
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

165 | P a g e

www.ijacsa.thesai.org

Design of a High Speed Architecture of MQ-Coder

for JPEG2000 on FPGA

Taoufik Salem Saidani

Department of Computer Sciences
Faculty of Computing & Information Technology

Northern Border University, Rafha, Saudi Arabia

Hafedh Mahmoud Zayani

Department of Information System

Faculty of Computing & Information Technology
Northern Border University, Rafha, Saudi Arabia

Abstract—Digital imaging is omnipresent today. In many

areas, digitized images replace their analog ancestors such as

photographs or X-rays. The world of multimedia makes

extensive use of image transfer and storage. The volume of these

files is very high and the need to develop compression algorithms

to reduce the size of these files has been felt.

The JPEG committee has developed a new standard in image

compression that now also has the status of Standard

International: JPEG 2000. The main advantage of this new

standard is its adaptability. Whatever the target application,

whatever resources or available bandwidth, JPEG 2000 will

adapt optimally. However, this flexibility has a price: the

JPEG2000 perplexity is far superior to that of JPEG. This

increased complexity can cause problems in applications with

real-time constraints. In such cases, the use of a hardware

implementation is necessary. In this context, the objective of this

paper is the realization of a JPEG2000 encoder architecture

satisfying real-time constraints. The proposed architecture will

be implemented using programmable chips (FPGA) to ensure its

effectiveness in real time. Optimization of renormalization

module and byte-out module are described in this paper. Besides,

the reduction in computational steps effectively minimizes the

time delay and hence the high operating frequency.

The design was implemented targeting a Xilinx Virtex 6 and

an Altera Stratix FPGAs. Experimental results show that the

proposed hardware architecture achieves real-time compression

on video sequences on 35 fps at HDTV resolution.

Keywords—MQ-Coder; High speed architecture; FPGA;

JPEG2000; VHDL

I. INTRODUCTION

The current development of computer networks and the
dramatic increase in the speed of processors reveal many new
potentialities for digital imaging. Whether in the medical,
commercial or military field, new applications are emerging
each with its specificities. The JPEG Group has developed a
new, more flexible and better image encoding standard:
JPEG2000 [1]. It is built around a wide range of image
compression and display tools. This makes the algorithm
appealing to many applications, whether for Internet
broadcasting, medical imaging or digital photography [2].

The main JPEG2000 coding steps are shown in Fig. 1.
Several features are available for encoding, such as
progressive quality and/or resolution reconstruction, fast
random access to compressed image data, and the ability to
encode different regions of the image called regions of interest
(ROI).

Fig. 1. Overview of JPEG2000 coding process.

The JPEG2000 standard can be broken down into several
successive blocks. The original image is cut into tiles after the
component transformation. All the tiles are then transformed
into wavelets (transformation with or without loss),
independently of each other [3]. The wavelets used in the
JPEG2000 standard are bi-orthogonal, that is to say different
wavelets are used for decomposition and reconstruction. Two
types of bi-orthogonal wavelets are used: wavelets of
Daubechies 9/7 and Le Gall 5/3 [4], [5]. These two wavelets
are chosen according to the type of compression desired,
lossless or lossy. Le Gall 5/3 wavelets used to perform a
reversible transform are used for lossless compression. The
wavelets of Daubechies 9/7 allowing realizing a reversible
transform are used only for lossy compression.

The coefficients of the block-code undergo quantization
and the quantized coefficients are decomposed into bit planes.
The quantification minimizes the number of bits necessary for
coding the supplied coefficients of the preceding block, by
retaining only the minimum number of bits making it possible
to obtain a certain quality level [6], [7].

Based on the wavelet decomposition technique, JPEG2000
is very different from previous standards and has many
advantages that will allow it to be adopted in a wide range of
applications, or even to be extended to video encoding. In
contrast, this type of compression requires much more
computational power than the original JPEG process, which
makes software implementations irrelevant when very fast
processing is required. Fig. 2 shows the comparison between
JPEG and JPEG2000 in terms of performance. We note that
the performance of JPEG2000 is greater than those of JPEG
standard.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

166 | P a g e

www.ijacsa.thesai.org

Fig. 2. Comparison between JPEG and JPEG2000 in terms of performance.

Due to many successive processes, JPEG2000 requires
more computing power to achieve encoding and decoding
speeds similar to JPEG. A hardware solution is therefore
indispensable for fast applications.

The JPEG2000 image compression standard was created to
meet the new requirements arising from the diversification of
applications in the multimedia field. The many features that it
offers bring a new breath to this sector. However, they have
led to an increase in the complexity of the algorithm compared
with existing standards. Faced with this complexity, a
hardware encoder is the solution that allows satisfying the
real-time constraints of certain applications.

This paper presents an FPGA-based accelerator core for
JPEG2000 encoding. Comparison with various FPGA
implementations is provided.

Contributions in this work are listed as follows:

1) The proposed high speed efficient MQ-coder

architecture modifies the probability estimation (Qe)

representation to minimize the memory consumption. The

modification in probability estimation reduces the bitwise

representation to 13 bit.

2) Due to the less memory occupation, the time and power

required for the hardware-based JPEG2000 compression are

reduced. Thereby, the operating speed is improved (more

operating frequency) with the help of proposed MQ encoder

for real time image processing.

3) The minimization in bitwise representation in proposed

architecture of MQ coder reduces the count of memory

elements to (32 9 13) 416 that leads to the preservation of

silicon (Si) area further in the compact chip development.

4) The optimization of Renormalization and Byteout

modules help speeding up the proposed architecture.

The remainder of this paper is decomposed into six sections.

After the introduction, Section 2 details the JPEG2000 MQ

encoder. Previously proposed hardware architectures for MQ-

coder are described in Section 3. Section 4 describes the

proposed hardware architecture of MQ coder. In Section 5,

experiments and results are detailed. Finally, this paper is

concluded in Section 6.

II. JPEG2000 MQ-CODER

The arithmetic coder used in JPEG2000, called the MQ
encoder, takes as inputs the binary values D and the associated
contexts CX resulting from the preceding step of binary
modeling of the coefficients, and this in the order of the
coding passes. Fig. 3 shows the arithmetic encoder inputs and
outputs.

Fig. 3. The inputs and outputs of MQ-Coder.

Rather than representing the intervals associated with the
probabilities of ―0‖ or ―1‖, it was chosen to represent the data
using the LPS (Less Probable Symbol) and MPS (More
Probable Symbol) symbols, respectively representing the
probabilities occurrence of the minority and majority species.
Obviously, it is necessary to keep track of the meaning
attributed to one or the other of the variables ―0‖ or ―1‖ is the
minority species.

Thus the current interval is represented by the interval 1,
which is then divided into two sub-intervals corresponding to
the minority and majority species. From a representation point
of view, LPS is always given as a lower interval. Each binary
decision, represented by a bit, is divided recursively. The
divisions are made to estimate the probability of Elias: MPS
and LPS.

The binary sequence from the MQ is divided into a
number of packets. Each of them contains the bit-stream
corresponding to the same component, the same resolution
level, the same quality layer and the same spatial zone of the
resolution level. The spatial areas of each resolution level are
called precincts. Each of the packets is preceded by a header
containing information allowing identifying very precisely the
data conveyed by this packet.

Four different progress orders are defined in JPEG 2000.
They make it possible, during the decoding, to obtain in
priority either the data of the same component, or those of the
same resolution level, or those of the same quality layer, or
those of the same spatial zone of the image.

In JPEG2000, the realization of the arithmetic coder is
performed by means of an index table. The table represents
the LPS probability estimate (Qe). For each input pair
(decision, context), we look for the most probable symbol in a
variable containing the different states. As each state is
represented in the index table, the context can be associated
with the index of the table. On its side, the decoder has the
index replica of the table, which makes it possible to carry out
the decoding.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

167 | P a g e

www.ijacsa.thesai.org

The Finite state Machine (FSM) with 47 states defines the
Probability Estimation Table structure clearly. The number of
calculations to obtain the coding information and the
utilization of resources are high that degrade the hardware
performance. The hardware modeling of MQ-coder contains
the following limitations:

5) Low clock frequency.

6) Consumption of LUTs and registers is more.

7) High hardware resource requirements.
A large number of context and decision pairs in MQ

encoder shift the parallel operation into a serial operation;
such a new architecture is called high-speed MQ encoder
architecture. The storage of transformed coefficients in code
block consumes more registers that lead to large flip-flop (FF)
requirement. Hence, the reduction in code block based on the
context pair probability estimation reduces the number of
lookup tables (LUTs) and slice registers that leads to less
memory consumption. The motivation behind the research
work proposed in this paper is the reduction in memory, time
and power consumption by reducing the size of the bitwise
representation.

III. RELATED WORKS

The main advantage of JPEG 2000 was to combine most
of these qualities, allowing using it in a very wide range of
applications. This flexibility, coupled with a very high
compression efficiency, unfortunately has a price. Moreover,
some applications have real-time aspects which impose very
high flow constraints.

An architecture composed of three stages is proposed by
Mei et al. in [5]. When implemented on an APEX20K FPGA
board, it operates with 37.27 MHz. Indeed in this architecture,
if the state MPS occurs then two symbols will be coded
simultaneously, if not a single symbol will be coded.

Shi et al. [8] proposed a MQ-coder hardware core that
allows treating two symbols. Indeed, this architecture is based
on the following hypothesis: a maximum of two offsets occurs
when there is a renormalization operation. The architecture
proposed in [9] is composed by three blocks. The first block is
responsible for initializing register A at 0x8000, register C at
0, table MPS (Cx) at 0 and index table in ILT RAM, and
perform all arithmetic operations. The second block is used to
shift the registers A and the register C and to decrement the
counter CT by 1. If CT = 0, the third block will be activated
and the register B will be emitted as compressed data. The
proposed architecture was implemented on a Startix FPGA
and works at a frequency of 83.271 MHz.

The complexity of the JPEG 2000 algorithm is a problem
for these real-time applications. In [10], the author indicates
that in view of current technology, it is not possible for purely
software implementations to respect the constraints imposed
by these real-time applications. This is the reason why a
growing number of companies and researchers are interested
in (partially) hardware-related achievements of the standard,
in which the computing resources have been optimized and
the memory requirements reduced.

Below we give an overview of the hardware achievements
to date and the results obtained.

As part of the PRIAM project, Thales Communications
has developed an implementation of a JPEG 2000 encoder on
an MPC74XX processor. This is studied in [11]. The
MPC74XX processor is based on a PowerPC architecture
(RISC type processor) to which is added a vector calculation
unit called AltiVec. This allows multiple data sets to be
processed in parallel in a single instruction.

Unlike the other blocks in the decoding chain, the entropy
coder, due to its non-systematic behavior, is complex to
optimize by means of vectorial instructions. This achievement
gives overall very good results, but the entropy coder,
requiring 400 cycles per 8-bit pixel, is truly the ―bottleneck‖
of the system.

Bonaldi [12] has been working on the creation of a mixed
software-hardware encoder. The medium used is the ARM-
VIRTEX card of the DICE unit. An input rate of 6.6 Mbps for
the entropy encoder is especially supported. Moreover,
everything concerning the formation of the bit-stream is
carried out in software, on the ARM. This approach of Co-
Design is very judicious and is moreover widely supported by
the literature.

The Amphion company offers an ASIC encoder-decoder
available since 2003 [13]. Amphion announces speeds of 480
Mbps at encoding and 160 Mbps at decoding. This
embodiment has interesting characteristics, such as the few
constraints on the format of the input images, a division of
tasks between hardware and software and an architecture
compatible with the AMBA bus, which allows easy
integration into other systems.

Analog devices [14] offer the ADV-JP2000. This circuit
operates at a maximum 20 MHz frequency including a 5/3
wavelet transform (no 9/7) and an entropy encoder. The circuit
is not fully compliant with the standard. The ADV-JP2000
offers two modes of operation: encodes and decodes. In the
encode mode it accepts a single tile and generates the stream
of code-blocks conforming to the standard. The ADV-JP2000
communicates via an asynchronous protocol but also allows
an interrupt mode. Finally, the circuit supports the DMA
mode.

Zhang et al. [15] proposed an architecture composed of
four stages and three parts (P1, P2, P3). Indeed, P1 is
implemented in Stage 1 to determine the new value of Qe
when A < (0x8000). The P2 is called in Stage 2 and Stage 3,
because the latter updates the Reg A and Reg C and also to
perform the arithmetic operations and the offset operations.
Finally, the P3 is used in Stage 4 to realize the bit stuffing
when the counter CT is equal to 0. The processing frequency
of this architecture was 110 MHz on an Altera FPGA card.

IV. PROPOSED ARCHITECHTURE

The proposed architecture of the encoder is shown by the
block diagram of Fig. 4. The pairs (C, D) are received by the
MQ coder as input and a sequence of bytes called ByteOutReg
are provided as output. This architecture consists of two parts:
the part of the prediction of the probability of the symbol to be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

168 | P a g e

www.ijacsa.thesai.org

coded composed of 2 RAMs (ICX, MPS) and 4 ROMs
(NMPS, NLPS, Switch, Qe), and the coding part which is
composed of a state machine.

The four ROMs are not updated during coding operation.
The pairs (CX, D) are first sequentially read. Subsequently,
the CX context will be transmitted over the bus address of the
ICX RAM and the MPS RAM. Then the value of I(CX) and
MPS(CX) will be read. Then the I(CX) index will be delivered
to the four ROMs. The mps_D will be executed with signal D,
which causes the LPS_en signal to be generated. If this signal
is equal to one then the CODELPS state will be carried out
otherwise the CODEMPS state will take place.

The updating of the ICX RAM depends essentially on the
signal Ren_out. Indeed this signal will set to one if the
renormalization is carried out. However, the MPS RAM will
update if the LPS_SW signal is equal to one. The Probability
estimation architecture is shown in Fig. 5.

Fig. 4. MQ-Coder architecture.

Fig. 5. Probability estimation architecture.

We are then interested in the coding part to manage the
process of the coding by a machine of finite states by
substituting the various sub-algorithms by states. The outputs
depend on the current state and the inputs and react directly to
changes in inputs. Fourteen states have been set up in order to
describe the MQ encoder process. Fig. 6 shows the MQ-Coder

state machine. The states used in this state machine are as
follows:

Fig. 6. MQ-Coder State machine.

8) Repos: This state essentially depends on the input

―go‖, if go = 1 it switches to the state INITENC otherwise it

remains in the same state.

9) Initenc: In this state, register Reg_A at (0x8000),

register Reg_C at 0 and counter CT at 12 are initialized. Then

the MPS RAM is filled with 0s and the RAM of the indexes

by the 19 possible values of the context CX. Then you will

automatically play (Read). The index/probability tables should

be presented in the memory before coding begins.

10) Read: In this state, the context is read to deduce the

value of the corresponding MPS (Cx) according to the table

initialized in INITENC. We also read Decision D.

11) CODAGE: If Decision D = MPS (Cx), it switches to

the CODEMPS state otherwise it goes to the CODELPS state.

12) CODEMPS: The register Reg_A is adjusted to

Qe_reg. Then Reg_A is compared to (0x8000). If Reg_A is

less than (0x8000), the index will be updated according to the

NMPS table of the context index and the Renorme state will

be used. If register Reg_A is greater than (0x8000), we add

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

169 | P a g e

www.ijacsa.thesai.org

the probability Qe_reg to the register Reg_C and we will pass

to the Finis state.

13) Finis: In this state if the even number (number of pairs

(CX, D) lu) is equal to 256 then we pass to the flush state,

otherwise the next state will be Read.

14) CODELPS: In this state, register Reg_A to Reg_A-

Qe_reg is adjusted. Then, if Reg_A is greater than Qe_reg

then the register Reg_A takes the value of Qe_reg, otherwise

we add the probability Qe_reg to the register Reg_C. The

condition of inversion of the intervals is always checked. If a

SWITCH is required, the direction of the MPS will be

reversed. The index will take a new value according to the

NLPS table and it will change to the Renorme state.

15) Renorme: The contents of Reg_A and Reg_C will be

replaced by a simple left shift. This shift repeats until the

value of Reg_A is raised above (0x8000). The counter CT

containing the number of shifts of Reg_A and Reg_C will then

be decremented at each offset. When the counter CT reaches 0

(CT was initially at 13, i.e., 13 left offsets were made at

Reg_A and Reg_C), it will pass to byteout1 and if Reg_A is

still less than (0 x 8000), we will return to the Renorme state

as soon as we have finished with byteout. The optimization of

the Renormalization procedure is presented in Fig. 7.

16) Byteout1: This state can be called in two states either

in the Renorme state when the shift counter CT becomes equal

to zero, or also at the end of the coding when the registers

flush. The optimization of the Byteout procedure is presented

in Fig. 8.

17) FLUSH: This is the state we reach towards the end of

the encoding (in our case if nbpair = 256). The FLUSH

procedure contains two calls to Byteout1 and two calls to

Setbit; hence, the idea of subdividing it into three states: the

first is flush_1 which ends with a call to byteout1, the second

is flush_2 (same principle of fulsh_1) and the third is flush_3.

a) Flush_1: This state contains two sub-states, the first

is the Setbit, the second is byteout1. First we make a call to

the state Setbit then we apply an offset to the register Reg_C,

then we make a call to byteout1 and we end by making a call

to flush_2.

i) Setbit: In this state, the Reg_C register shift is

automatically changed to byteout1, regardless

of the Reg_C register value (i.e., Reg_C is

lower or higher than TEMPC).

b) Fluch_2: This state has the same principle of the

state flush_1 but this time we pass to state flush_3.

c) Flush_3: This state contains the end of the flush,

when the first end marker 0xFF has to be inserted. The next

state will be rest.

Fig. 7. (a) Original RENORME architecture (b) Optimized RENORME

architecture.

Fig. 8. (a) Original BYTEOUT architecture (b) Optimized BYTEOUT architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

170 | P a g e

www.ijacsa.thesai.org

V. EXPERIMENTAL RESULTS

A. Simulation

Simulation of the proposed design, using VHDL HDL, is
carried out with Mentor graphic.

ByteOutReg bytes coincide with those in column B and the
parameters IDCX, MPS, Qe_reg, Reg_A, Reg_C and Reg_CT
have evolved appropriately. This result has been well verified
and we have chosen to take a sequence to visualize it in
simulation and explain it in parallel. For the sake of clarity in
Fig. 9, we have chosen to display some signals in the
simulation flow that are the following: the compressed data
Byteout_Reg, the index IDCX, the counter Reg_CT, the
probability Qe_reg and states. Table 1 summarizes the
simulation results of the MQ encoder: either from decision n°
28 to decision n° 34.

B. Synthesis Results

Implementation of the proposed design was made on
Xilinx Virtex Family Platforms: XC6SLX75T, XC5LX30T
and XC4VLX80 devices. We have used the Xilinx ISE tools
version 14.1 .The synthesis results of the architecture is shown
in Table 2. The proposed MQ encoder design gives the best
result, in terms of hardware resources such as (the number of
LUTs consumed, slices and Flip-Flop) and frequency of
operation when implemented on a platform Virtex 6.

Concerning the frequencies obtained, we note that our
architecture meets the criteria real-time.

The design has a maximum frequency of 423.2MHz on the
Virtex 6 (XC6SLX75T) device.

C. Comparison

A comparative study with other existing designs in the
literature has been made. The Virtex 4 XC4VFX140 platform
is used for this comparison. The performance comparison of
our design with the architecture proposed in [16] is shown
Table 3. Our proposed design codes frames in real time at a
frequency of 244.475 MHz and requires only 455 slices.

The throughput of some architecture of MQ coders
compared with our proposed architecture is presented in
Table 4. It is calculated from the reported symbol consumption
rate and operating frequency. It is found that our architecture
encodes frames with a frequency 3.31 and 2.29 times higher
than that of architecture [16] and [17] respectively.

Table 5 shows the comparisons of logic area, memory
requirement, and estimated memory area of several previous
works [5], [7], [15]-[20]. The total area of the proposed
architecture is less than that of each previous work. However,
the hardware cost of the word based architecture is larger than
the proposed architecture. The proposed design can code 40
frames per second for high definition TV of 1920p at 254.84
Mhz on Stratix II.

Fig. 9. Wave simulation for MQ coder architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

171 | P a g e

www.ijacsa.thesai.org

TABLE. I. EXAMPLE EXTRACTED FROM THE SIMULATION OF THE MQ ENCODER

Symbole D IDCX Reg_A Reg_C CT Byteout_Reg

10 1 28 0xE80E 0x000C6D52 7 0x84

11 0 26 0x9008 0x00636A90 4 0x84

12 0 27 0xF40E 0x00C70122 3 0x84

13 0 27 0xE00D 0x00C71523 3 0x84

14 1 27 0xCC0C 0x00C72924 3 0xC7

25 0 25 0xA008 0x00014920 8 0xC7

26 0 25 0x8807 0x00016121 8 0xC7

TABLE. II. RESULTS OF SYNTHESIS

Used Platform XC6SLX75T XC5VLX50T XC4VLX80

Maximum

Frequency

(MHz)
423.2 336,304 264.2

No. of 4 input

LUTs 540/343680 523/28800 766/71680

Total used slices
251/687360 247/28800 396/35840

Total FF slices
177/693 176/659 247/71680

TABLE. III. PERFORMANCE COMPARISON

Used FPGA XC4VFX140

Architecture Proposed Architecture [15]

Max. Frequency

(MHz)
244.475 185.43

Used slices 455 495

Used FF slices 292 392

Used 4 input LUTs 865 893

Used BRAMs 1 2

TABLE. IV. THE THROUGHPUT OF SOME DESIGNS TESTED ON VIRTEX 4

X4VFX140

Used FPGA XC4VFX140 (Virtex4)

Design
Number of

pairs

Frequency

(Mhz)

Throughput

(MS/s)

Design [7] 2 50.1 100.2

Design [21] 1 185.43 185.43

Design [18] 1.23 53.92 66.38

Design [19] 2 48.3 96.6

Proposed 1 244.475 244.475

VI. CONCLUSION

This paper discussed the problems in the real-time
implementation of FPGA-based MQ coder architecture. The
MQcoder utilization in both encoding and decoding stages
performs the probability estimation of coefficients and
optimization of Renorme and Byteout modules. The increase
in computational overhead required more power and energy
consumption. This paper provides the reduction in the bitwise
computation to reduce the number of computational steps. The
minimization in computational steps decrease the power and
time delay. The proposed PET architecture reduced the bitwise
representation from 13 bit to 12 bit that provided the reduction
in memory elements from 416 to 348 compared to the existing
MQ-coder architecture. Therefore, the size of PET ROM is
1376 bits. An embedded architecture of MQ Coder for
JPEG2000 is designed and implemented in this paper. The
implementations carried out during this work allowed us to
know that the proposed architecture of the MQ encoder
operates with a frequency of 423.2 MHz on Virtex6
XC6SLX4 device and that it can code 40 frames per second
for the high-definition TV application. The proposed architecture

is easily expandable to 2048×1080 resolution video at 45 fps. It can
be used in several applications such as Internet broadcasting,
medical imaging and digital photography. Moreover, the
processing time was improved by about 13.6% in comparison
with well-known architectures from literature.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

172 | P a g e

www.ijacsa.thesai.org

ACKNOWLDGMENTS

The authors wish to acknowledge the approval and the
support of this research study by the grant N° CIT-2016-1-6-

F-5718 from the Deanship of the Scientific Research in
Northern Border University, Arar, KSA.

TABLE I. COMPARISON WITH OTHER MQ CODER ARCHITECTURES

Architecture FAGA family Device used Clk (MHz) No. of LEs Symbol/Clk
Throughput

(MS/s)

[5] APEX20K EP20K600EFC672-3. 37.27 1256 2 74.54

[7] Stratix N/A 50.10 1596 2 100.2

[15] Stratix N/A 40.53 12649 2 81.6

[20] Stratix II EP2S15F484C3 106.2 1321 2 212.4

[22] APEX20K EP20K1000EFC672-1X. 9.25 14711 1 9.25

[23] Stratix N/A 27.05 761 1 57.05

[24] Stratix N/A 106.02 1267 2 210

[16] Stratix EP2S90F1020I4. 58.56 1488 2 117

[17] Stratix EP1S10B672C6. 145.9 824 1 145.9

Proposed Stratix II EP2S15F484C3 254.84 603 1 254.84

REFERENCES

[1] JPEG 2000 image coding system, ISO/IEC International Standard
15444-1. ITU Recommendation T.800, (2000).

[2] D. S. Taubman and M. W. Marcellin. JPEG2000 Image Compression
Fundamentals, Standards, and Practice (2002).

[3] T. Acharya and P. Tsai, JPEG2000 Standard for Image Compression:
Concepts, Algorithms and VLSI Architectures, J. Wiley & sons (2005).

[4] JASPER Software Reference Manual, ISO/IEC/JTC1/SC29/WG1N2415.

[5] K. Mei, N. Zheng, C. Huang, Y. Liu, Q. Zeng, VLSI design of a high-
speed and area-efficient JPEG 2000 encoder, IEEE Transactions on
Circuits and Systems for Video Technology 17 (8) (2007) 1065–1078.

[6] Horrigue, L., Saidani, T., Ghodhbani, R., Dubois, J., Miteran, J.,Atri, M.:
An efficient hardware implementation of MQ decoder of the JPEG2000.
Microprocess. Microsyst. 38, 659–668 (2014)

[7] L. Liu, N. Chen, H. Meng, L. Zhang, Z. Wang, H. Chen, A VLSI
architecture of JPEG 2000 encoder, IEEE Journal of Solid-State Circuits
39 (11) (2004) 2032–2040.

[8] Jiangyi Shi, Jie Pang, Zhixiong D Yunsong Li. A Novel Implementation
of JPEG2000 MQ-Coder Based on Prediction, International Symposium
on Distributed Computing and Applications to Business, Engineering
and Science, 2011. pp:179-182.

[9] Kishor Sarawadekar and Swapna Banerjee, VLSI design of memory-
efficient, high-speed baseline MQ coder for JPEG 2000, Integration, the
VLSI Journal, Elseiver. Vol 45, January 2012, Pages 1-8. DOI:
10.1016/j.vlsi.2011.07.004.

[10] J. Hunter. Digital cinema reels from motion JPEG 2000 advances,
janvier 2003. http ://www.eetimes.com/story/OEG20030106S0034.

[11] C. Le Barz and D. Nicholson. Real time implementationof JPEG 2000 .
june 2002.

[12] C. Bonaldi and Y. Renard. Conception et réealisation d’un codeur JPEG
2000 sur une carte Virtex-ARM . Laboratoire de Microélectronique
(DICE), UCL, june 2001.

[13] Amphion. CS6590 JPEG 2000 codec preliminary product brief , October
2002. http ://www.amphion.com.

[14] D.Taubman and M.W.Marcellin, JPEG2000 – Image Compression
Fundamentals, Standards and Practice, Kluwer Academic Publishers,
Nov. 2001.

[15] K. Liu, Y. Zhou, Y. Song Li, J.F. Ma, A high performance MQ encoder
architecture in JPEG2000, Integration, the VLSI Journal 43 (3) (2010)
305–317.

[16] P. Zhou, Z. Bao-jun, High-throughout hardware architecture of MQ
arithmetic coder, in: 10th IEEE International Conference on Signal
Processing (ICSP), 2010.

[17] K. Sarawadekar, S. Banerjee, An Efficient Pass-Parallel Architecture for
Embedded Block Coder in JPEG 2000 . IEEE Trans. Circuits Systems.
Video Technology, 22 (6) (2011) 825-836.

[18] Michael Dyer, David Taubman and Saeid Nooshabadi. Concurrency
Techniques for Arithmetic Coding in JPEG2000. IEEE Transactions on
Circuits and Systems for Video Technology, 2006, vol.53, pp. 1203–
1213.

[19] Kishor Sarawadekar and Swapna Banerjee, ―LOW-COST,
HIGHPERFORMANCE VLSI DESIGN OF AN MQ CODER FOR
JPEG 2000‖ ICSP2010, 2010, pp.397-400.

[20] Nandini Ramesh Kumar · Wei Xiang · Yafeng Wang, Two-Symbol
FPGA Architecture for Fast Arithmetic Encoding in JPEG 2000, Journal
of Signal Processing Systems, 69(2)(2012)213–224.

[21] Saidani, T., Atri, M., Khriji, L., Tourki, R.: An efficient hardware
implementation of parallel EBCOT algorithm for JPEG2000. J. Real-
Time Image Process. 11, 1–12 (2013).

[22] Varma,H.Damecharla,A.Bell,J.Carletta,G.Back,A fast JPEG2000
encoder that preserves coding efficiency:the splitarithmetic encoder,
IEEE Transactions on Circuits and Systems—Part
I:RegularPapers55(11)(2008) 3711–3722.

[23] M. Dyer, S. Nooshabadi, D. Taubman, Design and analysis of system on
a chip encoder for JPEG 2000, IEEE Transactions on Circuits and
Systems for Video Technology 19 (2) (2009) 215–225.

[24] N.R. Kumar, W. Xiang, Y. Wang, An FPGA-based fast two-symbol
processing architecture for JPEG 2000 arithmetic coding, in: IEEE
International Con- ference on Acoustics Speech and Signal Processing
(ICASSP) 2010, 2010, pp. 1282–1285.

