problems in web applications [4,5]. XSS is
chosen as the major threat for web application because it
provides the surface for other types of attacks, such as session
hijacking and Cross Site Request Forgery (CSRF) [6]. XSS can
cause damage to both website owners and users. It easily
exploits but is difficult to mitigate. Many solutions have been
proposed for their detection. However, the problem of XSS
vulnerabilities in web applications still persists [7].

To determine XSS vulnerability, the majority of researchers
have employed dynamic, static, and hybrid analyses. However,
the outcomes achieved by them are marred by the false positive
rate and the various challenges in determining XSS
vulnerability [8,9]. Consequently, genetic algorithm ventured
into the software testing arena by generating test cases for
scrutinising the software security. This kind of algorithm offers

solutions to determine XSS vulnerability with a lower false
positive rate [3,10,11]. Within the Java web application
framework, the genetic algorithm locates the entire XSS
vulnerability devoid of any false positive rate in the outcomes
[3]. Conversely, and post-execution of the algorithm in the
PHP web application, it presents several false positive rates.
The high false positive results are because the researchers
failed to get rid of the infeasible paths which would not
perform at all in the CFG.

This paper aims to strengthen the detection approaches of
XSS vulnerability in PHP web applications. Section II reviews
related research conducted on the problems of XSS. Section III
discusses the concept of web application and describes the web
application security and vulnerability. Section IV explains the
XSS vulnerabilities and continues with the discussion in
regards to detection XSS vulnerability in Section V. In Section
VI, we describe our proposed approach and the experiments
are described in Section VII. Section VIII presents the results
for the conducted experiments and detail discussions are
explained in Section IX. Finally, ending with conclusion and
future works in section X.

II. RELATED WORK

According to the 10 leading vulnerabilities rankings
presented by the Open Web Application Security Project
(OWASP), the XSS vulnerability can be termed among the top
web application vulnerabilities [2,4]. Shar and Tan [9]
employed the static analysis methodology on Java web
applications. They noted XSS vulnerability with high false
positive results. On several occasions, the usage of static
analysis offers a high false positive rate. Shar et al. [12]
employed the static analysis for addressing the nodes and
dynamic analysis for determining the vulnerable nodes.
However, the hybrid methodology espoused by them is marred
by the false positive rate of the static analysis and the lack of
precision in the dynamic analysis results.

Hydara et al. [3] employed the genetic algorithm for
generating test cases for the static analysis. The aim was to
determine the tangible XSS vulnerability in the Java source
code. Their methodology reduced the false positive rate and
they could determine the entire actual vulnerable paths within
the Java framework.

With regards to the PHP web application, Andrea and
Mariano [11] recommended a methodology to locate reflected
XSS vulnerability without doing away with it. This
methodology was further enhanced by Moataz and Fakhreldin

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

65 | P a g e

www.ijacsa.thesai.org

[10] for determining all three kinds of XSS vulnerabilities.
However, the methodology by Andrea and Mariano [11]
intends to locate only reflected XSS vulnerability without
putting the genetic mutation operator to its best use. On the
other hand, the methodology by Moataz and Fakhreldin [10]
further enhanced the one offered by Andrea and Mariano [11]
by utilising the database of XSS patterns for revealing the
probable XSS vulnerabilities: stored, reflected, and DOM-
based XSS. However, their experiments were carried out only
on stored and reflected XSS vulnerabilities. Furthermore, their
methodology has limited scope as certain paths in the CFG do
not perform at all; such paths are termed as infeasible.

According to Burhan and Izzat [13], the infeasible path is
any path which cannot be implemented at all by the test cases.
The infeasible path is triggered because of the dead codes that
represent the statements which can never be implemented and
reached.

Fig. 1. Example of Infeasible Path in PHP

As can be seen in Fig. 1, Line 2 outlines a variable ($b) and
initialises a value (“test”). The condition (if) on Line 3
comprises a function (isset) which ascertains whether the
variable ($b) is set and is not NULL. Thus, the print statement
(echo $b) on Line 5 does not perform at all as the condition
return is false; a variable ($b) exists with a value (“test”) which
is not NULL. Hence, we term the path (2-3-5) an infeasible
one, given the dead codes triggered by the contradicting logic
of the condition “if” (isset($b)).

Burhan and Izzat [13] scrutinised the test cases of paths and
noted that few of the paths could never be put to test or are
seldom tested or visited by a test case. As per Thomas Ball
[14], a path is termed as feasible if certain program executions
cross that path and the program‟s other paths are deemed
infeasible; thus, failure is likely in any probable program
execution. Typically, infeasible paths generate programs which
are quite tough to comprehend. According to Ball, T. and
Balakrishnan et al. [14,15], the programmers should reveal
paths that are actually executable and those that are not. The
outcomes achieved by Moataz and Fakhreldin [10] can be
debated, as they detect few of the paths as vulnerable, which
they in fact termed as infeasible and would not perform at all.

Although there are several methodologies employed for
detecting XSS vulnerability [7,10,11,12,16,17], the threats of
XSS continue to persist. Thus, the aim of this paper is to
enhance the detection methodologies by eradicating the
infeasible paths, thereby reducing the false positive rate of
locating XSS vulnerability.

III. WEB APPLICATION

A web application is a program that executes tasks over a
network connection on a web server [18]. Such an application
has to be accessed by means of an Internet browser. The web

application is used to link the networked tools to the systems.
Fig. 2 shows how a user browser and a web server are related.

Fig. 2. Relation between User Browser and Web Server

ASP.NET, PHP, and Java server pages (JSP) are few of the
well-known technologies which aid software developers in
developing dynamically generated web pages [19]. The
statistics show that PHP web applications are the most
frequently utilised [19,20].

According to Sun et al. [21], securing web applications is
imperative today. This security should be fortified with
multiple of techniques for bolstering web applications and
alleviating attacks. Cross-site scripting is a common
vulnerability that enables attackers to insert malicious scripts
into the PHP source code. In this case, those web applications
are exploited which fail to corroborate the user input.

Thus, this paper emphasises on vulnerabilities pertaining to
input validation, considering that input validity is a major web
application security vulnerability (SQL injection, cross-site
scripting) [5]. Inputs venture into an application from entry
points (e.g., $_GET) and take advantage of a vulnerability by
connecting to a sensitive sink (for example, mysql_query). The
safeguard of the applications can be ensured by consigning
sanitisation functions in the paths among the entry points and
sensitive sinks. The following section discusses and elucidates
in detail the XSS and its vulnerability.

IV. CROSS-SITE SCRIPTING (XSS)

The vulnerability of web applications is increasing,
considering their growing use in day-to-day life. Among the
contemporary web applications, XSS is the most exploited
security issue [5,21]. Cross-site scripting, as an injecting
variant, manipulates the client-side script implemented by the
targeted browsers. XSS takes place when a web application
utilises an un-encoded or invalidated user input within the
output it creates. XSS can trigger major damages for the user
or at the site by inserting the malicious scripts into the place
where a web application admits user inputs. Inputs that are
invalidated can cause transferring of private data, and stealing
of cookies and user accounts [2,4]. In other words, the XSS
flaw is triggered by un-sanitised or un-validated input
parameters. Generally, there are three kinds of XSS attacks –
reflected, stored, and DOM-based [6].

Stored XSS strikes when the inserted script is stored in the
server (for example, input field or database) [6]. Thus, the
browser would be exposed to risk once it retrieves the script
from the server. In case of reflected XSS, the malicious script
is injected in the website elements (error message). The
attacker comes up with a fabricated URL that comprises a
malicious script code and entices the targeted user to believe
that the URL is genuine [22]. The malicious links are
dispatched to the targeted users by email or inserting the link in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

66 | P a g e

www.ijacsa.thesai.org

a web page which is located on another server. Once the user
clicks on the link, the inserted code travels to the attacker‟s
web server, and the attack is then dispatched back to the
browser of the victim. Conversely, A document object model
(DOM)-based XSS is actioned on the client side. It is initiated
by inserting the malicious script in a part of the page‟s HTML
source code [23]. In case of stored and reflected XSS, the
targeted users can observe the vulnerability payload in the
response page. However, in case of DOM, it can be noted only
by scrutinising the page‟s DOM or on runtime.

The stored and reflected XSS vulnerabilities exploit the
client or server sides but the DOM-based XSS exploits only the
client side. The researchers are still looking for an effectual
means of determining XSS vulnerability in the source code,
particularly for stored and reflected as these two are more
commonplace compared to DOM-based XSS [6]. The
following section outlines the methodologies employed for
detecting XSS vulnerability.

V. DETECTION OF XSS VULNERABILITY

Detecting XSS Vulnerability is the process of addressing
and allocating the invalidated inputs or scripts that allow the
attacker to inject the malicious script in the source code. The
most popular approach to detect vulnerability can be classified
into static, dynamic, and hybrid analyses [18]. Static analysis is
a method that finds errors in early development that is before
the program is initiated [16]. Dynamic analysis detects
vulnerabilities by analyzing the information obtained during
program execution [24]. The combination of static and
dynamic analyses is a hybrid approach; dynamic analysis
techniques improve the false alarms of static analysis
approaches and provide accurate results [12]. However,
experimental results show that a straightforward hybrid
approach is unlikely to be superior to a fully static or a fully
dynamic detection [8].

Genetic algorithms (GAs) have entered the security field of
software testing which is assigned to solve large problems. Gas
is a metaheuristic optimization algorithm based on the model
of evolution. GAs work as a client application in which the
population evolves toward overall fitness even though
individuals perish. GAs follow natural evolution mechanisms
(e.g., mutation, crossover, and selection), which evaluate the
fittest, to solve problems [17]. The elementary genetic
algorithm steps are converted into a pseudocode (Fig. 3).

Fig. 3. Genetic Algorithm Pseudocode [3]

A GA begins by initialising an initial populace in a random
manner for generating test cases for determining a solution.
The fitness function examines whether one of the populace has
attained the solution or not. A closer chromosome to the
solution indicates a higher fitness value and a higher likelihood
of being chosen in next generation. The selection phase selects
the closest chromosome for the solution (high fitness value) to
execute the mutation and crossover operators so as to generate
a new chromosome that possibly can be the solution. A
crossover operator generates a new solution by blending two
chromosomes, whereas the mutation operator modifies the
chromosome values. The fitness function again examines the
new chromosomes and whether the solution is attained and is
present in one of the new chromosomes.

GA has been observed to be effective in generating
solutions for issues related to application software. However, it
has not been sufficiently exploited for PHP web security
testing. GA was espoused by Andrea et al. and Moataz et al.
[10,11]. Notably, the methodology by Andrea and Mariano
[11] intends to find out only the reflected XSS vulnerability
without utilising the genetic mutation operator to the best of its
ability. On the other hand, the methodology by Moataz and
Fakhreldin [10] upgraded the one espoused by Andrea and
Mariano [11] utilising the database of XSS patterns to reveal
the likely XSS vulnerabilities: reflected, stored, and DOM-
based XSS. However, their experiments were carried on only
stored and reflected XSS vulnerabilities. Furthermore, the
results obtained were noted to be imprecise as some paths did
not perform at all as per the literature [13,14,15]. Hence, we
eliminate the infeasible path from the CFG to attain more
favourable results than those from Moataz and Fakhreldin [10],
who failed to eliminate paths in PHP web applications.

VI. PROPOSED APPROACH

This study improves the confidence in the security of PHP
web applications by removing the infeasible path from the
CFG to obtain better results compared with those from Moataz
and Fakhreldin [10], and generating a test data to uncover XSS
vulnerabilities if they exist. The problem lies in generating the
minimal number of test cases as an optimization search
problem to uncover potential XSS vulnerabilities. Accordingly,
a corresponding objective function is used, and it is referred in
evolutionary computational techniques as a fitness function.

The detection process starts from Pixy, where it analyzes
the PHP script to report on the vulnerable state (Which is to be
exploited by an attacker by injecting the XSS script). Based on
the outcome produced by Pixy, a Control Flow Graph (CFG) is
drawn manually, which reveal the entire vulnerable paths that
exist in the PHP script. However, some of these paths may be
infeasible in nature, hence would not be executed.
Consequently, these paths will be removed, and the GA
generator will only be executed on the feasible paths to detect
the actual XSS vulnerability and reduce the false positive rate
of the present results. The general architecture of the proposed
approach is illustrated in Fig. 4.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

67 | P a g e

www.ijacsa.thesai.org

Fig. 4. The General Architecture of the Proposed Approach [10]

In more details, the proposed GA generator actually
produced test cases for the feasible vulnerable paths, which
subsequently reveal the paths that traverse to the targeted paths.
The algorithm begins by initializing a random population (XSS
scripts from the database built by the author) as inputs to the
PHP script followed by the evaluation of the fitness result of
the population. The fitness function evaluated the results of
each individual of every generation to understand if these paths
are traversing to the targeted paths. A crossover and mutation
operator will get a new individual, followed by the proposed
GA generator to produce a test case for the new individual,
consequently obtaining a new solution and various test case
results. In each generation, the fittest individual will be saved
and chosen for the next generation.

For the case of paths that are considered vulnerable, if the
GA generator returns a zero fitness value for these paths, then
the conclusion will be that the input of PHP script (from XSS
database) can traverse these paths and execute the sanitized
statements. However, if GA generator failed to traverse the
targeted paths, then it will be considered as safe, because the
proposed GA generator then failed with the XSS input (from
XSS database) to traverse these paths.

A. XSS Database

XSS attacks usually injected the malicious scripts in the
URL or HTML forms of web applications, which receive PHP
functions such as ($_GET or $_POST). The malicious scripts
are formed to be executed as application codes, where it can
lead to altering the produced content resulting from the
injection of a malicious code. Different XSS patterns are
collected from various Internet sources [25,26] and stored in a
well-organized database to assist GA to generate a test cases to
find XSS vulnerable paths.

B. Static Analysis

A tainted variable refers to the inputs from the user or
database for XSS vulnerabilities and to print statements that

append a string into a web page. Static taint analysis tracks the
tainted or untainted status of variables throughout the control
flow of the application and determines if a sensitive statement
is used without validation [9].

Pixy [27] used as a tool for the taint static analysis. Pixy
takes the PHP source code as input. Then a report is created
which lists the potential vulnerable lines in the source code,
including the paths that contain sanitization statements.
Depending of Pixy report, we build a control flow path
manually to reach vulnerable sinks and skip sanitization in the
source code.

Afterwards, we remove the infeasible paths that do not
execute at all. These infeasible paths cannot be considered
vulnerable in accordance with the result of Moataz and
Fakhreldin [10]. Afterwards, GA defines the security test cases
by resorting the feasible paths that create the execution flow
traverse target paths.

C. Genetic Algorithm

GA is a search heuristic that mimics the process of natural
selection and genetics. It is used as an automatic generator with
a specific fitness function and chromosome format, as well as a
well-defined crossover and mutation process to generate the
offspring of a new population. The following points discuss
these operators along with the chromosome and fitness
function.

1) Initial population
The most customary kind of encoding or representing

chromosomes in genetic algorithms is the binary format. The
genetic algorithm population is a suite of likely solutions for a
problem. A chromosome is a set of pairs that contains a
parameter name and value. For example,

URL: “login.php?firstname=Ahmad&Lastrname=Khalid”

Corresponds to the chromosome:

{(firstname, Ahmad),(lastname, Khalid)}

To simplify, we do not use the first parameter (i.e. name)
but instead use only the value that makes our work less
complicated and more efficient in comparison.

2) Selection
This stage intends to choose the fittest chromosome to

reproduce as per certain selection techniques. Selection
techniques ensure that only the best characteristics are
transmitted from the current to the next generation. The various
methods for selecting individuals include rank, roulette wheel,
tournament, and elitist selections [28]. We used the roulette
wheel method in which the probability of each individual to be
selected is proportional to the fitness value for the individuals,
and it is similar to the method used by Andrea et al. and
Moataz et al. [10,11]. Afterwards, and based on the
probabilities of individuals, two individuals are selected to
produce a new solution by crossover and mutation operations.
The fitness function evaluates the new offspring and selects the
fittest to reproduce for the next generation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

68 | P a g e

www.ijacsa.thesai.org

3) Crossover and Mutation
The crossover operation combined two chromosomes to

reproduce a new solution with better traits. On the other hand
and according to specific mutation probability, the mutation
operation occurs by altering the chromosome values.

In this paper, we use a uniform crossover to enable the
parent chromosomes to contribute the gene level rather than the
segment level. On the other hand, we utilize another method
for mutation operation by switching between the attributes
values randomly, where the switching will be with the attribute
values using XSS scripts from our database. On the basis of the
studies by Andrea et al. and Moataz et al. [10,11], we use 0.5
as the best rate for crossover and mutation operations.

4) Fitness Function
Fitness function is aims to evaluate the solution if it is close

to the target solution. The best solutions are selected after each
generation for the next stage, and genetic operators are used
with them. In our work, we choose the fitness function by
Moataz and Fakhreldin [10], in which each generation is
computed depending on the number of factors that clearly
cover each generation. The fitness function of Moataz and
Fakhreldin [10] evaluates the script execution path using a
specific input. It is composed of several components: the
percentage of missing nodes in the path under test, the distance
between target and current traversed paths, the importance of
the XSS pattern, and the percentage of XSS database coverage.

An individual will cover the vulnerable path if it traverses
all of the branches in the path. For example, if a vulnerable
path has 10 branches and an input succeeds in traversing all 10
branches, the fitness function will obtain a value of 1, and if the
input succeeds in traversing 2 branches, the fitness function
will have a value of 0.2, and so on. If the fitness value is
greater than the specific threshold, then the individual will
survive and will be selected to reproduce for another round.
The input distance is equal to zero in case of a string type; if
the input type is numeric and not string, then the distance will
be calculated as the difference between the traversed and the
target paths in term of values using Korel's distance [29].

The GA used the XSS database to build the individual.
Therefore, we build an importance factor to reflect the
importance of the input used to cover a path. Each pattern
previously used in certain files will be saved. Furthermore, we
can determine when we can use the same pattern again. The
importance will be zero “I = 0” if the input has been used
before. The importance will be one “I = 1” if we not used this
input before to cover this path. We also examine a case in
which we have two inputs for the program. If the value of the
first input is used previously as the value for the second input,
then the importance will be “I = 0.3”.

Another factor in our fitness function reflects the
percentage of our XSS database used to cover a path. This
factor is used to ascertain that the GA selects different kinds of
XSS patterns to cover a path. If we obtain a high percentage,
then the GA will be more confident in covering this path and it
will exercise it with a different XSS pattern. The database
percentage starts from zero when we begin to cover a new

path. Evidently, this value is also zero in the initial population.
Therefore, our fitness function is [10].

F(x) = ((Miss% + D) * Importance * DB %) / 100

Where F(x) is the fitness value for individual x, Miss% is
the missing node percentage in the path using the current
individual. D is the distance calculated as the difference
between the traversed and target paths, Importance is the
importance of the input values, and DB% is the XSS database
percentage used to cover the current path.

We attempted to minimize the fitness value so that we can
reach a stage in which the current path has no missing node.
The path coverage percentage is 100%, and thus we can say the
target path is solved completely with the current individual.
Furthermore, the current individual successfully forces the
PHP script into the target path, and then individual that leads to
this outcome as our test data is stored.

VII. EXPERIMENTS AND ANALYSIS

The evaluation is carried out by applying the GA approach,
where it is found that a number of paths in the results should be
deleted. These paths are infeasible, but considered as
vulnerable. Furthermore, the comparison depends on the
number of actual vulnerable paths detected by the GA
generator. Hydara et al. [3] evaluated the research outcome by
depending on the number of actual vulnerable paths detected
by the GA generator. Therefore, the aim of the present research
is to perform a comparison similar to Hydara et al. [3] within
the context of PHP web application.

In this paper, two different experiments are conducted. The
first experiment is a Simple Login Script, which contained the
reflected XSS vulnerability. The second experiment is a
Newspaper Display Script, which contained the Stored XSS
vulnerability. We chose these two experiments because our
work looking to describe the lacking in Moataz and Fakhreldin
[10] approach and minimize the false positive rate in their
results, in a way to improve the detection approaches of XSS
vulnerability in PHP web application. These two experiments
considered different input types, namely either strings and/or
numeric. The experiment is conducted by applying the self-
developed GA-based test data generator. During the execution
of the experiment, the sets of operations are equivalent to the
number of feasible potential vulnerable paths that are reported
in the static analysis.

A. Simple Login Script Experiment [Reflected XSS]

This experiment contained the Reflected XSS vulnerability,
which requested the user to enter his/her first name and last
name. Thereafter, the PHP script validated the user inputs to
ensure it as a valid input and does not contain XSS patterns or
empty strings, which usually occurred in Web forms. Although
there are security vulnerabilities in this code, such as the
htmlspecialchars, but it‟s still vulnerable to XSS attacks. Fig. 5
illustrates the HTML form of the experiment, where the user
entered the inputs to the PHP script. Fig. 6 illustrates if the
code precisely checks the supplied inputs for a string that starts
with „<script‟, which is mandatory for any XSS pattern to
execute.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

69 | P a g e

www.ijacsa.thesai.org

Fig. 5. HTML Form for Simple Login Script

Fig. 6. PHP Script of Simple Login Script

Burhan and Izzat [13] defined that the feasible path is any
path that can be executed by test cases, and the infeasible path
as any path that cannot be executed by test cases. Therefore,
the infeasible paths should be removed from the whole paths to
effectively to minimize the amount of false positive during the
detection process. Fig. 7 depicted both the feasible and
infeasible paths in a Simple Login Script experiment.

Fig. 7. HTML Form for Simple Login Script

Fig. 7 exhibited the difference between the present study
and the study by Moataz and Fakhreldin [10] for both the
feasible and infeasible paths, where they considered all the
paths as feasible. However, Burhan and Izzat [13] stated that
some of the test cases of the paths may never or hardly be
tested or visited by any test cases. Ball, T. and Balakrishnan et
al. [14,15] reported that the programmers must determine
which paths were truly executable and non-executable. As a

result, the infeasible paths are removed from the target of the
proposed GA generator, with an objective of minimizing the
amount of false positive numbers in the obtained results. Fig. 8
described the reasons of each infeasible paths that to be
removed.

Fig. 8. HTML Form for Simple Login Script

Paths (3, 4, 7, 8, 11, 12, 15 and 16) will be removed
because these paths contained the execution of else statement
at Line 10, therefore the else statement will not be executed,
because the variable $b is defined and assigned as a value. As a
result, the Condition (isset ($b)) at line 8 will be TRUE
constantly, and else statement will not be executed at any
instance.

Paths (10 and 14) will be removed, because these paths
contained the execution of the condition at Line 12, hence it
must be executed as the htmlspecialchars() statement at Line
13 at every instance.

After the removal process of the infeasible paths from the
whole paths, the feasible paths will be the target of the
proposed GA to generate test data, which forced the program to
flow through these potential vulnerable paths to test on the
vulnerability.

However, the proposed GA is unable to read every line of
the PHP code, thus the PHP code is required to be probed in an
approach to obtain the execution path for any inputs. The PHP
code is probed similar to Moataz and Fakhreldin [10], where
PHP language constant (__LINE__) is used. This constant
(__LINE__) exhibited whether the line of code is executed or
not during the program execution.

The probed PHP script is then converted into a PHP
function, with an objective of allowing the proposed GA-based
test data generator to use the inputs of the function as a
parameter to execute the function with the XSS patterns from
the XSS database as inputs. Our PHP function will be written
as:

Function function_name (Parameter 1 , Parameter 2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

70 | P a g e

www.ijacsa.thesai.org

The GA tool copied the probed PHP script and transformed
it as one of its own function, which easily executed the
function by using XSS patterns as the inputs. The first
population is selected randomly from the author‟s XSS
database, followed by GA being executed for many rounds on
the test path. After each generation, the proposed fitness
function evaluated the solution of the test generator and stores
it in each individual. Furthermore, the precisely fitted
individuals have the fitness values stored in each rounds.
Thereafter, the proposed test generator selected the survivors
depending on the fitness value of each individuals by using
roulette wheel, where same operator of Moataz and Fakhreldin
[10] is used to generate the solutions. The parameter used in
the proposed GA generator is presented in Table I.

TABLE I. GENETIC ALGORITHM PARAMETERS FOR SIMPLE LOGIN

SCRIPT

Parameter Values

Population Size 30

Survivor 3

Maximum # Generation 20

input within one individual 2

Type of inputs Strings

Crossover rate (Probability) 0.5

Mutation rate (Probability) 0.5

B. Newspaper Display Script [Stored XSS]

In this section, the experiment on Stored XSS vulnerability
is investigated. The PHP script implemented a simple
newspaper display page that allowed users to view topics of
specific writers, all the writers in the newspaper, and the
articles stored in a MySQL database. If users desire to view an
article, the HTML form need to be completed which directly
communicates to the server via an URL. The following URL is
an example:

http://www.localhost/?name=Ahmad&disply_mode =1

This particular URL contained two values, namely name =
Ahmad and disply_mode = 1. However, the implementation of
this program can be carried out by posting the written articles'
titles or posting the content of the articles of the writers from
the MYSQL database. Thereafter, according to the display
mode and writer's name from the database, the „echo‟
statement at line 21 and 22 will print the writer's name and
database's content. However, there are security vulnerabilities
in this code including XSS attaches (e.g. htmlspecialchars).
Fig. 9 demonstrated the HTML form of the experiment, where
the user entered the inputs to the PHP script. Fig. 10 showed
that the code precisely checked if the supplied inputs contained
a string that starts with „<script‟, which is mandatory for any
XSS pattern that to be executed.

Fig. 9. HTML Form for Newspaper Display Script

Fig. 10. PHP Script of Newspaper Display Script

As depicted in Fig. 10, the condition of subsutr() function (
at line 17) will be true only if strlen() function returned a value
of more than zero (true). Therefore, if the variable $name
retrieved „<SCRIPT>‟ value from the first input of the HTML
form, then the condition will be true, and followed by
executing the sanitization statement of htmlspecialchars() to
achieve safety from XSS vulnerability, thus the variable $a is
considered safe. However, XSS attack can inject the malicious
script with another javascript tag, such as the (“” or “<body background =
"javascript:alert('XSS');">”). Hence, the condition (in line 17)
failed to cover the malicious script, and the variable $name
would not be considered safe.

On the other hand, the variable ($Mode) assigned a
numerical value from the second input of the HTML form
based on three conditions to assign a value to the variable
($display_String). The first condition is to check if the variable
($Mode) equivalent to 1, then the variable ($display_String)
will obtain a value from the database content, where the
content can be the XSS script. Thus, the print statement of this
variable at line 22 will not be considered safe. The second
condition check is if the variable ($Mode) equivalent to 2, then
the variable ($display_String) will obtain a value from the
database content, which it may contain with the XSS script.
Due to the second condition, the print statement process of this
variable at line 22 will not be considered safe. The last
condition check is if the variable ($Mode) is equivalent to 3,
resulting in the variable ($display_String) obtaining a String
value. Therefore, the print statement of this variable at line 22
will be considered safe. Fig. 11 shown the three conditions to
check the variable Mode of Newspaper Display Script
experiment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

71 | P a g e

www.ijacsa.thesai.org

Fig. 11. The Three Condition of ($Mode) to be Executed

When the value of the variable ($Mode) is either 1 or 2,
then these paths may contained the XSS scripts from the
database, which will then be considered as vulnerable.
Furthermore, the three conditions will not be executed
alongside, because each of these conditions required different
states of condition, such as ($Mode =1, $Mode =2 or
$Mode>=3).

Pixy reported the first vulnerability of the experiment,
which is the print statement of the variable ($name) at line 21.
This particular vulnerability is reflected and may consider as
XSS script initiated from the user. The second result of the
Pixy is the print statement of the display mode variable at line
22, which can be considered as XSS script from the database
due to the lack of validation during the insertion phase. Once
the report is completed, the vulnerable path will restart from
the line 1 up to the last line (line 22) of the PHP script.
Therefore, the PHP script converted the CFG from line 1 to
line 22, in an approach that defined the different paths of the
program.

The CFG contained 8 infeasible paths that should be
removed. In order to define the infeasible path, the
understanding of the structure of the script needs to be
established. The infeasible path only has a concern towards the
print statement of the variable ($Display_String) at line 22.
Firstly, the variable ($mode) contained a numerical value of
“1”. The next condition at line 3 checks if it is equal to 1,
followed by returning a value from the database. Therefore, the

next condition will not be implemented at line 8, because it
checks if the value is equivalent to 2, so that the condition will
be FALSE and the statement of the variable ($Display_String)
will not be executed at line 10. Similar scenario will be applied
for the third condition at line 13, because it checks if the value
is equivalent to 3, so that the condition will be FALSE and the
statement of the variable ($Display_String) will not be
executed at line 15. In total, there are 3 lines that should not be
executed alongside, namely lines 5, 10 and 15. In other word,
the program should only execute one line from these lines.
Furthermore, if the path contained more than one line that is
originating from these lines, then it should be removed due to
being an infeasible path in nature that will not be executed at
all.

The infeasible paths in this context are 1, 2, 3, 4, 5, 6, 9,
and 10, where paths 1, 2, 5 and 6 contained two implemented
conditions, which are located at lines 5 and 15. Paths 3 and 4
contained two implemented conditions, which are located at
lines 5 and 10. The last two infeasible paths 9 and 10 contained
two implemented conditions located at lines 10 and 15. Fig. 12
described the feasible and infeasible paths of the Newspaper
Display Script experiment which shown the differences
between the present study and the previous study by Moataz
and Fakhreldin [10].

Fig. 12. The Three Condition of ($Mode) to be Executed

Moataz and Fakhreldin considered all the paths as feasible,
however the present study removed the infeasible paths from
the target of the GA generator. Fig. 13 illustrates the reasons of
removal of each infeasible path.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

72 | P a g e

www.ijacsa.thesai.org

Fig. 13. Describe the Infeasible Paths in Newspaper Display Script

Paths 1, 2, 3, 4, 5, 6, 9, and 10 will be removed according
the depiction shown in Fig. 13, because these paths contained
the execution of more than one condition (line 5, 10 or 15).
However, the executing possibility of this experiment is only to
execute one condition in each path, while the other conditions
will be False and will not be executed.

The feasible paths will be the target of the self-developed
GA to generate the test data that forced the program to flow
through these potential vulnerable paths, where the objective is
to test whether these paths are indeed vulnerable. The PHP
code is probed by the PHP language constant (__LINE__) to
allow the GA generator to read the lines of the PHP code. The
same operator of Moataz and Fakhreldin [10] is used to
generate the solutions. The GA parameters that are applied in
this experiment is shown in Table II.

TABLE II. GENETIC ALGORITHM PARAMETERS FOR NEWSPAPER DISPLAY

SCRIPT

Parameter Values

Population Size 30

Survivor 3

Maximum # Generation 20

input within one individual 2

Type of inputs Strings and Numeric

Crossover rate (Probability) 0.5

Mutation rate (Probability) 0.5

VIII. RESULTS AND COMPARISON WITH OTHER WORK

This section shows the results details of the proposed test
data generator. Firstly, the detection process starts from Pixy
where it analyzes the PHP script to report on the vulnerable
state (which is to be exploited by an attacker by injecting the
XSS script). Based on the outcome produced by Pixy, a
Control Flow Graph (CFG) reveals the entire vulnerable paths
that exist in the PHP script. However, some of these paths may
be infeasible in nature, hence would not be executed.
Consequently, these paths will be removed, and the GA

generator will only be executed on the feasible paths to detect
the actual XSS vulnerability and reduce the false positive rate
of the present results.

For the case of paths that are considered vulnerable, if the
GA generator returns a zero fitness value for these paths, then
the conclusion will be that the input of PHP script (from XSS
database) can traverse these paths and execute the sanitized
statements. However, if GA generator failed to traverse the
targeted paths, then it will be considered as safe, because the
proposed GA generator then failed with the XSS input (from
XSS database) to traverse these paths.

The results obtained herein on the detection part is
evaluated relative to the results of Moataz and Fakhreldin [10],
whom improved the approach that were proposed by Andrea
and Mariano [11]. The evaluation is carried out by applying the
GA approach where it is found that a number of paths in the
results should be deleted (i.e. It is because these paths are
infeasible and considered as vulnerable). Furthermore, the
comparison depends on the number of actual vulnerable paths
detected by the GA generator. Hydara et al. [3] evaluated the
research outcome by depending on the number of actual
vulnerable paths detected by the GA generator. Therefore, the
aim of the present research is perform a comparison similar to
Hydara et al. [3] within the context of PHP web application.

A. Simple Login Script Experiment [Reflected XSS]

The test generator is operated in the experiment to solve
one path and repeated to solve rest of the vulnerable paths.
There are 6 feasible paths in the PHP script of a Simple Login
Script experiment, where the experiment is repeated once for
every each paths (a totally 6 times). The results of the
experiment for the detection part are illustrated in Fig. 14,
where the X axis represented the rounds or the GA generation,
and Y axis represented the best fitness value of the population.
When the fitness value is equal to zero, it seemed like the GA
generator succeeded in traversing through this path, thus it is
considered as a vulnerable path. On the other hand, when
fitness value is not equal to zero, then the path is considered as
a safe path and the proposed GA generator will fail to traverse
this path.

Fig. 14. Detection Results of XSS in Simple Login Script

In Fig. 14, GA is converged for some paths and did not
converge for the rest. The paths that the proposed GA approach
succeeded to converge are path 5, 6 and 13, with a fitness value
of zero from the entire suspected vulnerable paths. The paths 5,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

73 | P a g e

www.ijacsa.thesai.org

6 and 13 can be considered as vulnerable paths because the
three paths skipped the escaping statement (htmlspecialchars).
Therefore, it would be a vulnerable paths when the print
statement (echo $a) print the variable. We can noted from Fig.
14 that our GA generator choose different scripts for each
generation from our XSS database. Once GA generator use any
malicious tags except “<script” tag, then the path will traverse
the target path and it will get zero fitness values as shown for
path 5, 6 and 13.

The comparison of the results of the proposed approach
relative to the results of Moataz and Fakhreldin [10] is carried
out, where the outcome demonstrate the advancement of the
present research in detecting the Reflected XSS. The outcome
of the comparison is an improved removal of the infeasible
paths, which led to high false positive in the obtained results.
Table III presents the results of the research herein and the
results of Moataz and Fakhreldin [10] for XSS vulnerabilities
detection in a Simple Login Script experiment.

TABLE III. COMPARISON RESULTS OF DETECTION REFLECTED XSS IN

SIMPLE LOGIN SCRIPT

Vulnerable Path Our result
Moataz and

Fakhreldin [10]

1: 6-7-8-9-12-13-14-15- Not Vulnerable Not Vulnerable

2: 6-7-8-9-12-14-15- Not Vulnerable Not Vulnerable

3: 6-7-8-10-12-13-14-15- Infeasible Not Vulnerable

4: 6-7-8-10-12-14-15- Infeasible Vulnerable

5: 6-8-9-12-13-14-15- Vulnerable Not Vulnerable

6: 6-8-9-12-14-15- Vulnerable Vulnerable

7: 6-8-10-12-13-14-15- Infeasible Vulnerable

8: 6-8-10-12-14-15- Infeasible Vulnerable

9: 6-7-8-9-12-13-14-15-16 Not Vulnerable Not Vulnerable

10: 6-7-8-9-12-14-15-16 Infeasible Not Vulnerable

11: 6-7-8-10-12-13-14-15-16 Infeasible Not Vulnerable

12: 6-7-8-10-12-14-15-16 Infeasible Not Vulnerable

13: 6-8-9-12-13-14-15-16 Vulnerable Not Vulnerable

14: 6-8-9-12-14-15-16 Infeasible Vulnerable

15: 6-8-10-12-13-14-15-16 Infeasible Vulnerable

16: 6-8-10-12-14-15-16 Infeasible Vulnerable

As shown in Table III, There are some paths considered to
be safe paths (i.e. path 1, 2 and 9) and some paths Moataz and
Fakhreldin [10] considered it safe which they are infeasible
paths and will not execute at all (i.e. path 3, 10, 11 and 12).
The false positive rate is the amount of paths that are detected
as vulnerable paths, which in actual case are not the actual
vulnerable paths. The paths (path 4, 7, 8, 14, 15 and 16) are
considered as infeasible paths because the variable ($b) would
not be False (at line 10), as shown in Fig. 8. In Line 10, there is
else statement, hence considered as infeasible paths and would
not be executed (for any inputs or XSS script). One of the
special cases is the path 14, where the condition (isset()) is
TRUE, but the implementation of the escape function
(htmlspecialchars) at line 13 is required, as shown in Fig. 8. As
a result, these paths are considered as infeasible and the GA

generator would not traverse these paths. Path 5, 6 and 13 are
vulnerable paths. However, Moataz and Fakhreldin [10]
considered path 5 and 13 as safe paths. Therefore, they detect
only one actual vulnerable path which is path 6.

Table IV describes the amount of actual vulnerable paths of
this experiment, the amount of the whole paths and the actual
vulnerable paths solved (detected) by the self-developed GA
generator and by Moataz and Fakhreldin [10] proposed GA
generator.

TABLE IV. COMPARISON THE PROPOSED APPROACH RESULTS IN SIMPLE

LOGIN SCRIPT

Approach

All Paths

Detected by

GA Generator

Actual Vulnerable

Paths Detected by GA

Generator

False

Positive

Our GA Generator 3 3 0

Moataz and

Fakhreldin [10]

GA Generator

7 1 6

The comparison in Table IV exhibited that the self-
developed GA performed better compared to the GA designed
by Moataz and Fakhreldin [10] in the perspective of the actual
vulnerable paths that are detected. The low count in the GA of
Moataz and Fakhreldin [10] was due to not removing the
infeasible paths from the whole paths.

B. Newspaper Display Script [Stored XSS]

The GA test generator is operated to solve one of the paths
and repeat again for the rest of the vulnerable paths. There are
8 feasible paths in the PHP script within this experiment; hence
the GA generator is operated once for each paths with a total of
6 runs. The results of the experiment in the detection part are
shown in Fig. 15, where the X axis represented the rounds or
the GA generation and Y axis represented the best fitness value
of the population.

Fig. 15. Detection Results of XSS in Newspaper Display Script

As depicted in Fig. 15, the proposed GA herein succeeded
to converge all feasible paths with zero fitness value. The paths
7, 8, 11, 12, 13, 14, 15 and 16 considered as vulnerable paths
because our GA generator choose different malicious script in
each generation from our XSS database. GA generator choose
any malicious scripts from our XSS database and embedded
the variables ($display_String and $Name). Therefore, the path
would be a vulnerable paths when the print statement (echo

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

74 | P a g e

www.ijacsa.thesai.org

$display_String) print the variable. It is worth to mention that
the reason to consider all paths as vulnerable paths because
there is no validation (i.e. htmlspecialchars) on the variable
($display_String). Furthermore, these paths are classified as
vulnerable because the classification depends on both the input
and the sensitive sink that are involved in the path.

Similar to the previous experiment, the proposed approach
is compared with the outcome of Moataz and Fakhreldin‟s [10]
approach. The objective of the comparison is to prove that the
proposed approach is achieving better than the methodology
proposed by Moataz and Fakhreldin [10] for the detection of
the stored XSS in the PHP web application. Table V presents
the results of the proposed approach and the results of Moataz
and Fakhreldin [10] on the detection of Stored XSS
vulnerabilities in Newspaper Display Script experiment.

TABLE V. COMPARISON RESULTS OF DETECTION STORED XSS IN

NEWSPAPER DISPLAY SCRIPT

Vulnerable Path Our result
Moataz and

Fakhreldin [10]

1: 1-2-3-5-8-10-13-15-17-19-21-22 Infeasible Not Vulnerable

2: 1-2-3-5-8-10-13-15-17-21-22 Infeasible Not Vulnerable

3: 1-2-3-5-8-10-13-17-19-21-22 Infeasible Vulnerable

4: 1-2-3-5-8-10-13-17-21-22 Infeasible Not Vulnerable

5: 1-2-3-5-8-12-13-15-17-19-21-22 Infeasible Not Vulnerable

6: 1-2-3-5-8-12-13-15-17-21-22 Infeasible Not Vulnerable

7: 1-2-3-5-8-12-13-17-19-21-22 Vulnerable Not Vulnerable

8: 1-2-3-5-8-12-13-17-21-22 Vulnerable Not Vulnerable

9: 1-2-3-7-8-10-13-15-17-19-21-22 Infeasible Vulnerable

10: 1-2-3-7-8-10-13-15-17-21-22 Infeasible Not Vulnerable

11: 1-2-3-7-8-10-13-17-19-21-22 Vulnerable Vulnerable

12: 1-2-3-7-8-10-13-17-21-22 Vulnerable Not Vulnerable

13:1-2-3-7-8-12-13-15-17-19-21-22 Vulnerable Vulnerable

14: 1-2-3-7-8-12-13-15-17-21-22 Vulnerable Not Vulnerable

15: 1-2-3-7-8-12-13-17-19-21-22 Vulnerable Vulnerable

16: 1-2-3-7-8-12-13-17-21-22 Vulnerable Not Vulnerable

Table V shown that the Paths 1, 2, 3, 4, 5, 6, 9 and 10 are
infeasible paths, which means these paths would not execute
under any circumstances. However, Moataz and Fakhreldin
[10] considered these infeasible paths as safe (i.e. path 1, 2, 4,
5, 6 and 10) or vulnerable (i.e. path 3 and 9). However, by
operating the present GA generator on these paths, the
resulting outcome will be safe, because the GA generator has
failed to traverse through these paths.

The proposed GA generator detected 8 actual vulnerable
paths, while the GA generator by Moataz and Fakhreldin [10]
only detected 3 vulnerable paths from the entire 8 vulnerable
paths as shown in Table V. The fundamental reason for the
XSS script to traverse these paths and considered the paths as
vulnerable is because of both the non-executable nature of the
escaping statement (htmlspecialchars) of the variable ($Name)
at line 19 (Figure 10) and assignment of a XSS script to the
variable ($display_String) at line 3 or 10. Therefore, the print

statement (echo $Name) at line 21 or the print statement
($display_String) at line 22 would not be safe, because it may
contained the XSS vulnerability.

Moataz and Fakhreldin [10] considered the paths 7, 8, 12,
14 and 16 as safe. However, the escaping statement
(htmlspecialchars) at line 19 for the variable ($Name) did not
sufficiently secured the path. Thus, the self-developed GA
generator has the ability to detect vulnerability paths (6 actual
vulnerable paths) with probability high than Moataz and
Fakhreldin [10].

Table VI described the amount of actual vulnerable paths
occurred in this experiment, the amount of whole paths, and
the actual vulnerable paths detected by the self-developed GA
generator and the GA generator by Moataz and Fakhreldin
[10]. The False positive is the amount of paths detected as
vulnerable, which is not the actual vulnerable paths.

TABLE VI. COMPARISON THE PROPOSED APPROACH RESULTS IN

NEWSPAPER DISPLAY SCRIPT

Approach

All Paths

Detected by GA

Generator

Actual Vulnerable

Paths Detected by

GA Generator

False

Positive

Our GA Generator 8 8 0

Moataz and

Fakhreldin [10] GA

Generator

5 3 2

The results in the Table VI exhibited that the self-
developed GA generator performed much better in detecting
the actual vulnerable paths compared to the GA generator
designed by Moataz and Fakhreldin [10]. Such scenario
occurred because Moataz and Fakhreldin [10] did not remove
the infeasible paths from the whole paths. As discussed earlier,
Moataz and Fakhreldin [10] only detected 5 vulnerability
paths, where the 2 paths are considered as infeasible in the
present work, which will not be executed in this experiment
and considered as false positive results.

IX. DISCUSSIONS

In both experiments, the results shown that the proposed
GA generator is better than the GA generator designed by
Moataz and Fakhreldin [10], which they presents a high false
positive in their results in detection of Stored and Reflected
XSS vulnerability. As a conclusion, the result demonstrated the
impeccable quality associated with the proposed detection
approach, and with this it can be noted that the proposed GA
generator performed better than Moataz and Fakhreldin‟s [10]
GA generator in detecting the Reflected and Stored XSS
vulnerability within these two experiment for PHP web
application. However, more experiment need to be conducted
to ensure that the proposed GA generator achieves high
accuracy under different experimental environment for
Reflected and Stored XSS.

Experiments are conducted herein to detect Reflected and
Stored XSS vulnerability within the PHP web application. The
results shown that our GA generator detects all actual reflected
and stored XSS vulnerabilities in PHP web application without
any false positive. On the other hand, Moataz and Fakhreldin
[10] detect less actual vulnerable paths with high false positive

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

75 | P a g e

www.ijacsa.thesai.org

in their results, because they did not remove the infeasible
paths. The comparison demonstrated that the proposed
approach herein enabled the effectively detection of the XSS
vulnerability in PHP web application.

X. CONCLUSION

This paper formulated the security testing for XSS
vulnerabilities in a search optimization approach, with an
objective of eliminating the threat arising from XSS
vulnerability in PHP web application. The proposed approach
is based on static analysis and genetic algorithm that will be
able to detect the XSS vulnerability from PHP source code.
Therefore, it was imperative that the present work improved
the previous approaches on XSS detection in PHP web
application by removing the infeasible paths. The resulting
outcome of the present research demonstrated the approach
contained zero false positive rates. Furthermore, there was
experimentation of detecting the Reflected and Stored XSS
vulnerability in the PHP source code, while the approach
herein was able to detect the DOM-based XSS attacks based on
the self-developed XSS database. However, there were no
previous literatures covering experiments on Dom-based XSS.
The results demonstrated that the proposed approach achieved
better results compared to the previous studies on detection of
reflected and stored XSS vulnerability in PHP web
applications. It is worth noting here that the proposed approach
need to conduct experiments on DOM-based XSS as well, and
the proposed approach still need to conduct different
experiments on reflected and stored XSS, in a way to reaffirm
the proposed approach to detect the XSS vulnerability.

REFERENCES

[1] M.K. Gupta, M.C. Govil, G. Singh, Predicting Cross-Site Scripting
(XSS) Security Vulnerabilities in Web Applications‟, International Joint
Conference on Computer Science and Software Engineering (JCSSE),
2015, pp. 162-167.

[2] S. Gupta, B.B. Gupta, Cross-Site Scripting (XSS) attacks and defense
mechanisms: classification and state-of-the-art, National Institute of
Technology Kurukshetra, Kurukshetra, India, 2015, pp. 1-19.

[3] I. Hydara, A.B.M. Sultan, H. Zulzalil, N. Admodisastro, An Approach
for Cross-Site Scripting Detection and Removal Based on Genetic
Algorithms‟, The Ninth International Conference on Software
Engineering Advances (ICSEA), 2014, pp. 227–232.

[4] OWASP, top-10 threats for web application security, Available:
https://www.owaspp.org/index.php/Top_10_2013, 2013, [Accessed: Feb
2016].

[5] Veracode, State of Software Security, 2014. Available:
https://www.veracode.com. [Accessed: April 2016].

[6] V.K. Malviya, S. Saurav, A. Gupta, On Security Issues in Web
Applications through Cross Site Scripting (XSS), 20th Asia Pacific
Software Engineering Conference (APSEC), 2013, pp. 583-588.

[7] I. Hydara, A.B.M. Sultan, H. Zulzalil, N. Admodisastro, Cross-Site
Scripting Detection Based on an Enhanced Genetic Algorithm, Indian
Journal of Science and Technology, Vol. 8(30), (2015), pp. 1-7.

[8] A. Damodaran, F.D. Troia, C.A. Corrado, T.H. Austin, M. Stamp, A
Comparison of Static, Dynamic, and Hybrid Analysis for Malware
Detection, J Comput Virol Hack Tech (2015). doi:10.1007/s11416-015-
0261-z.

[9] L.K. Shar, H.B.K. Tan, Automated removal of cross site scripting
vulnerabilities in web applications, Inf. Softw. Technol., vol. 54, no. 5,
2012, pp. 467–478.

[10] M.A. Ahmed, F. Ali, Multiple path testing for cross site scripting using
genetic algorithms”, Journal of Systems Architecture, vol. 64, 2015, pp.
50–62. Available from: http://dx.doi.org/10.1016/j.sysarc. 2015.11.001.

[11] A. Avancini, M. Ceccato, Towards security testing with taint analysis
and genetic algorithms, in: Proceedings of the 2010 ICSE Workshop on
Software Engineering for Secure Systems, Cape Town, South Africa,
ACM, 2010, pp. 65-71.

[12] L.K. Shar, H.B.K. Tan, L.C. Briand, Mining SQL injection and cross
site scripting vulnerabilities using hybrid program analysis‟, 35th
International Conference on Software Engineering (ICSE '13), 2013, pp
642-651.

[13] B. Barhoush, I. Alsmadi, Infeasible Paths Detection Using Static
Analysis, The Research Bulletin of Jordan ACM, Vol. 2, Num. 3, 2013,
pp. 120-126.

[14] T. Ball, Paths between Imperative and Functional Programming, ACM
SIGPLAN, vol. 34, no. 2, 1999, pp. 21-25.

[15] G. Balakrishnan, S. Sankaranarayanan, F. Ivančić, O. Wei, A. Gupta,
SLR: Path-Sensitive Analysis through Infeasible-Path Detection and
Syntactic Language Refinement, Alpuente, M., Vidal, G. (eds.) SAS
2008. LNCS, Springer, Heigelberg, vol. 5079, 2008, pp. 238-254.

[16] X. Guo, S. Jin, Y. Zhang, XSS Vulnerability Detection Using Optimized
Attack Vector Repertory, International Conference on Cyber-Enabled
Distributed Computing and Knowledge (CyberC), 2015, pp. 29-36.

[17] A. Avancini, M. Ceccato, Comparison and integration of genetic
algorithms and dynamic symbolic execution for security testing of cross-
site scripting vulnerabilities, Information and Software Technology 55,
vol. 55, no. 12, 2013, pp. 2209-2222.

[18] M.K. Gupta, M.C. Govil, G. Singh, Static Analysis Approaches to
Detect SQL Injection and Cross Site Scripting Vulnerabilities in Web
Applications: A Survey, IEEE International Conference on Recent
Advances and Innovations in Engineering (ICRAIE-2014), 2014, pp. 1-
5.

[19] A. Mishra, Critical Comparison Of PHP And ASP.NET For Web
Development ‐ ASP.NET & PHP, International Journal of Scientific &
Technology Research, vol. 3, no. 7, 2014, pp 331-333.

[20] CWE, CWE - CWE-79: Improper Neutralization of Input During Web
Page Generation (‟Cross-site Scripting') (2.5), The MITRE Corporation.
Available: http://cwe.mitre.org/data/definitions/79.html. [Accessed: Feb,
2016].

[21] S. Rafique, M. Humayun, B. Hamid, A. Abbas, M. Akhtar, K. Iqbal,
Web application security vulnerabilities detection approaches: A
systematic mapping study”, Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD),
2015, pp. 1-6, doi:10.1109/SNPD.2015.7176244.

[22] G. Dong, Y. Zhang, X. Wang, P. Wang, L. Liu, Detecting Cross Site
Scripting Vulnerabilities Introduced by HTML5, International Joint
Conference on Computer Science and Software Engineering (JCSSE),
2014, pp. 319-323.

[23] V.K. Malviya, S. Saurav, A. Gupta, On Security Issues in Web
Applications through Cross Site Scripting (XSS), 20th Asia-Pacific
Software Engineering Conference (APSEC), 2013, pp 583-588.

[24] T.R. Toma, Md.S. Islam, An Efficient Mechanism of Generating Call
Graph for JavaScript using Dynamic Analysis in Web Application,
International Conference on Informatics, Electronics & Vision (ICIEV),
2014, pp. 1-6.

[25] OWASP, XSS Filter Evasion Cheat Sheet, 2016. Available:
https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_script
ing. [Accessed: April 2016].

[26] RSnake, XSS cheatsheet. Available: http://n0p.net/php_app_sec/
xss.html. [April: May 2016].

[27] Pixy, Pixy: XSS and SQLI Scanner for PHP Programs, 2007. Available:
http://pixybox.seclab.tuwien.ac.at. [Accessed: Feb 2016].

[28] [29] M.A. Ahmed, I. Hermadi, GA-based multiple paths test data
generator, J. Comput. Oper. Res. (COR) Focus Issue Search-Based
Softw. Eng. (SBSE), 2008, pp. 3107–3124. DOI link: http://dx.doi.org/,
doi:10.1016/j.cor.2007.01.012.

[29] I. Hermadi, M.A. Ahmad, Genetic Algorithm based Test Data
Generator, The 2003 Congress on Evolutionary Computation (CEC '03),
2003, pp. 85-91.

