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Abstract—Generally, data mining in larger datasets consists 

of certain limitations in identifying the relevant datasets for the 

given queries. The limitations include: lack of interaction in the 

required objective space, inability to handle the data sets or 

discrete variables in datasets, especially in the presence of 

missing variables and inability to classify the records as per the 

given query, and finally poor generation of explicit knowledge for 

a query increases the dimensionality of the data. Hence, this 

paper aims at resolving the problems with increasing data 

dimensionality in datasets using modified non-integer matrix 

factorization (NMF). Further, the increased dimensionality 

arising due to non-orthogonally of NMF is resolved with 

Cholesky decomposition (cdNMF). Initially, the structuring of 

datasets is carried out to form a well-defined geometric structure. 

Further, the complex conjugate values are extracted and 

conjugate gradient algorithm is applied to reduce the sparse 

matrix from the data vector. The cdNMF is used to extract the 

feature vector from the dataset and the data vector is linearly 

mapped from upper triangular matrix obtained from the 

Cholesky decomposition. The experiment is validated against 

accuracy and normalized mutual information (NMI) metrics 

over three text databases of varied patterns. Further, the results 

prove that the proposed technique fits well with larger instances 

in finding the documents as per the query, than NMF, 

neighborhood preserving: nonnegative matrix factorization 

(NPNMF), multiple manifolds non-negative matrix factorization 

(MMNMF), robust non-negative matrix factorization (RNMF), 

graph regularized non-negative matrix factorization (GNMF), 

hierarchical non-negative matrix factorization (HNMF) and 

cdNMF. 
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I. INTRODUCTION 

Computing application in several fields generates numerous 
data over several instances. In order to extract knowledge from 
such instances, solutions are used conventionally with data 
mining tools. However, the large datasets with numerous 
instances poses severe challenges and that leads to improper 
processing of such huge data volume. The reduction of datasets 
or improved mining algorithm can overcome such challenges 
[1]. The reduction of improper values from the datasets 
provides a greater impact and this increases the performance of 
processing the large data [2]; hence, the improved mining 
approach is not useful in some cases [3]. 

The data reduction is the process of reducing the size or 
dimensionality of the data, however, the representation of the 
data should be retained. Selection of instance is one better way 
to reduce the data by reducing the total number of instances. In 
spite of many efforts to deal with such instances, data mining 
algorithm, however undergoes severe challenges due to non-
applicability of datasets with large instances. Hence, the 
computational complexity of the system increases with larger 
instances [3], [4] and leads to problems in scaling, increased 
storage requirements and clustering accuracy. The other 
problems associated with larger data instances include, 
improper association or interaction in the feature space, lack of 
ability to handle the large datasets with discrete variables, 
inability to classify the data and poor knowledge generation for 
a given query, and finally poor computation due to missing 
variables.  

Recently, there are significant developments in NMF for 
various clustering problems in data mining, defined above. The 
NMF process is used to factorize the input matrix into two 
matrices of non-negative variables in a lower rank order [5]-
[8]. Several applications of NMF include: chemometrics, 
environmetrics, pattern recognition, text mining and 
summarization [9], multimedia data analysis [10], analysis of 
DNA gene expression [11], analyzing the financial data [12], 
and social network analysis [13]. Several algorithms are 
designed to overcome the problems associated with objective 
functions [14], classification [15], collaborative filtering [16] 
and computational methodologies.  

Thought, NMF is used for data analysis, the recent trends 
has improved the discoverability and learning ability of NMF 
in the data mining to solve the problems associated with larger 
datasets. In order to avoid limitations associated with larger 
dataset, the following consideration are made in the present 
study: This proposed method uses NMF to study the feature 
vector of a text document and Cholesky decomposition is used 
to avoid the non-orthogonality problem in the NMF. Further, to 
avoid poor decomposition using Cholesky decomposition, 
conjugate gradient is used, which avoids the rapid 
multiplication by the gradients in the feature space.  

Since, the NMF algorithm learns both the data and feature 
vector in the dataset feature space, the proposed method 
implies the following contributions: 
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 First, the metric using data matrix is estimated in the 
feature space using trained feature vector. 

 Second, the Cholesky decomposition process is applied 
over the metric and the upper triangular matrix is 
identified. 

 Third, upper triangular matrix is used a linear mapper 
for the associated data vector. 

 Finally, conjugate gradient is applied to reduce sparse 
matrix through reduced multiplication and that avoids 
the NP-hard problem which significantly reduces the 
computational complexity [17], [18].  

The outline of the paper is presented as follows: Section 2 
discusses the related works. Section 3 provides the NMF model 
for clustering the larger datasets. Section 4 provides the 
modifications in NMF using Cholesky decomposition. 
Section 5 provides experimental verification of the proposed 
system over the associated datasets and section 6 concludes the 
paper with future work. 

II. RELATED WORKS 

Several methods of NMF are discussed here, which 
include: Semi supervised constrained NMF [19], semi-
supervised graph based discriminative NMF [20], Bayesian 
learning approach to reduce the generalization error in upper 
bound using NMF [21] and update rules [22], sparseness NMF, 
which provides better characterization of the features [23], 
sparse unmixing NMF [24], locally weighted sparse graph 
regularized NMF [25], graph-regularized NMF [26], graph 
dual regularization [27], multiple graph regularized NMF [28], 
graph regularized multilayer NMF [29], adaptive graph 
regularized NMF [30], hyper-graph regularized [31], graph 
regularization with sparse NMF [32], multi-view NMF [33], 
extended incremental NMF [34], incremental orthogonal 
projective NMF [35], correntropy induced metric NMF [36], 
multi-view NMF [37], patch based NMF [38], MMNMF [39], 
regularized NMF [40], FR conjugate gradient NMF [41]. 
However, these methods failed to address the problems 
associated with non-orthogonality due to the presence of non-
negative elements in NMF. 

III. IMPROVED NMF METHOD 

NMF is a non-negative low-rank approximation method 
associated with certain constraints that relates to the non-
negative elements in the data and feature vectors. Here, non-
orthogonality problem exist due to the presence of non-
negative elements between the vectors and addition of linear 
combination, results in part representations.  This interpretable 
and intuitive method for representing the text data elements is 
divided into two parts: 

1) Data vector representation using Cholesky 

Decomposition (CD) with Conjugate Gradients (CG. 

2) Feature vector representation using NMF. 

The detail of these is shown in following sections: 

A. Fitness Function for NMF 

In NMF, it is assumed that matrices contain non-negative 
elements, hence, factorization is approximated. Let input data 
matrix is X = (x1, x2,..., xn), which carries n elements of input 
data vectors and the data matrix is decomposed into two 
matrices,  

TX FG     
Where, X ∈ ℝpn

, G ∈ ℝnk
 and F ∈ ℝpk

 and ℝ is the set of 
non-zero real numbers, G = (g1, g2,..., gn) and F = (f1, f2,..., fn). 
In general, the value of p < n and the rank of F and G matrices 
is less than X i.e. k ≪ min(p,n). The rank F and G is generated 
using minimization fitness function and the sum of squared 
errors is used to evaluate the fitness function, which is 
represented as: 

2

, 0
min T

sse
F G

J X FG


    

The matrix normalization is obtained using Frobenius norm 
and the values of F and G are non-negative with non-
orthogonal column vectors in its Euclidean space. The non-
deficiency cases for rank R and G is generated using I-
divergence fitness function: 
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Here, when I(x) = x logx – x + 1 ≥ 0, inequality holds i.e. x 
≥ 0 and when x = 1, the equality holds. Hence, I-divergence 
using inequality condition is expressed as: I(u, v) = 
(u/v)log(u/v) − u/v + 1. 

B. NMF Clustering 

The initialization in NMF is an important process with 
clustering, similar to k-means clustering. However, the fitness 
function as a minimization function often undergoes local 
minimum problem [42], [43]. Due to such constraint, even if 
the minimization function is convex, the intrinsic alternating 
function is non-convex. If a random initialization is considered, 
then the factor matrices are initialized as random matrices and 
hence, it become ineffective due to slow convergence to attain 
the local minima. If clustering process is used in NMF, the 
initialization is obtained from fuzzy [44], divergence-k-means 
[45] and spherical k-means [46], [47]. However, the proposed 
method considers a simple strategy for document clustering, 
which is discussed below: 

NMF is applied to cluster the documents and number of 
features vectors in the document of each dataset is set as total 
clusters in a document [48], [49]. Each cluster is assigned with 
individual instances and the representation g is considered 
maximum, which is represented as: 

arg maxg c
c

c g    

Where, gc is considered as the c th element in g. 

C. NMF Representation Learning  

The representative learning, G is carried out by many 
supervised or unsupervised method using NMF, since it 
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reduces the dimensionality in an effective manner. Certain 
other techniques uses Euclidean space to conduct learning on 
G [50]. However, the non-orthogonality problem during the 
representative learning process is not dealt and hence, the 
proposed study uses such problem to reduce the dimensionality 
in large datasets. 

IV. CHOLESKY DECOMPOSITION 

The main reasons for the non-orthogonality problem during 
the representative learning (G) is the formulation of distance 
(squared) between the paired instances (gi, gj) as (gi- gj)

T
 (gi - 

gj). The squared distance is implicitly assumes that gi lies in 
Euclidean space. In general, the learning of (f1,...,fq) using 
NMF are considered non-orthogonal to each other and the use 
of squared Euclidean distance is not appropriate during the 
representative learning by G. To solve this, generalized 
squared distance metric using Mahalanobis distance (M) 
measurement is used to solve the non-orthogonality of feature 
vector, which is represented as:  

(gi − gj)
T
M(gi − gj)   

The NMF property is exploited to decompose the data 
matrix, X into, 

a) F with column vectors (f1, f2,...,fn) spans the feature 

space of the matrices, and  

b) G provides the feature space representation.  

With such decomposition property, the cdNMF, 

1) Initially, the estimation of the NMF metric is carried 

out in feature space using the feature vectors (trained). 

2) Then, the Cholesky decomposition is applied over the 

NMF metric, which finds the upper triangular matrix. 

3) Finally, upper triangular matrix is used to map linearly 

the data vectors.  

A. NMF Metric Estimation 

In NMF, the data matrix (X) is approximated and it is 
represented in the feature space as G and the feature 
representation in the data space is F. The normalization [8] of f 
results in f

  T
f = 1 as the metric M is estimated as gram matrix 

FGF of the feature vector.   

M = F
T
F, s.t. 1T

l lu u  , ∀l = 1,...,q   

The metric estimation do not use label information for 
estimating M and the data vector is approximated over the 
feature space through u1,...,uq and it is seen that M = F

T
F can 

be used to estimate the feature space metric. 

B. Cholesky Decomposition over NMF Metric  

The estimation of metric using (5) guarantees M as 
symmetric positive semi-definite matrix. Linear algebra 
guarantees M, which decomposes the upper triangular matrix T 
using Cholesky decomposition:  

M = T
T 

T   
By substituting (7) into (5), the Cholesky function to 

represent the upper triangular matrix T is given as: 

G → TG   (8) 

C. Conjugate Gradients (CG) 

Assuming, upper triangular elements to be sparse, hence 
linear representation of the data vectors is not considered valid. 
The use of CG for removing the sparse value in the matrices is 
found with the set of linear equations. The CG is applied on 
upper triangular matrix to remove the sparse value. The 
proposed method is used to utilize the trained representation 
using cdNMF, without any modifications in the algorithms 
over the learning representation. The elimination of sparse 
matrix is avoided by eliminating the rapid multiplication and 
clustering such data leads to increased convergence rate with 
faster association of elements in the dataset. Here, M = 
(TG

T
TG)

-1
 is the pre-conditioner to enhance the multiplication 

process, in case of incomplete Cholesky decomposition, where 
M = TG

T
TG defines the incomplete Cholesky decomposition.  

Algorithm 1 cdNMF  

cdNMF (X, NMF, q, parameters) 

1: Find X∈ℝpn
, NMF, q and parameter(NMF) 

2: F, G := run NMF on X with parameter and q // metric 

estimation 

3: M := F
T
F 

4: T:=CD(M) s.t. M = T
T 

T 

5: Apply CF once the linear coordinates changes, x = TGy 

and det TG0 

6: Use CG for solving TG
T
ATGy = TG

T
b 

7: Set x = TG
−1

y 

8: Set the preconditioner M = (TG
T 

TG)
-1

 

9: Multiply TG by TG
-1

 

10: Compute x = TG
−1

y 

11: Return M, x, TG 

This algorithm helps in reducing increased multiplication 
process and increases the convergence rate. The computation 

of x = TG
−1

y is carried out only at the end of multiplying TG 
by TG

-1
 and the computation process is multiplied with M.  

V. EXPERIMENTAL RESULTS  

In the proposed system, the cdNMF is used to cluster the 
documents and compared with other algorithms to prove it 
effectiveness. The cdNMF system for evaluating the datasets is 
compared with conventional algorithms and that include: NMF 
[51], GNMF [5], NPNMF [6], MMNMF [7] and RNMF [8].  

A. Text Mining Datasets  

The proposed cdMNF with conjugate gradient is evaluated 
on text datasets: 20 Newsgroups data (Table 1), Reuters 21578 
data (Table 2) and R52 data (Table 3).  

TABLE I.  ATTRIBUTES OF NEWSGROUPS DATA 

Class 

Number of  

train 

documents 

Number of 

test 

documents 

Total Number of 

documents 

soc.religion.christian 598 398 996 

talk.politics.guns 545 364 909 

talk.politics.mideast 564 376 940 

talk.politics.misc 465 310 775 

talk.religion.misc 377 251 628 
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TABLE II.  ATTRIBUTES OF REUTERS 21578 DATA 

Reuters 21578 

Topics 
Number of 

training 

documents 

Number of 

test 

documents 

Number of 

other 

documents 

Total 

documents 

0 1828 280 8103 10211 

1 6552 2581 361 9494 

2 890 309 135 1334 

3 191 64 55 310 

4 62 32 10 104 

TABLE III.  ATTRIBUTES OF R52 DATA 

R52 

Class 
Number of 

training 

documents 

Number of test 

documents 

Total 

documents 

Crude 253 121 374 

Earn 2840 1083 3923 

Interest 190 81 271 

money-supply 123 28 151 

Trade 251 75 326 

Each document is represented as standard vector model [1] 
that contains occurrence of classes and terms in a document. 
Each document is represented as single line in the file and 
represented using a word or document class with TAB 
character, delimiting spaces and the terms. A total of 5 classes 
are used from each dataset with a set of training documents, 
test documents and other documents. A cluster is created with 
5 classes of 20 Newsgroups data, Reuters 21578 data and R52 
data. 

Hence, three clusters are used in this study that includes a 
set of 4248, 21453 and 5045 documents, respectively for 20 
Newsgroups, Reuters 21578 data and R52 data. The clusters 
with sub-clusters are classes are used to create the samples and 
a total of 100 documents from each sub-clusters of all the 
classes form the sample. Likewise, 20 such samples are created 
from the text datasets. 

Here, the each text sample is conducted with pre-processing 
operations that include: trunc5 stemmer [52] and POS Tagger 
[53] and removal of stop words and finally it selects a total of 
30000 words with mutual information in a larger perspective. 
The selection of sub-clusters for the sample formation is shown 
in Table 4. 

B. Clustering Metrics 

The performance of the clustering metrics is evaluated 
using two metrics Accuracy (acc) and Normalized Mutual 
Information (NMI). The parameter, acc is used to estimate the 
overall performance of the cluster, which is defined in the form 

of a fraction metric, acc = t / ov, where, t is the correctly 

clustered documents sample and ov is the overall amount of 
samples. The Mutual Information (MI) finds the 
interdependency between the variables and if the text variables 
are equal, then MI is zero and it is defined as: 

   
 

   ˆ ˆ

ˆ ˆ,
, , log

ˆ ˆy y x x

p x y
MI x y p x y

p x p y 

 
   

 
  

TABLE IV.  SELECTION OF 20 SAMPLES FROM THE DATASETS 

Samples 20 News Group Reuters 21578 R52 

#1 7 6 7 

#2 6 7 7 

#3 7 7 6 

#4 8 7 5 

#5 8 5 7 

#6 7 5 8 

#7 7 8 5 

#8 5 8 7 

#9 5 5 10 

#10 5 10 5 

#11 10 5 5 

#12 10 0 10 

#13 0 10 10 

#14 10 10 0 

#15 15 0 5 

#16 0 15 5 

#17 15 5 0 

#18 0 0 20 

#19 0 20 0 

#20 20 0 0 

Where,  ˆ ˆ,p x y is the joint Probability Distribution 

Function (PDF) of x and y,  ˆp x and  ˆp y are the marginal 

PDF of x and y. The MI provides information related to the 
amount of uncertainity measured between documents x and y 
and one documents reduces the uncertainity of the other 
documents. Entire information is shared between the 
documents if the value of MI is zero and vice versa. The 
Normalized MI or NMI is denoted as:  

 
 

    
,

,
max ,

MI x y
NMI x y

E x E y
  

Where, E(x) and E(y) are the entropy of the document x 
and y. 

C. Evaluation and Comparisons 

NMF is the baseline algorithm, GNMF uses KNN graph 
with regularization term for preserving the structure of 
geometry, NPNMF uses local linear embedding and graph 
approach in NMF uses trained regularization term, MMNMF 
uses an eleven graph for exploring the multiple manifold data 
structure, RNMF adds noise in NMF and HNMF encodes the 
geometry into matrix factorization using hyper graph. These 
systems are tested against accuracy and Normalized Mutual 
Information (NMI) over the sample datasets. 

The results of acc from Table 5 show that the cdNMF 
performs well than conventional schemes. Here, the 
performance of cdNMF increases gradually from samples 1 to 
20. It is inferred that if the documents of similar dataset are 
more, the accuracy is more and it reduces when the 20 sample 
documents are equally distributed from similar clusters. The 
overall accuracy of cdNMF is slightly higher than HNMF and 
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GNMF but it has higher acc rate than MM-NMF, NPNMF and 
NMF. This is the same for NMI, shown in Table 6.  

TABLE V.  ACCURACY OF DIFFERENT METHOD OF 20 SAMPLE DATA SETS 

Samples NMF NPNMF MM-NMF RNMF GNMF HNMF cdNMF 

#1 0.4582 0.4801 0.4681 0.5142 0.6925 0.6841 0.7315 

#2 0.4648 0.4872 0.5015 0.5345 0.7124 0.7241 0.7452 

#3 0.4677 0.4877 0.5248 0.5913 0.7182 0.7518 0.7824 

#4 0.4678 0.4908 0.5312 0.6011 0.7225 0.7622 0.7895 

#5 0.4755 0.4912 0.5324 0.6025 0.7315 0.7693 0.7917 

#6 0.4757 0.4979 0.5399 0.6104 0.7318 0.7721 0.7924 

#7 0.5084 0.5012 0.5401 0.6201 0.7324 0.7741 0.7954 

#8 0.5134 0.5032 0.5428 0.6215 0.7328 0.7779 0.8001 

#9 0.5156 0.5089 0.5542 0.6225 0.7355 0.7815 0.8017 

#10 0.5228 0.5206 0.5581 0.6241 0.7419 0.7826 0.8156 

#11 0.5352 0.5273 0.5595 0.6255 0.7421 0.7892 0.8249 

#12 0.5384 0.5478 0.5716 0.6258 0.7552 0.7912 0.8456 

#13 0.5432 0.5501 0.5792 0.6293 0.7621 0.7924 0.8592 

#14 0.5488 0.5591 0.5932 0.6309 0.7624 0.7927 0.8604 

#15 0.5583 0.5858 0.6083 0.6385 0.7815 0.7935 0.8621 

#16 0.5881 0.6078 0.6145 0.6515 0.7858 0.8019 0.8665 

#17 0.5892 0.6378 0.6489 0.6922 0.8009 0.8245 0.8912 

#18 0.5995 0.6584 0.6692 0.6945 0.8012 0.834 0.8942 

#19 0.6087 0.6697 0.6745 0.7152 0.8241 0.8402 0.9018 

#20 0.6724 0.6795 0.6845 0.7564 0.8512 0.8576 0.9156 

Average 0.5326 0.5496 0.5748 0.6301 0.7559 0.7848 0.8284 

TABLE VI.  NMI OF DIFFERENT METHOD OF 20 SAMPLE DATA SETS 

Samples NMF NPNMF MM-NMF RNMF GNMF HNMF cdNMF 

#1 0.4789 0.5203 0.6113 0.753 0.7433 0.7854 0.7754 

#2 0.4825 0.5504 0.6384 0.7586 0.7542 0.7884 0.7951 

#3 0.5231 0.5648 0.6569 0.7769 0.7823 0.7885 0.7952 

#4 0.5321 0.6212 0.6805 0.7872 0.7911 0.7946 0.8025 

#5 0.5549 0.633 0.69 0.7875 0.8009 0.7952 0.8107 

#6 0.6122 0.6749 0.7203 0.8124 0.8014 0.8095 0.812 

#7 0.6199 0.6825 0.7254 0.8147 0.8306 0.8149 0.833 

#8 0.6317 0.6842 0.7274 0.8164 0.8325 0.8412 0.8342 

#9 0.6823 0.6924 0.7373 0.822 0.8336 0.8423 0.8466 

#10 0.6842 0.7043 0.7504 0.8245 0.8365 0.8435 0.8587 

#11 0.6902 0.7047 0.7582 0.8342 0.8424 0.8502 0.8629 

#12 0.6948 0.7063 0.7592 0.84 0.8489 0.8567 0.8743 

#13 0.7001 0.7137 0.7687 0.8412 0.8598 0.8676 0.8822 

#14 0.7042 0.7158 0.7691 0.8489 0.8674 0.8781 0.8918 

#15 0.7094 0.724 0.77 0.8695 0.8858 0.9001 0.8939 

#16 0.7142 0.7288 0.7742 0.8731 0.8904 0.9079 0.9008 

#17 0.7355 0.743 0.7745 0.9088 0.8998 0.9139 0.9153 

#18 0.7412 0.7436 0.7769 0.9138 0.9335 0.9418 0.9441 

#19 0.7419 0.7477 0.7787 0.9205 0.9356 0.9504 0.9514 

#20 0.7496 0.765 0.8057 0.9309 0.9392 0.9505 0.9515 

Average 0.6491 0.6810 0.7337 0.8367 0.8454 0.8560 0.8616 

The average values of NMI results claim that the 
interdependence of documents belonging to similar cluster 
during testing is also high. It is seen further the documents are 

equal in number in sample dataset and the interdependency is 
less for other conventional algorithms, however, cdNMF 
performs well.  

TABLE VII.  AVERAGE ACCURACY OF PROPOSED METHOD VS. EXISTING 

METHOD USING THREE DATA SETS 

Cluster NMF NPNMF MM-NMF RNMF GNMF HNMF cdNMF 

20 News Group 0.8945 0.9342 0.8731 0.9261 0.9779 0.9822 0.9932 

Reuters 21578 0.8591 0.8998 0.8779 0.8595 0.9286 0.9486 0.9524 

R52 0.9023 0.9201 0.8769 0.8315 0.9599 0.9738 0.9869 

TABLE VIII.  AVERAGE NMI OF PROPOSED METHOD VS. EXISTING METHOD 

USING THREE DATA SETS 

Cluster NMF NPNMF MM-NMF RNMF GNMF HNMF cdNMF 

20 News Group 0.7602 0.6216 0.749 0.9382 0.9412 0.9551 0.9592 

Reuters 21578 0.7605 0.7281 0.709 0.9186 0.9386 0.9491 0.9585 

R52 0.7721 0.7054 0.6421 0.9282 0.939 0.9575 0.9621 

The average values of the acc and the NMI test results for 
individual dataset is shown in Tables 7 and 8. It is seen that 
proposed cdNMF performs well with better accuracy to cluster 
the documents than conventional ones. Finally, the comparison 
with baseline NMF proves that the proposed cdNMF has better 
acc and NMI rate for the individual datasets. 

VI. CONCLUSIONS  

In this paper, we present a new matrix factorization method 
called Cholesky Decomposition based non-negative matrix 
factorization. The Cholesky decomposition collects the data 
vector, specifically it avoids the non-orthogonality of the non-
negative matrix factorization due to its local representation. 
Also, the presence of non-negative constraints is avoided 
finally with upper triangular matrix representation for mapping 
the data vectors. Further, the sparse matrix is eliminated using 
conjugate gradients, which takes hold of the complex conjugate 
values from the data vectors. Finally, better accuracy and 
normalized mutual information is obtained during the 
experimental validation and it enables better learning of the 
text data elements with reduced redundancy.  

In future, we would like to improve the proposed approach 
on a graph based NMF framework that could generate better 
patterns to improve the learning representations of NMI for 
text mining. 
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