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Abstract—In this paper, we propose a new approach aiming 

to ameliorate the performances of the regularization networks 

(RN) method and speed up its computation time. A considerable 

rapidity in totaling calculation time and high performance were 

accomplished through conveying difficult calculation charges to 

FPGA. Using Xilinx System Generator, a successful HW/SW Co-

Design was constructed to accelerate the Gramian matrix 

computation. Experimental results involving two real data sets of 

Wiener-Hammerstein benchmark with process noise prove the 

efficiency of the approach. The implementation results 

demonstrate the efficiency of the heterogeneous architecture, 

presenting a speed-up factor of 40-50 orders of time, comparing 

to the CPU simulation. 
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I. INTRODUCTION 

In the last decade, Kernel methods [1] like Support Vector 
Machine (SVM), Regularization Networks (RN) and Kernel 
Principle Component Analysis (KPCA) [2] have become 
typical to perform nonlinear systems identification. 
Comparing with the traditional method, such as Neural 
Networks [3], [4], Voltera series [5], and the Kernel methods 
present an attractive alternative. They are well founded in a 
rigid mathematical structure of Reproducing Kernel Hilbert 
Spaces (RKHS) [6], [7], it overcomes convex optimization 
problems. Furthermore, they are complete nonlinear regressors 
that necessitate simply reasonable computational complexity. 

Kernel methods like Support Vector Machines (SVM) [8] 
proved a high efficiency in various fields because it reveals 
some disadvantages that have to be tackled appropriately in 
each appliance especially for big data sets. Recently, several 
learning algorithms as the regularization networks (RN) are 
inspired from the support vector machine and affected from 

the need of reaching algorithms simpler to implement by 
simplifying the quadratic programming QP problem in 
training SVMs, which can be hard to solve. 

The RN is most promising theoretically and practically but 
suffers from the equality between the number of model 
parameters and observations. 

In this paper, an efficient Regularization Network model 
was contributed for identifying nonlinear systems based on 
random observations. A successful FPGA HW/SW Co-Design 
for accelerating the Gramian matrix computation was 
developed. Moreover, to avoid the information redundancy in 
the training data set, an efficient statistical method was 
employed to extract the useful information describing the most 
frequently occurring observations. 

An application to a known challenging nonlinear system 
proves the rapidity and the low-resource-consuming hardware 
of this model for modeling in RKHS space. 

The paper is structured as: Firstly, the background of this 
work is presented and discussed the different categories of 
SVM implementations on FPGA board and its inefficiencies 
and weakness. Then, we briefly evoke some basic concepts 
from learning theory for identification of nonlinear systems in 
reproducing Kernel Hilbert Space (RKHS). After discussing 
RKHS proprieties and the representer theorem, the 
regularization networks is described as a machine learning. 
Then we present the designing tools exploited for the HW/SW 
Co-design. After describing the move from RN algorithm to 
RN model and the statistical Data Preprocessing method, we 
introduce the acceleration of Gramian matrix computation and 
we discuss the co-simulation performances. For better 
understanding, the basic principles of systolic array 
architecture and the serial multiplication were explained with 
simple examples. Finally, we validate the work on a 
challenging nonlinear system: the Wiener-Hammerstein 
benchmark with process noise. We deal with the main results 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 6, 2017 

149 | P a g e  

www.ijacsa.thesai.org 

concerning time and error. Finally, we conclude with some 
comments and perspectives. 

II. BACKGROUND AND RELATED WORK 

Kernel methods have become powerful tools for 
classification and regression tasks due to its capability to be 
trained from past examples and continually adapt to new 
situations. In term of performances and aptitude to 
generalization the Support Vector Machine (SVM) excels the 
other Kernel method. Unfortunately the high computational 
cost of the SVM running time is critically reliant on the 
training dataset size and the problem‘s dimension. Also the 
quadratic programming (QP) techniques are a severe and 
computationally expensive task. There were much software 
like Sequential Minimum Optimization (SMO) and 
SVMLIGHT [9] have been proposed to resolve these 
problems analytically but don‘t give an enormous 
amelioration for real-time embedded systems. Consequently, 
special hardware architectures are ordered to convene 
limitations as inadequate resources exploitation plus little 
power consumption. That‘s motivates researchers to 
implement this method on programmable device to accelerate 
the computation time especially in case of online training. 

The embedded digital systems like microcontroller, Digital 
Signal Processors (DSPs) or Field Programmable Gate Arrays 
(FPGAs) permit attaining greater resource-performance 
relation, but necessitating a careful implementation design. 
The FPGAs are potent and greatly parallel processing and 
allows a great flexibility and efficiency for different 
applications. Lately they have showing considerable 
performance against the General Purpose Processors (GPPs) 
for a lot of purpose like machine learning algorithms [10], 
[11]. In addition, Graphics Processing Unit (GPU) presents a 
further proposal for elevated performance computing [12]. 
Comparing the FPGA and GPU implementations of diverse 
algorithms and applications was the subject of many studies 
[13], [14]. In the majority of times, FPGAs confirmed greater 
performance. Even though GPUs profit from lower cost and 
shorter development time prejudiced against to FPGAs, they 
are inferior to FPGAs in terms of power consumptions. Next, 
we reviewed existing and new practices in hardware 
implementations aiming efficient implementations of the SVM 
model on FPGA. It could be approximately classed in two 
major groups. The first one called FPGA hardware accelerator 
which implemented only one phase: training or validation 
phase. The second group enclosed the FPGA implementations 
of SVM for classification and regression. 

A. FPGA: Hardware Accelerator 

The training phase of the SVM algorithm has attracted a 
community of investigators to exploit hardware accelerators 
aiming a diminution in whole training time. J. Filho, et al. [15] 
proposed a dynamically reconfigurable SVM architecture that 
supports different sizes of training datasets. A modular 
architecture was designed through the SMO algorithm to 
obtain dynamic reconfiguration. The authors employed the 
hardware-friendly Kernel function proposed in [16] and so the 
Coordinate Rotation Digital Computer (CORDIC) algorithm 
for Kernel computations. The platform exploited was Xilinx 
Virtex-IV (XC4VLX25). The proposed reconfigurable 

architecture attained 22.38% area economy with good enough 
reconfiguration time punishment. To study the consequence of 
fixed-point data representation on accuracy and classification 
mistake, three diverse learning benchmarks were implemented 
and accomplished speeding up factors of more than 12.53 
times quicker than the software implementation for the 
entirety training time. 

L. Martinez, et al. [17] designed a heterogeneous 
architecture to accelerate SVM training phase. To reduce the 
dot-product computation time, these operations were affected 
by the hardware coprocessor of Xtreme DSP Virtex- IV 
whereas the hierarchy of SMO algorithm was implemented in 
GPP. This application was a classification of the ADULT 
dataset by the linear Kernel function. The expected 
coprocessor design reached an acceleration of 178.7x 
comparing software results. In another method, the SVM was 
trained offline on software and then the trained data were 
imported for exploitation for online classification on hardware 
(FPGA board). There was a variety of techniques using 
different implementations methods. The authors in [18] were 
proposed an embedded hardware SVM implementation on 
FPGA board: Xilinx Virtex-5, Spartan-3E.  Thanks to the 
hardware friendly Kernel function [16], the hardware design 
was made easier and simpler targeting satellite onboard 
applications. In the same way, the multiplication process was 
substituted by simple shift operations that verified lower 
resources exploitation of 167 slices. This hardware design 
proved its efficiency in Satellite onboard application based on 
NASA database. 

B. FPGA platform for both SVM classification and regression 

It was an intelligent idea to use the same platform for 
different task: classification and regression. 

The work of authors in [19] presented an excellent design 
for an elevated performance and low resource consumption for 
support vector classification and regression. The proposed 
architecture has been considered as general use for embedded 
applications, where the number of support vectors and the 
resolution of the parameters can be arranged. In addition, there 
is not a limit to the dimension of the input vectors and the 
number of support vectors but the size of the FPGA. The 
performance of this design was tested for a multi classification 
problem on a basic COIL database and for regression problem 
on sinus cardinal function. In both cases, the average error rate 
for the hardware is between 0% and 0.02 %, which means that 
the SVM gives better results when using the hardware then 
MATLAB. 

An additional hardware architecture for SVM algorithm 
was offered for classification and regression problems [20] 
and established on the hardware friendly Kernel [16]. A tree 
structure founded on common Sum of Absolute Differences 
(SAD) unit was used for diminishing clock cycles. Beginning 
simulation study was executed on the accuracy of input 
parameters by selecting fixed-point arithmetic, caring the 
same classification accuracy level with no failure. 

The designers were aiming a diminution in hardware 
complication and power consumption through executing SVM 
on FPGA with different ways instead of conventional 
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algorithm. They presented a different approach to surmount 
this difficulty but the SVM still a complex method especially 
when solving the quadratic programming problem which is 
computationally expensive mission. In this work we suggest to 
implement a Kernel method inspired from SVM which is the 
regularization networks (RN). It is simpler and easier to 
implement and gives similar performances. 

In next paragraph, we present the theoretical basis of this 
method and its advantages. 

III. MODELING NONLINEAR SYSTEM IN REPRODUCING 

KERNEL HILBERT SPACE (RKHS) 

A. Overview of Statistical Learning Theory (SLT) 

The principle of the Statistical Learning Theory [21] is to 
find such function f modeling a system from a set of 
observations 
 
O = {(xi , yi )} , i =1..N  composed of inputs xi and outputs yi . 
This function has to reproduce the comportment of the system 
by minimizing the functional risk. 

,

( ) ( , ( )) ( , )

X Y

R f V y f x P x y dxdy 
                                      (1) 

The term V(y,f(x)) is named cost function. It determines 
the variation among system output yi and the estimated output 
f(x).  The couple (X, Y) is composed of a random vectors and 
(xi, y i) are independents samples. The risk R(f) cannot be 
expected caused by ignoring  P(x, y). To resolve that difficulty 
we have to diminish the following term: 

1

1
( ) ( , ( ))

N
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i
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                                                 (2)    

  However the frank minimization of Remp(f) in the 
functions space H don‘t provide better estimation of R(f) 
minimization and may leads to over fitting. As a solution, 
Vapnik advanced the theory of structural risk minimization 
(SRM). It punishes the empirical risk through a function 
estimating the complexity of reserved model. This conducts to 
minimizing the restriction definite by this equation: 

1

1
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N

i i
f H

i

D f V y f x
N






 
                                 (3) 

Where the first term measure how well the function (f) fits 
the given data and the second term is the squared norm of (f) 
in the RKHS space H, which controls the complexity 
(smoothness) of the solution. The parameter λ is the 
regularization parameter that balances the tradeoff between 
the two terms. 

The more significant is the solution regularity and not the 

value of while it is not obvious to minimize the restraint (3) 
on any random function space H, whatsoever is it with finite 
or infinite dimension. Consequently, to conquer this trouble, 
the space H will be regarded as a RKHS. 

B. Reproducing Kernel Hilbert Space (RKHS) and the 

representer theorem 

We assume that X a random variable is estimated in the 

space 
dE  and we expect the existence of a function K 

named Kernel function 
2:K E   which is symmetric and 

positive definite. Accordingly, there is [1] a function   
: E H 

 that: 

 

' '( , )) ( ), ( )
H

K x x x x 
        (4) 

H is the Reproducing Kernel Hilbert Space (RKHS) [7] of 
Kernel K. Such space acquired distinguishing properties: 

x E  and f H  
( ,.), ( )

H
K x f f x

           (5) 

 Thanks  to  representer theorem [22] the resolution of 
the optimization difficulty offered by (3) in this space is 
specified by: 

 1

( ,.)

N

opt i i

i

f a K x




     (6) 

There are many types of Kernel functions which can be 
considered as: 

1) Linear Kernel 
'( , )) ' K x x x x

               (7)       

2) Polynomial Kernel 
'( , )) (1 , ' ) K x x x x 

                                                       (8) 

Where, 
*

 and 
x,x '

 is an Euclidian scalar product. 

3) Radial Basis Function (RBF) Kernel 
2

2

'

' 2( , ))





x x

K x x e 
                                   (9) 

Where, σ is a real positive parameter. 

4) Sigmoid Kernel 

( , ) tanh( . . )Tk x y x y c                                                   (10) 

The slope alpha and the intercept constant c are two 
adjustable parameters in the sigmoid Kernel. 

C. Learning Machine: Regularization networks (RN) 

Machine is one of the most recent research areas of data 
mining. The algorithm exploited to approximate the 
parameters ai in (5) is entitled learning machine like 
regularization network (RN) [23]. The exploited algorithm to 

calculate approximately the parameters ia
is the 

regularization network (RN). Compared to other Kernel 
method that optimize the parameters iteratively like support 
vector  regression (SVR) the RN takes less time and offer 
excellent performances in term of generalization ability. As 
exposed, the optimization problem (3) can be resolved thanks 
to the Kernel trick: 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 6, 2017 

151 | P a g e  

www.ijacsa.thesai.org 

 

2

1 1

( , )

N N

i j i jH
i j

f a a K x x

 


  

(11)
 

The cost function to be minimized by the RN is: 

 
2( , ( )) ( ( ))i i i iV y f x y f x      

(12)
 

The optimal function given by (5), where the sequence

 ia
 is: 

 1

1

( )

N

i ij j

i
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(13)

 

Where, 
N NG   is the Gramian matrix associated to the 

Kernel function K ,  
( ( , )), , 1,...,ij i jG K x x i j N 

and Y is 
the output vector. On the other hand, in matrix form: 

1
1 1( ) , ( ,..., ) , ( ,..., )   T T

N NA G NI Y A a a Y y y  
(14)

 

To simplify the understood of this method, the next section 
describes the move from RN algorithm to RN model and 
presents the designing tools and with explanation of the 
different components of the HW/SW Co-design. 

IV. PROPOSED HW/SW CO-SIMULATION METHOD  

A. Designing Tools 

The used tools are MATLAB R2013a with Simulink from 
MathWorks [24], System Generator 14.7 for DSP and ISE 
14.7 from Xilinx.  The System Generator runs within the 
Simulink as simulation environment, which is part of 
MATLAB mathematical package. Simulink is an interactive 
software for modeling, simulating, and analyzing dynamical 
linear and nonlinear systems in continuous time, sampled 
time, or a hybrid of the two Systems. Thanks to the 
incorporation of MATLAB and Simulink, we can simulate, 
analyze, and revise our models in either environment at any 
point. 

Xilinx System Generator [25] provides a set of Simulink 
blocks special for several hardware operations that could be 
implemented on various Xilinx FPGAs. These blocks can be 
used to simulate the functionality of the hardware system 
using Simulink environment. One of the advantages of Xilinx 
System Generator is the capability of generating HDL code 
directly from your designs. 

Xilinx System Generator employs fixed-point format to 
describe all numerical values in the system and it  provides 
some blocks to transform data provided from the software side 
of the simulation environment (Simulink) and the hardware 
side (System Generator blocks). This is an essential concept to 
understand throughout the design process using Xilinx System 
Generator. In the next section, we explain the steps of RN 
algorithm and how we transform it to a model that facilitates 
the hardware implementation. 

B. Regularization Networks: from algorithm to model 

An algorithm is a predetermined set of rules for 
conducting computational steps that produce a computational 

effect. Whereas, a model is a framework for expressing 
algorithms build from mathematical equations that is suitable 
for a hardware implementation. The development of a model 
in such way affords a simply understood system analysis for 
the models customers. Fig. 1 presents the conceptual model of 
the RN. 

 
Fig. 1. Conceptual model of regularization networks. 

In our case, the move from RN algorithm to RN model 
provides efficient conveyance of system details and allows 
easy extracting of system specifications. The modeling steps 
pass from necessary improvement through design, 
implementation, and testing. We obtain an executable model 
that can be continually developed. After model development, 
simulation shows whether the model works correctly. 

 
Fig. 2. System generator project for regularization networks co-simulation. 

The main goal of the RN modeling is the assigning of 
complex computation tasks to the hardware. In fact, while 
software and hardware implementation supplies are integrated 
with the model, for instance fixed-point and timing behavior, 
the code could be generated for embedded exploitation and 
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generate test benches for system verification, saving time and 
evading manually coded errors. Fig. 2 presents the Simulink 
Co-simulation model. It contains Simulink and Xilinx system 
generator components. The red blocks in the figure are 
executed by the FPGA and the others executed through 
Simulink. 

The adopted approach allows connecting designs 
straightforwardly to requirements and combining testing with 
design to constantly identify and correct errors. The 
reconfigurability of the FPGA and the flexibility of the 
different blocks of SIMULINK allow the identification of 
infinity of systems. In the next sections, we will specify the 
blocks function. 

C. Data Preprocessing 

The problem of RN method is that the total of parameters 
is identical to the number of observations. Therefore, to 
reduce the number of parameters, the number of observations 
must be reduced and must be a measure of the data spread. 
Generally, in supervised learning the data are generated by 
experimental measurement. Whereas, experimentation often 
makes multiple measurements of the same thing and it is 
subject to error. 

Also, the sampling period of experimental process is small 
and so the variance of the data sets is small. In this case, the 
Statistical and mathematical tools [26] as the mean, the 
median and mode for data quantitative analysis can describe 
the central tendency of the data set and extract useful 
information without redundancy. The suitable tool for this 
work is the mode because it is a statistical term that refers to 
the most frequently occurring number found in data set of 
observations. It is found by identifying the most occurring rate 
in the data set most often representing the data. If the range is 
big, the central tendency is not as representative of the data as 
it would be if the range was mall. 

Therefore, we can divide the data set in categories as 
shown in Fig. 3. The mode requires only those values of the 
data points which can be put into categories. The new chosen 
data set is composed of the mode of each category. 

  
Fig. 3. Scheme of data reduction. 

The frequency of each category is the number of data 
points whose values are in that category, and the mode is the 
category with the highest frequency. It is possible that more 
than one category share the highest frequency in which case 
the data is multimodal. In the training phase, we create a 
MATLAB function block called Data Preprocessing that 

receives a large data set and after statistical treatment; 
produces the data set for Gramian matrix computation. To 
demonstrate the efficiency of this approach, we executed 
different testing scenarios to compare between the 
performances of the real data and the treated data. The PT 326 
[27] works as the hair dryer. It heats the air from the 
atmosphere from 30ºC to 60ºC. In the simulation, we used a 
single database input/single output (SISO) in the time domain 
of PT326 process. In previous work [28] a comparative study 
was established between two Kernel methods; SVM and RN. 
The consequences demonstrate the competence of the learning 
algorithms and confirm the excellence of the SVR method in 
obtaining minimal prediction error and advantage of the RN to 
gain the calculation time. Approximately, the performances of 
SVM can be reached by the RN when the data sets are large 
and with exploitation of a hardware platform for acceleration. 
Therefore, the choice of implementing the RN method as 
based on this study. Especially that RN is simpler to 
implement. In next work, we call the RN method using the 
reduction method RNR (Reduced). To compare RN to RNR, 
we employ the same dataset; 100observations for the training 
phase and 200 new observations for the validation phase. For 
the RNR, the 100 observations will be reduced to only 10. 
After obtaining the RKHS model coefficients, the validation 
data set was chosen randomly and without any treatment to 
augment the aptitude of generalization of the RKHS model. 
The Kernel used is polynomial. The optimal parameter λ of 
the machine learning was obtained by a cross validation 
technique and it is equal to 0.0001. To evaluate numerically 
the model performances, we exploit the Normalized Mean 
Squared Error (NMSE): 

2

1

2

1

( ( ) ( ))

( ( ))

N

i

N

i

y i y i

NMSE

y i











                                          (15) 

Where, y(i) is the system output and ( )y i  is the predicted 

output. In Table 1 the variation of corresponding Normalized 
Mean Square Error (NMSE) are cited for each method. 

TABLE. I. COMPARING THE RN AND RNR PERFORMANCES 

For the same dataset and with the same Kernel and 
machine learning parameter, the NMSE of RNR is much 
lower than the NMSE of RN. Thanks to the efficient statistical 
reduction method. 

The following figures (Fig. 4 & 5) show the tough 
resemblance between the real and expected output for the two 
methods. 

 

 Kernel type 
EQMN 

Training 

EQMN 

Testing 

RN  

Polynomial 

 

8.6768 0.0056 

RNR 0.0045 3.9030.10-05 
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Fig. 4. Training phase of RN and RNR. 

 

Fig. 5. The testing phase of RN and RNR. 

This technique was capable to build a vigorous model for 
nonlinear system identification. The efficiency of this 
approach resides in the use of new observations in the testing 
phase and also facilitates the Gramian matrix implementation 
in the next section. 

D. Accelerating the Gramian matrix computation by a 

Hardware/Software co-simulation 

The Gramian matrix computation is a computationally 
intensive operation in RN algorithm. Critical speed–up in 
computation time can be attained by assigning computation 
tasks to hardware. We present the adopted approach for 
Gramian matrix computation and its basic principles. 

1) Systolic array architecture for Gramian matrix 

computation: The Parallel Matrix Multiplication [29]-[31] has 

much different identification. In this work, we use the systolic 

array architecture for the Gramian matrix computation. A 

systolic array architecture is produced by the interconnection 

of a set of attached data processing units (DPU) in a regular 

way [32], [33]. In parallel, each unit or cell receives data from 

its upstream neighbors to calculate a part of the result. After 

that it saves the result inside itself and bypasses it downstream 

neighbors as shown in Fig. 6. 

 
Fig. 6. Principle of systolic array architecture. 

The systolic array conception is a mixture between an 
algorithm and a circuit that implements it. The systolic arrays 
rely on synchronous data transfers. The individual nodes in 
systolic array architecture are triggered by the arrival of new 
data and always treat the data in exactly the same way. We 
exploit the advantages of this architecture for the 
implementation of the Gramian matrix on hardware platform. 
In next paragraph, we explain the proper approach for the 
matrix computation and the employment of the systolic array 
method for implementation. 

2) Basic principles of serial multiplication: The Gramian 

matrix N NG  is like that: 

( ( , )), , 1,...,ij i jG K x x i j N     (16) 

Where, N is the number of observations and K is the 
Kernel function that can be chosen either as linear or 
polynomial Kernel. The Gramian matrix has to be calculated 
in the training and testing phase. As the input vector X can be 
1-Dimensional or 2-Dimensional Array, we proposed two 
Architectures for Gramian matrix computation. 

At first, we look at the 1-Dimensional vector 
multiplication respecting its general constitution. According to 
the expression of polynomial Kernel with first order: 

( , ) ( 1) ; , 1,..., , 1ij i j i jG K x x x x i j N        (17) 

It consists to multiply the column vector X(n×1)  
containing n rows and one column with its transpose X

t
 and 

add one to the product. In this case, the product of an n 
dimensional column vector (n×1) by its transpose (row vector 
(1 × n)) is the Gramian matrix G. That is an (n × n) symmetric 
and squared matrix. Mathematically, it is presented by the 
following relationship: 

( , ) ( ) ( ) 1tG i j X i X j       (18) 

The key idea here is to calculate the matrix G using the 
column vector X and its transpose the row vector X

t
. The 

dimension of the given matrices depends on the application. 
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For efficient implementation and maximum speed-up, the 
matrix computation is based on systolic array architecture by 
broadcasting elements of vector X and multiplying it by the 
corresponding elements of vector X

t
. As a simple example, 

supposing that the vector X is like that: X=[1 2 3] and its 
transpose X

t
 =[1 2 3]. The steps of multiplication are shown in 

Fig. 7. 

 
Fig. 7. Example of 1-Dimensional vector multiplication. 

From this example, it can be observed that C (i) the i
th 

column of the matrix G is the product of the column vector X 
by the i

th 
element of this vector: 

( ) ( ) C i X X i  

Also for the 2-Dimensional Array, the example of input 
vector: 

X(n×2) 
Multiplied by its transpose X

t
 is presented in Fig. 8: 

 

Fig. 8. An example of 2-Dimensional vector multiplication. 

Concluding from this example, the expression of Gramian 
matrix with 2-dimensional vector is a concatenation of column 
vectors CG. 

The i
th

 column of G is the result of sum and product of 
columns (L1 and L2) and rows (C1 and C2). We can 
generalize the calculation of each column vector CG of 
Gramian matrix G as follow: 

( ) 1 1( ) 2 2( )CG i C L i C L i       (19) 

As the input vector X will be streamed the column and 
rows have no real mean so the previous expression will be 
modified: 

( ) 1 1( ) 2 2( )CG i C C i C C i       (20) 

The sequence of operations involved in the serial 
multiplication is as follows: 

1) Streaming the elements of column vector X by the input 

buffer. 

2) Calculating the i
th

 column of the matrix G by 

multiplying each element of the streaming vector by its i
th

 

element. 

3) Accumulating the multiplier output and writing back 

the results to the output buffers. 

4) Concatenating the n columns to construct the matrix G. 
The Fig. 9 represents the system generator blocks for 

(10×10) Gramian matrix computation using 2-d vector with 
polynomial Kernel (second order). 

 
Fig. 9. System generator blocks for Gramian matrix computation. 

Before passing to Fig. 10, the type of Kernel function can 
be selected by a manual switcher. The sigmoid and 
polynomial Kernels are implemented as shown in Fig. 10: 

X×X
t 
= G 

 
 

 

X×X
t 
= G 
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Fig. 10. Selection of Kernel function. 

For the polynomial Kernel, it can be chosen for the first or 
second order by a manual switcher as in Fig. 11: 

 

Fig. 11. Selection of the degree of polynomial Kernel function. 

The design is able to calculate the Gramian matrix for any 
system. The user has just to enter the process observations and 
select the Kernel type. For the regularization parameter, it 
could be calculated away or in simulation to choose the 
suitable value. Next, the RN HW/SW Co-design (RN-Cosim) 
will be tested on a challenging nonlinear system with process 
noise. 

V. IMPLEMENTATION RESULTS AND ANALYSIS 

A. The Hardware/Software co-simulation steps 

In this work, the RN-Cosim co-design was performed 
using Xilinx System Generator and the Nexys 2 board, which 
is a complete circuit board and equipped to exploit the circuit 
development platform based on a Xilinx Spartan 3E FPGA. 
As shown in Fig. 12, the on-board high-speed USB2 port, 
jointly with a collection of I/O devices, data ports, and 
development connectors, enable the conception of a wide 
range of designs without the demand for any supplementary 
components. 

 
Fig. 12. The Nexys 2-board. 

After completing the hardware system, the Simulink 
environment was exploited to verify functionality of the 
system. Simulink presents a very supple simulation 
environment that allows building different testing scenarios. 
After verifying the functionality of the RN-Cosim model for 
the different hardware component, the generation of Co- 
simulation module is executed. While building the hardware 
system, ISE flow generates a bit-stream that will be later used 
to configure the FPGA. When the compilation is completed, a 
new library is created including one block that includes all the 
functionality required for the system to be executed on the 
FPGA. The generated library encapsulates the hardware 
implementation of the RN-Cosim model, which is linked to a 
bit-stream that will be downloaded into the FPGA during Co-
Simulation. The different hardware component is replaced by 
the new block from the Co-simulation library. Fig. 13 contains 
the final blocks for the Gramian matrix computation. 

 
Fig. 13. System generator blocks using JTAG hardware co-simulation block 

for Gramian matrix computation. 

The two blue blocks after and before the hardware co-
simulation block, assure the serialization and deserialization of 
matrix. Then the FPGA is connected to the system generator 
via the Digilent USB JTAG Cable. 
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When the design is ready for co-simulation, system 
generator will first download the bit-stream associated with 
the block. Once the download completes, system generators 
reads the inputs from Simulink simulation environment and 
send them to the design on the board using the JTAG 
connection. System generator then reads the output back from 
JTAG and sends it to Simulink for displayed. When 
simulation is completed, the results should be displayed as 
shown and the results can be verified by comparing the 
simulation output to the expected output. The model chosen is 
a challenging nonlinear system identification; Wiener-
Hammerstein benchmark with process noise. 

B. Description of the process and analysis of the 

implementations results 

The nonlinear system to be modeled is the Wiener-
Hammerstein benchmark with process noise [34]. This system 
is challenging nonlinear system identification due to the 
process noise present in the system. Moreover, the static 
nonlinearity is not directly accessible from neither the 
measured input or output, and the output dynamics are 
difficult to invert due to the presence of a transmission zero. 

The Wiener-Hammerstein benchmark is a well-known 
block oriented system. As illustrated in Fig. 14, it contains a 
static nonlinearity f(x) that is sandwiched in between two LTI 
blocks R(s) and S(s). 

 
Fig. 14. The Wiener-Hammerstein system with process noise. 

The presence of the two LTI blocks results in a problem 
that is harder to identify. The additive process noise ex(t) is 
filtered white Gaussian noise sequence. 

The input and output signals of the system are: 

1) r : reference signal, signal loaded into the generator, 

2) u: measured input signal, 

3) y: measured output signal, 

4) fs: the sample frequency. 
Fig. 15 presents the plot of the measured output signal y 

versus the measured input signal u from a thousand of values 
with sampling time one second. 

 

Fig. 15. The plot of Wiener-Hammerstein benchmark with process noise. 

To construct the RKHS model, 100 observations are 
employed for the training phase that will be reduced to only 
10 observations. Then, 100 new observations are randomly 
chosen for the validation phase. The data used for testing 
phase are not statistically treated. The Kernels used are of 
type: polynomial (first and second order) and sigmoid. The 
input vector is a 2-dimensional vector. The optimal parameter 
λ of the machine learning was obtained by a cross validation 
technique and it is equal to 0.0001. 

By examining the plots in Fig. 16, it can be remarked that 
the two models outputs (RNR and RN-Cosim) are in 
concordance with the Wiener benchmark output in the training 
and testing phase. Comparing to benchmark process, the 
deviation of the RNR and  RN- Cosim is small. This illustrates 
the excellent performances of the projected identification 
method. 

Table 2 gives the computation time (CT) and NMSE in 
training and testing phase of RNR algorithm and RN-Cosim 
with sigmoid and polynomial Kernel. 

TABLE. II.  COMPARING NMSE AND CT OF RNR AND RN-COSIM 

 

 Kernel 

type 

NMSE 

Training 

NMSE 

Testing 

CT(s) 

RNR  
Polynomial 

 

6.7980e-09 3.1847e-09 1.3884 

RN-Cosim 3.1850e-07 7.1274e-07 0.033066 

RNR  

Sigmoid 

7.9972e-09 3.1847e-08 1.4196 

RN-Cosim 3.1850e-07 1.3886e-07 0.034018 
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Fig. 16. Training and validation phase of RN and RN-Cosim. 

In terms of the model accuracy, the two models are 
excellent but the RNR gives the lower NMSE comparing to 
RN-Cosim that uses the fixed point arithmetic. The reduction 
method based on statistical treatment improves the model 
accuracy because the reduced data set reflects the central 
tendency of data that decreases the model error and increases 
its capacity of generalization. 

Considering the simulation speed, compared with RNR 
algorithm execution, the proposed RN-Cosim co-simulation 
gives more than 40 times speedup. 

Note that, in both cases of sigmoid and polynomial Kernel, 
RN-Cosim gives significant simulation speedups thanks to the 
association of Gramian matrix computation to hardware and 
the immediate execution of the whole model contrary to the 
sequential algorithm execution. The properties of our co-
design are listed in Table 3. 

TABLE. III. COMPARING NMSE AND CT OF RNR AND RN-COSIM 

 

As seen from Table 4, the resulting architecture requires 
about 406 slices with 11% utilization from the available 

resources and about 48 Bonded IOBs with 19% utilization. 
Whereas the utilization of slice Flip Flop are approximately 
insignificant and negligible. The proposed architecture has low 
complexity and low resources consumption that enhanced 
effectiveness in area and provide a good choice in terms of 
low-cost hardware. The implemented RN-Cosim co-design 
reaches 50 MHz as maximum frequency. 

TABLE. IV. FPGA RESOURCES UTILIZATION IN THE HW/SW CO-
SIMULATION 

Logic utilization Used Available Utilization 

Number of slices 406 3584 11 % 

Number of slice Flip Flops 16 7168 1 % 

Number of Bonded IOBs 48 251 19 % 

Number of GCLKS 2 24 8 % 

Since the current implementation, it is possible to solve 
various nonlinear system identification tasks in the RKHS 
space. 

VI. CONCLUSION AND FUTURE WORK 

This article proposed efficient method of HW/SW Co-
simulation using Xilinx system generator. The basic principle 
of the contribution is to improve the RKHS model 
performances and to accelerate the computation task by 
including hardware in the loop. Also we developed a new 
reduction method to decrease the model errors. The 
experiments prove that the co-design reach more than 40 times 
speedup compared with the RN algorithm. 

The principal improvement of this advance is the 
opportunity of modeling and confirming the overall system 
inside the identical design environment. Moreover, Simulink 
offers a friendly graphics interface for flexible modeling and 
simulation. The design was well organized into hierarchical 
modules including the hardware and software components that 
require rigorous verification all along the design flow. 

Future works will incorporate the use of the Xilinx System 
Generator development devices for the implementation of 
another Kernel method like KPCA. As development in our co-

 Kernel 

type 

NMSE 

Training 

NMSE 

Testing 

CT(s) 

RNR  

Polynomial 
 

6.7980e-09 3.1847e-09 1.3884 

RN-Cosim 3.1850e-07 7.1274e-07 0.033066 

RNR  
Sigmoid 

7.9972e-09 3.1847e-08 1.4196 

RN-Cosim 3.1850e-07 1.3886e-07 0.034018 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 6, 2017 

158 | P a g e  

www.ijacsa.thesai.org 

design, new Kernel function will be added in order to increase 
the simulation accuracy. We will also apply RN-Cosim to 
systems that are more complex with other FPGA type. 
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