
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

271 | P a g e

www.ijacsa.thesai.org

ASCII based Sequential Multiple Pattern Matching

Algorithm for High Level Cloning

Manu Singh

School of ICT,

Gautam Buddha University

Greater Noida, Uttar Pradesh, India

Vidushi Sharma

School of ICT,

Gautam Buddha University

Greater Noida, Uttar Pradesh, India

Abstract—For high level of clones, the ongoing (present)

research scenario for detecting clones is focusing on developing

better algorithm. For this purpose, many algorithms have been

proposed but still we require the methods that are more efficient

and robust. Pattern matching is one of those favorable

algorithms which is having that required potential in research of

computer science. The structural clones of high level clones

comprised lower level smaller clones with similar code fragments.

In this repetitive occurrence of simple clones in a file may

prompt higher file level clones. The proposed algorithm detects

repetitive patterns in same file and clones at higher level of

abstraction like file. In genetic area, there are a number of

algorithms that are being used to identify DNA sequence. When

compared with some of the existing algorithms the proposed

algorithm for ASCII based sequential multiple pattern matching

gives better performance. The present method increases overall

performance and gradually decline the number of comparisons

and character per comparison proportion by repudiating (avoid)

unnecessary DNA comparisons.

Keywords—Pattern matching; ASCII based; high level clone;

file clone

I. INTRODUCTION

A software system is constantly changing, and consistent
maintenance is required to help it adapt to the new changes.
Designs, software upgrades, compilers, hardware upgrades and
so forth all influence the working of software. Because of
standard adjustments in code, redundancies happen in code and
programming will be more mind boggling and troublesome in
keeping up. Now and then this excess is known as cloning.
Cloning may occur at various abstraction levels and have
unusual source [1]. Literature study portrays half cloning in the
source codes [2]. In literature, several techniques used to
identify simple clone fragments [3] but detection clones at
higher levels remains a promising area till now. One of the
promising area in clone detection is pattern matching. pattern
matching is the act of checking the occurrences of a particular
pattern of characters in a large file.

This paper investigates the applicability of a new technique
of pattern matching approach called ASCII based Pattern
Matching algorithm, for detection of high level clone in source
code. High Level Clones are classified [4] in structural clone,
concept clone, behavioural clone [5] and domain model clone.
This classification depicts that structural clones are formed by
similar fragments of code at low level. This approach avoids
lengthy comparisons in string sequence and reduces the effort

for each character comparison at each attempt. The proposed
algorithm gives better results as compared to other algorithms.

The rest of the paper is organized as: Related work is
explained in Section II. Proposed algorithm is explained in
Section III. Then simulation results are presented in Section
IV. Experimental results of proposed algorithm are discussed
in Section V. Section VI explain graphically the effect of
increasing pattern size on performance indices. Section VII
discusses comparative analysis of proposed algorithm with
another algorithm. Section VIII analyse the impact of
cumulative pattern size increment on no. of comparison. Then
final performance analysis of proposed algorithm is given in
Section IX. Concluding remarks are given in Section X.

II. RELATED WORK

There are various string matching techniques which mainly
deal with problem of identifying occurrences of a substring in a
given string or locate the occurrences of specific pattern in a
sequence. In this section, we explore these different types of
string matching techniques. Some techniques are based on
algorithms of exact matching in string, such as Brute-force
algorithm, Bayer-Moore algorithm, Knuth-Morris-Pratt
algorithms [6], [7] and some are based on approximate string
matching algorithms, dynamic programming is mostly used
approach. In An indexed based K-Partition Multiple Pattern
Matching Algorithm (IBKPMPM) [8] choose the value of k
and divide both the string and pattern into number of substring
of length k, each substring is called as a partition. We compare
all the first characters of all the partitions, if all the characters
are matching while we are searching then we go for the second
character match and the process continues till the mismatch
occurs or total pattern is matched with the sequence. In index
based forward backward multiple pattern matching algorithm
(IFBMPM) [9] patterns matching technique the characters in
the given patterns are matched one by one in the forward and
backward until a mismatch occurs or a whole pattern matches.
In the Multiple Skip Multiple Pattern Matching Algorithm
(MSMPMA) [10] technique the algorithm search the input text
to find the all occurrences of the pattern based upon the skip
technique. To get starting location of the matching Index is
used; it compares the Text characters from the well-defined
point with the pattern characters, and based on the match
numbers decides the skip value (ranges 1 to m-1). In IBSPC
[11] indexes have been used for the DNA sequence. Least
occurring character index will be used to search for the pattern
in the string. In Index Based Algorithm [12], on the basis of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

272 | P a g e

www.ijacsa.thesai.org

frequently occur character index table is created and then align
pattern with string and matched occurrence of patterns with
multiple times one by one from left to right in the file.

This paper proposed the most efficient approach for finding
similarity between multiple pattern, till date. To further
increase the performance of pattern matching an ASCII based
multiple pattern matching algorithm using ascii value
comparison between pattern and substring is proposed. It is a
simple approach for finding multiple occurrences of patterns
from a given file. This algorithm gives better results when
compare it with existing algorithms. This approach provides
best results with the DNA sequence dataset. Proposed
algorithm is implemented in VB.NET and results are compared
with already existing algorithms. Experimental results of
applying the technique to DNA sequences show the
effectiveness of the proposed technique.

III. PROPOSED ALGORITHM

The proposed approach has been used ASCII value of
characters for comparison. The algorithm considered a DNA
sequence string S of 1024 characters as input. First of all,
extract substring from string S equal to the pattern length m.
Calculate the ASCII sum of all substrings. Suppose the given
pattern is P. Compare the ASCII sum of both the pattern and
substring, If ASCII sum of both the pattern and substring
match so start comparing the pattern and substring character by
character. If characters are not matched then skip the rest
comparison of characters of substring and aligned the pattern
with the next substring of the string. This process Continue till
substring is less than the pattern length. By above example we
can conclude that comparing ASCII values reduces the number
of comparisons as when ASCII sum is not match then there is
no need to compare substring and pattern character by
character.

A. ASCII Based Multiple Pattern Matching Algorithm –

Input: String S of n characters and Length of pattern P of m
characters.

Output: The number of occurrences of Pattern in String, its
location and the number of characters compared.

Dim QueryASCIITable As String, patternASCIIValue As Int,

_noOfComparison = 0

Step1: Dim count As Integer = 0, qStringarr As String (),

patternarr As String (), tempstr As String

Dim queryIndex As Int32 = 0, blFound As Boolean = True

If String.IsNullOrEmpty (String_S) Then

 qStringarr = String_SArray

'Array of substring

 If String.IsNullOrEmpty (Pattern_P) Then

 patternarr = m_Pattern_PArray

'Array of Pattern string

Step 2: ['Store the ASCII value of each size]

 For a As Integer = 0 To qStringarr.Length - 1

 If qStringarr.Length - a >= patternarr.Length Then

tempstr()=(ArraySelect(qStringarr,a,a+patternarr.Length)).

ToArray()

QueryASCIITable.Add (a, GetASCIISum (tempstr), tempstr))

 End If

 Next

Step 3: [Store the ASCII value of pattern]

 patternASCIIValue = GetASCIISum(patternarr)

Step 4 : While (queryIndex < QueryASCIITable.Count - 1)

 If

patternASCIIValue=QueryASCIITable(queryIndex).Key Then

 _noOfComparison += 1

 For patternIndex As Integer = 0 To patternarr.Length - 1

 _noOfComparison += 1

 If patternarr (patternIndex) = QueryASCIITable

(queryIndex).Value (patternIndex) Then

 Continue For

 Else

 blFound = False

 Exit For

 End If

 Next

 If blFound Then

 indexarrfound.Add (queryIndex)

 End If

 End If

 queryIndex += 1

 End While

B. Performance Indices

Pattern matching algorithm efficiency can be judged by
using certain performances indices. To make the comparisons
we have used following performance indices:

1) No. of Occurrences: If we are given an array of text T

(1……n) of length n and the pattern is an array P (1…m) of

length m such that m<=n then the number of occurrences of

pattern will be (n-m+1).

2) No. of Comparisons: Objective of pattern matching

algorithm is to reduce the number of character comparison in

worst and average case analysis.

3) Best Case: The best case of this algorithm will be, when

the pattern matches in the first shift. Therefore, best case is,

T(n)=Ω(m).

4) Worst Case: Let in worst case situation the pattern

matches at every shift in the text then there will be „m‟

comparisons in each shift, so the total number of comparisons

will be „m(n-m+1)‟. So the worst time complexity of this

algorithm will be , T(n)=O(m(n-m+1)).

5) Comparisons per Character (CPC): CPC is used as a

measurement factor. Complexity is decreased when CPC

decreased. CPC ratio can be calculated as CPC = (Number of

comparisons/file size).

IV. SIMULATION RESULTS

The algorithm was implemented using VB.NET, and it was
tested using different DNA sequence with different file sizes.
However, the proposed algorithm is compared with other
algorithms. They are MSMPMA, Brute-Force, Trie-matching
and Index Based algorithm. These algorithms are selected due
to common features with the proposed algorithm as follows:

1) Multiple string matching

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

273 | P a g e

www.ijacsa.thesai.org

2) No pre-processing operations: As the proposed

algorithm compares the ASCII value of the character rather

than the character itself. Thus it will not take any pre-

processing time and hence no pre-processing operation is

required before comparison due to which this algorithm will

become more efficient as compared to other algorithms.

3) Maintaining different type of files: The implementation

and comparison with other algorithms process is carried out

When text file size = 1024 bytes, using different patterns and

sizes in implementation process. The results are obtained and

can be grouped in various sections.

V. PERFORMANCE ANALYSIS OF ASCII BASED ALGORITHM

The DNA Sequence data has been taken from the Multiple
Skip Multiple Pattern Matching algorithm MSMPMA [9] for
testing the proposed algorithm. After implementation of the
proposed ASCII based multiple pattern matching algorithm for
the 1024 character and finding the no of occurrences, no of
comparisons and CPC ratio it has been concluded that the
number of comparisons reduces as the pattern size of DNA
increases and are shown below in Table 1.

TABLE I. EXPERIMENTAL RESULTS OF PROPOSED ALGORITHM

S.

N
 Pattern

No. of

Character

No. of

Occurrence

No. of

Comparison

CPC

Ratio

1 A 1 259 516 0.5

2 AG 2 53 278 0.27

3 CAT 3 11 131 0.128

4 GACA 4 6 127 0.124

5 AACGC 5 2 2 0.001

VI. EFFECT OF INCREASING PATTERN SIZE ON DIFFERENT

PERFORMANCE INDICES

After the implementation of the proposed algorithm, the
following points could be concluded from the obtained results
in table below.

The result indicates that to find pattern with one char length
from 1024 DNA data sequence proposed algorithm required
516 no. of comparisons (almost half). It means proposed
algorithm requires 0.50 comparisons/character to search one-
character pattern.

Further table indicates that when pattern increased in size,
the no. of comparisons to find the pattern is decreased.
Therefore, it can be said that this is very beneficial for
detection of high level clones because high level cloning is
found at coarser level not at the fine level.

When the pattern length increased, Comparison per
Character decreased, and it is a well-known fact that
Complexity time is affected by Comparison per Character. It
depicts that the complexity is also decreased when pattern size
increased.

If we take in consideration the number of pattern
occurrences, we can say that the complicity is less than O(n),
since We need less number of comparisons for the second
match and less for the third and so on.

The number of comparisons which affects the processing
time rapidly decreased after the first match, and the total
number of comparisons for all occurrences will be less than the
text file size.

A. Analysis on the Basis of Occurrence

Fig. 1 depicts that number of occurrences decreased when
pattern size increased. Generally when pattern size increase
there is less probability to find pattern in file and at that time
algorithm that can search large pattern in less number of
comparisons is required.

Fig. 1. Relation between pattern size and number of occurrences

B. Analysis on the Basis of Comparisons

The impact of increasing pattern size on number of
comparisons have been displayed in Fig. 2. As the graph shows
that when small pattern size is searched in file, number of
comparisons is at its highest level but as the pattern size
increased number comparisons decreased gradually.

Fig. 2. Relation between pattern size and number of comparisons

C. Analysis on the Basis of Comparisons Per Character

The impact of increasing pattern size on comparison per
character can be noticed in Fig. 3. When the pattern length
increased, Comparison per Character decreased. Complexity
time is affected by Comparison per Character. It depicts that
the complexity is also decreased when pattern size increased.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

274 | P a g e

www.ijacsa.thesai.org

Fig. 3. Relation between pattern size and comparison Per character

VII. COMPARATIVE ANALYSIS OF ASCII BASED ALGORITHM

WITH OTHER EXISTING ALGORITHMS

As we have collected the data for various existing
algorithm [10], [12] and drawn the comparative analysis in
Tables 2.1, 2.2 and 2.3 with respect to the various existing
algorithm.

TABLE II. (1) PATTERN=A (M=1)

Name of

Algorithm

No. of

Occurrences

No. of

Comparisons

Comparisons

per Character

 MSMPMA 259 1024 1

Brute-Force 259 1024 1

Naïve String

Search
259 1024 1

Trie-

matching
259 1025 1.001

Index Based 259 774 0.75

ASCII Based 259 516 0.503

TABLE II. (2) PATTERN=AG (M=2)

Name of

Algorithm

No. of

Occurrences

No. of

Comparisons

Comparisons

per Character

 MSMPMA 53 1230 1.201

Brute-Force 53 1282 1.252

Naïve String

Search
53 1281 1.250

Trie-matching 53 1284 1.254

Index Based 53 414 0.404

ASCII Based 53 278 0.271

TABLE II. (3) PATTERN=CAT (M=3)

Name of
Algorithm

No. of
Occurrences

No. of
Comparisons

Comparisons per
Character

 MSMPMA 11 1298 1.268

Brute-Force 11 1318 1.287

Naïve String
Search

11 1321 1.290

Trie-matching 11 1310 1.279

Index Based 11 224 0.218

ASCII Based 11 131 0.128

Among them our algorithm which gives very good
performance. It can be analysed that ASCII based algorithm
gives improvements to other algorithms are following:

1) Decreases number of comparisons in average and best

case analysis.

2) Appropriate for very large size input file.

VIII. ANALYSING THE IMPACT OF CUMMULATIVE PATTERN

SIZE INCREMENT ON NUMBER OF COMPARISON

Table 3 given below compare the total number of
comparisons of different algorithms [13] with randomly
selected different pattern sizes ranges from 1 to 8 in cumulative
manner. As the size of pattern increasing in cumulative
manner, the number of comparisons in proposed algorithm are
lesser as compared to other pattern matching algorithms.

TABLE III. COMPARISON OF DIFFERENT ALGORITHMS USING DNA

SEQUENCE FOR CUMULATIVE PATTERN [13]

 No. of Comparison

Pattern
Brute
Force

MSM
PMA

IFBM
PM

IBMP
M

Pair
count

Boyer
Moore

Index
Based

ASCI
I

Base
d

A 1024 1024 518 259 259 1024 774 516

A+AG 2308 2254 1142 777 506 1758 1188 794

A+AG+C
AT

3626 3552 1709 1319 802 2365 1389 925

A+AG+C
AT+GAC

A
5002 4911 2323 1933 1060 2869 1661 1052

A+AG+C
AT+GAC
A+AACG

C

6390 6286 2939 2540 1332 3235 1946 1054

A+AG+C
AT+GAC
A+AACG
C+GACA

AG

7799 7680 3573 3163 1613 3611 2229 1058

A+AG+C
AT+GAC
A+AACG
C+GACA
AG+TCG

GGTG

9189 9070 4224 3797 1890 3811 2501 1060

A+AG+C
AT+GAC
A+AACG
C+GACA
AG+TCG
GGTG+C
CAAAAA

A

10538 10419 4822 4377 2163 4168 2759 1094

The current technique gives good performance in reducing
the number of character comparisons compared with other
popular methods and existing algorithms. The results of
proposed ASCII based multiple pattern matching algorithm and
other existing algorithms for pattern size three also plotted in
the graph as shown in Fig. 4.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

275 | P a g e

www.ijacsa.thesai.org

Fig. 4. Comparison of different algorithms for pattern [CAT]

This shows the reduction in number of comparison when
pattern size is three-character long. Towards X-axis we have
taken total number of comparisons whereas towards Y-axis it
shows the names of all the algorithms.

IX. PERFORMANCE ANALYSIS OF THE PROPOSED

ALGORITHM

Performance analysis of an algorithm is performed and
explained by using the following measures.

1) Number of Occurrences: The number of occurrences of

pattern will be (n-m+1).As the proposed algorithm is based on

the ASCII values of the characters, it does not required any

pre-processing time and consumes less space in memory as

compared to Brute-Force Algorithm because Brute-Force

algorithm requires extra CPU registers to hold the intermediate

value, but the proposed algorithm do not require any extra

register because it directly compares the ASCII value for any

comparison thus we can say that it is more efficient as

compared to Brute-Force and all the other algorithms.

2) Number of Comparisons: The number of character

comparison in worst and best case analysis are shown in Table

4 and discusses as follows:

a) Best Case: The best case of this algorithm will be,

when the pattern matches in the first shift. Therefore, best case

is, T(n)=O(m).

b) Average Case: The average case of this algorithm will

be, T (n) =Ω (m).

c) Worst Case: Let in worst case situation the pattern

matches at every shift in the text then there will be „m‟

comparisons in each shift, so the total number of comparisons

will be „m(n-m+1)‟. So the worst time complexity of this

algorithm will be, T(n)=O(m(n-m+1)).

TABLE IV. COMPARISON OF DIFFERENT ALGORITHMS [14]

Algorithm

Pre-

processing

Time

Required

Running

Time

Best

Case

Worst Case

Brute-Force

Algorithm
NO

O(n-m+1)
m

O(m) O(n-m+1)

m)

Knuth-Morris

Prat
YES O(n+m) O(n) Θ (n.m)

Boyer-Moore YES O (n\m) O(m) O(n-m+1)

m+

ASCII Based NO O (n-m+1) O(m) O(m(n-m+1)

Degenerating property, i.e., of pattern is used by the
proposed algorithm (in the same pattern sub-patterns appearing
more than one time) and improves the worst-case complexity.
The fundamental thought behind proposed algorithm is: at
whatever point we identify a mismatch (after some matches),
we definitely know a portion of the characters in the text of
next window. We take advantage about this majority of the
data to evade matching those characters that we know will in
any case match.

X. CONCLUSION

We proposed a new algorithm which can be used for
pattern matching in DNA sequences. This approach is suitable
for unlimited size of input sequence. It reduces the total
number of comparison as well as the CPC ratio when
compared with other popular algorithms. The proposed
algorithm gives very good performance with the other
algorithms. Based on the experimental work our approach
provides good performance related to DNA sequence dataset.
Our proposed algorithm reduces the total number of
comparison as well as the CPC ratio when compared with the
some of the best known popular algorithm. In future, the
proposed algorithm detects repetitive patterns at higher level of
abstraction like file.

REFERENCES

[1] H. A. Basit, S. Jarzabek, “ A Case for Structural Clones ”, International
Workshop on Software Clones , 2009.

[2] B. S Baker, “On Finding Duplication and Near duplication in Large
Software System ”, Proceedings of 2nd IEEE Conference of Reverse
Engineering , 1995.

[3] William S. Evans , Christopher W. Fraser and Fei Ma , “ Clone
Detection via Structural Abstraction ”, Software quality journal Vol. 17,
No. 4, 2009.

[4] M. Singh, V. Sharma, “High Level Clones Classification” International
Journal of Engineering and Advanced Technology (IJEAT) ISSN : 2249
– 8958, Vol. 2, Issue - 6, August 2013.

[5] M. Singh, V. Sharma, “Detection of Behavioral Clone International
Journal of Computer Applications (0975 – 8887) Vol. 102 – No.14 ,
2014.

[6] Bayer R. S., J. S. Moore, “A Fast String Searching Algorithm ” ,
Communications of the ACM , pp. 762-772 ,1977 7.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

276 | P a g e

www.ijacsa.thesai.org

[7] Knuth D., Morris.J ,Pratt.V.R., “Fast Pattern Matching in Strings ”,
SIAM Journal on Computing Vol. 6 (1), 1977.

[8] Raju Bhukya, DVLN Somayajulu,”An Index Based KPartition Multiple
Pattern Matching Algorithm”, Proc. Of International Conference on
Advances in Computer Science 2010 pp 83-87.

[9] Raju Bhukya, DVLN Somayajulu,“An Index Based Forward Backward
Multiple Pattern Matching Algorithm”, World Academy of Science and
Technology. June 2010, pp347- 355

[10] Ziad A.A Alqadi, Musbah Aqel & Ibrahiem M.M.EI Emary, Multiple
Skip Multiple Pattern Matching algorithms. IAENG

[11] Raju Bhukya, DVLN Somayajulu,” Index Multiple Pattern Matching
Algorithm using DNA Sequence and Pattern Count”, International

Journal of Information Technology and Knowledge Management July-
December 2011, Volume 4, No. 2, pp. 431-441

[12] M. Singh, V. Sharma, “Index based detection of file level clone for high
level cloning”, International Journal of Computer Science Engineering
and Information Technology Research (IJCSEITR) ISSN(P): 2249-
6831; ISSN(E): 2249-7943 Vol. 5, Issue 4, Aug 2015, 63-70

[13] Raju Bhukya, DVLN Somayajulu, “Multiple Pattern Matching
Algorithm using Pair-count“, IJCSI International Journal of Computer
Science Issues, July 2011, Vol. 8, Issue 4, No 2, pp. 453-465.

[14] Diwate. R.B., , Alaspurkar.S. J., “ Study of Different Algorithms for
Pattern Mining”, International Journal of Advanced Research in
Computer Science and Software Engineering 3(3), March - 2013, pp.
615-620

