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Abstract—Context-Based Adaptive Binary Arithmetic Coding 

(CABAC) is a well-known bottleneck in H.264/AVC, owing to the 

highly serialized calculation and high data dependency of the 

binary arithmetic encoder. This work presents a hardware 

architecture for the sub-module binary arithmetic encoder of the 

CABAC. Moreover, a clock gating technique is inserted into our 

design for power saving. An FPGA design of the proposed 

architecture can work at a frequency up to 268 MHz on Virtex 5. 

The suggested design can achieve 17% of power consumption 

saving, which allows it to be applied for low power video coding 

applications. 

Keywords—H.264; Binary Arithmetic Encoder (BAE); Context-

based Adaptive Binary Arithmetic Coding (CABAC); clock gating 

I. INTRODUCTION 

In the H.264/AVC standard, two entropy encoders are 
defined: Context-based Adaptive Variable Length Coding 
(CAVLC) and Context-based Adaptive Binary Arithmetic 
Coding (CABAC). The CAVLC is a low-complexity entropy 
coding technique based on the use of switched context-
adaptively sets of variable-length codes. Compared to CABAC, 
The compression efficiency improvement is obtained at the 
cost of an inevitable complexity overhead. Software-based 
complexity analysis results show that switching from CAVLC 
to CABAC usually leads to complexity increasing by 25–30% 
for encoding and 12% for decoding. As an average, 30–40 
cycles are required to encode a single bit on digital signal 
processors, so it takes thousands of cycles to encode one 
macroblock, which is unacceptable for real-time video coding 
applications [2]. Therefore, a hardware implementation of 
CABAC encoder is always required. However, the bit-serial 
nature of the CABAC algorithm and the strong data 
dependency between contiguous bits make it hard to improve 
the throughput and to parallelize the encoding process. 

Hence, a lot of work has been proposed to improve the 
throughput of the CABAC by processing more than one bin in 
a single cycle.  Yuan Li et al. put forward in [3] a high-
throughput low-latency arithmetic encoder (AE) design 
suitable for HD real-time applications, utilizing a macroblock 
level pipeline. This design could achieve a throughput of 2~4 
bins per cycle sufficient for real-time encoding.  In [4], a 
software-hardware codesign for a whole entropy coder was 

suggested, which took Binary Arithmetic Encoder (BAE) 
module for the H.264/AVC CABAC entropy encoder as a 
hardware accelerator. Vagner Rosa et al. presented in [5] a 
hardware proposal of BAE. The throughput was improved by 
developing three different architectures of the renormalization 
step, presenting a processing rate from 0.68 to 1 bin per clock 
cycle.  An RDO-support CABAC encoder was given by [6] 
and [7] to achieve the bit-rate saving of around 20 percent. In 
[6], an FPGA-based RISC CPU extension was proposed to 
accelerate the CABAC in a rate-distortion framework. This 
design achieved a coding speed of 1 bin per cycle and a clock 
frequency of 100 MHz.  In [7], an efficient memory access was 
suggested to reduce the access frequency of the context RAM. 

Most studies have mainly focused on ameliorating the 
throughput, but limited attention has been paid to reduce power 
consumption. Therefore, this paper aims to design BAE 
including a low-power technique. The main contributions of 
this paper are outlined as follows: 

1) We implement a hardware of the BAE, which is the 

bottleneck of CABAC. 

2) We further insert a low-power technique into the BAE 

architecture. In fact,a clock-gating technique is added into the 

design of a BAE sub-module, achieving reduced power 

consumption at a minor implementation effort. 

The rest of this paper is organized as follows. Section II 
presents the CABAC encoding algorithm. Section III shows 
both encoding processes of the binary arithmetic coder and 
their corresponding proposed architecture .Section IV provides 
the FPGA synthesis results, and section V concludes the paper. 

II. CABAC ENCODING ALGORITHM  IN H.264 

As presented in Fig. 1, CABAC encoding consists of three 
main functions: binarization, context modeling, and binary 
arithmetic coding. The binarization part permits mapping the 
non-binary valued syntax elements into binary symbols, also 
known as bins or a bin string.  Then each bin is arithmetically 
coded by a regular coding engine or a bypass coding engine. In 
the regular coding engine, a context model is used to encode 
each bin. In the bypass encoding engine, the context is not 
needed due to the equivalent probability of the appearance of 
these bins. 
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Fig. 1. Diagram of the CABAC encoder. 

A. Binarization 

In the binarization process, each syntax element is 
converted into a bin string. This step is done with different 
schemes: unary, truncated unary, fixed length and 
parameterized exp-Golomb. Each task is dedicated to some 
types of syntax elements, as given in Table 1. The input and 
output of the binarization process are the mapped syntax 
elements and the Context Index (CtxIdx) information. The next 
step is to use the CtxIdx information to fetch the context model 
from the context table. 

TABLE. I. SYNTAX ELEMENTS AND ASSOCIATED TYPES OF 

BINARIZATION [1] 

B. Context modeling 

A context model is a probabilistic model with a statistical 
occurrence rate for each symbol, such that each type of syntax 
elements has a set of 399 context models as defined by the 
H.264 standard documentation [1]. Each context model 
comprises 6-bits representing the Probability State Indices 
(pStateIdx) and a 7th bit representing the value of the Most 
Probable Symbol (MPS). 

C. Arithmetic coding 

The aim of the arithmetic encoding process is to generate a 
bit stream from reading the bins and their context models, if the 
latter exist. Its principle is based on the division of an initial 
interval into two sub-intervals according to the context model 
(Fig. 2). One of two sub-intervals corresponds to the MPS, and 
the other refers to the Less Probable Symbol (LPS). After that, 
one of the two intervals is selected asa new one according to 
the bin value (MPS or LPS). Each interval is defined by two 
values: range (the length of the interval) and low (the bottom of 
the interval). These rules determine the updated value of the 
interval as follows: 

If bin =LPS 

              New range= rLPS (range of LPS) 

             New low= low 

If bin= MPS 

            New range = range – rLPS=rMPS (range of MPS) 

            New low = low + rLPS 
Where, the value of rLPS is indexed by pStateIdx, read 

from context modeling. 

For the bins that have the same probability, no context 
model is needed; and the bins are coded by a simpler bypass 
coding engine within a CABAC module. 
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New Range 
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Fig. 2. Interval subdivision process of CABAC. 

III. PROPOSED HARDWARE ARCHITECTURE OF BINARY 

ARITHMETIC CODER 

At the binarization process, the syntax element of each MB 
can be treated in parallel. However, at the binary arithmetic 
coding process, all bin strings should be encoded sequentially. 
Thus, the binary arithmetic coder is the critical block that 
affects the throughput.  This section firstly presents the 
processing flow of both regular and bypass BAE modes, and 
then its provides their corresponding hardware architectures. 
The clock gating technique is also presented in this section. 

A. Regular BAE process and its proposed architecture 

1) Regular BAE process 
The regular BAE process is illustrated in Fig. 3. The chart 

consists of three steps: interval subdivision, probability-model 
updating and regular renormalization.  

Syntax element Binarization Method 

mb_type Table mapping 

mb_skip_flag Fixed length 

Sub_mb Table mapping 

Ref_indx_10 Unary 

Ref_indx_11 Unary 

mvd_10 
Truncated unary and  exp-Golomb 

with =3 ,truncated value9 

mvd_11 
Truncated unary and exp-Golomb 
with =3 ,truncated value9 

Intra4x4_pre_mode Fixed_length 

rem_intra_4x4_pre-mode Fixed_length 

Chroma_pre_mode Fixed_length 

Coded_block_pattern 
Fixed length and truncated 

unary,truncated value 2 

Mb_qp_delta Unary and table mapiing 

Coded_block_flag Fixed_length 

Significant_coefficient_flag Fixed length 

Last_significant_flag Fixed length 

Coeff_abs_level_minus1 
Truncated unary , exp-Golomb with 

=3  and truncated value 14 

Coeff_sig_flag Fixed length 

End_slice_length Fixed_length 
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In the interval subdivision, the interval value is updated 
according to whether the current input bin (binval) is an MPS 
or not. The probability model pStateIdx is updated through two 
tables: TransIdxLPS and TransIdxMPS. The TransIdxMPS is 
selected when the bin value is equal to an MPS. Otherwise, the 
TransIdxLPS is used. The final update for low and range 
values is done by the regular renormalization process, which is 
needed to keep the interval range between 256 and 512. Fig. 4 
shows the flowchart of the regular renormalization. 

2) Regular arithmetic coder architecture 
The hardware design of a regular BAE is depected in 

Fig. 5. It consists of three main modules: probability-model 
updating, interval subdivision module, and regular 
renormalization. 

The module of probability-model updating is constituted 
by three principal steps: context model read, context model 
update, and context read. When the context is read out, the 
context model will be updated according to bin value through 
the ROM of either TransIdxLPS or TransIdxMPS. Next, the 
new context model will be written back to the context table. 

qRangIdx=(Rang>>6)&3
RangeLPS=rangeTABLPS[pStateIdx][qRangIdx]

RangeMPS=range-RangeLPS

binVal!=valMPS NoYes

Low=Low+Range
Range=rangeLPS

pStateIdx!=0 No

valMPS=! valMPS

pStateIdx=TransIdxLPS[pStateIdx] pStateIdx=TransIdxMPS[pStateIdx]

R<256No

Yes

Interval 
subdivision 

Updating of 
probability 
estimation 

Encode(ctxIdx,binVal)

Regular 
renaormalization

Done

Regular  
renormalization

Yes

 

Fig. 3. Regular arithmetic encoding flowchart (from [1] with some 

modifications). 
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Done
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Fig. 4. Regular renormalization flowchart [1]. 

The module of interval subdivision will be performed 
when the context model pStateIdx is read from the RAM of the 
context table.  Both pStateIdx[5:0] and range[7:6] are used to 
index the rLPS value from the rLPStable. After that, the 
interval values (range and low) are calculated by using a ten-bit 
adder and ten-bit subtractor. According to the bin value, the 
two top and low multiplexers will select the appropriate value 
of low and range, respectively. 

The module of regular renormalization will be carried 
after encoding each bin, when the range value is decreased to 
less than 256. This module is implemented by a finite state 
machine. 

IV. BYPASS BAE PROCESS AND ITS PROPOSED 

ARCHITECTURE 

A. Bypass BAE process 

For the bypass mode, the bin is coded using a coding 
decision process. The context modeling is skipped as the bins 
show almost an equiprobable behavior.  This encoding mode is 
a much simpler encoding process compared to the regular 
mode. Fig. 6 illustrates the bypass process, including the 
interval subdivision stage and the renormalization stage. There 
is no iteration loop in the renormalization process in the bypass 
mode unlike the renormalization in the regular coding mode. 

B. Bypass BAE architecture 

A hardware design of the bypass BAE is depicted in Fig. 7. 
Bypass coding generates valid coding states that conform to 
equations shown in the flowchart of Fig. 6. This mode is faster 
than the regular mode since there is no context modeling 
process. In addition, it is to note that the there is no loop 
presented in bypass renormalization module. This latter is 
implemented by a simple finite state machine. 
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Fig. 5. Architecture representation of regular BAE.
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Fig. 6. Bypass BAE flowchart [1]. 
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Fig. 7. Architecture representation of bypass BAE. 

V. CLOCK-GATING TECHNIQUE 

Clock gating is among the techniques that are used for 
reducing dynamic power dissipation. This technique saves 
power by taking the enable conditions attached to registers and 
uses them to gate the clock. 

At each input bin coming from the binarizer, one of the two 
coding modes (regular or bypass) is selected. The clock gating 
technique is inserted to prune the clock either for a regular 
arithmetic engine or for a bypass coder (i.e. by disabling the 
flip-flop registers in them). 

The practical approach to insert the clock-gating technique 
in our proposed arithmetic coder is shown in Fig. 8. To avoid 
the glitch problem caused by clock switching, we use a latch-
based clock-gating style. 

VI. IMPLEMENTATION RESULTS 

Our design is synthesized and simulated by using the 
XILINX ISE and ModelSim tools, respectively. The synthesized 
circuit area of each component of the encoder is listed in 
Table 2. Synthesis results demonstrate that the BAE can work 
properly at a clock frequency of 268.5 MHz. 

The design occupies 300 slices of which a regular BAE unit 
occupied 82%. It is to clear that the bypass BAE operates at a 
higher clock frequency compared to the regular mode. 

Table 3 presents a comparison with previous work. Our 
design uses a higher frequency compared to the work [5], 
which was implemented in the same FPGA technology. 
Moreover, it is evident that the proposed architecture will 
achieve the lowest power consumption relative to power 
consumption of [7] when it is designed on ASIC-based 
technology. Indeed, as explained in [9], [10] and [11], the 
power consumption of ASIC designs was observed as being 
between 3 to 10 times greater than FPGA designs. 

https://en.wikipedia.org/wiki/Power_dissipation
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TABLE. II. SYNTHESIS RESULTS OF EACH BAE UNITS ON VIRTEX 5 

Unit Name 
Area 

(slices) 

Frequency          

(MHz) 

Regular BAE 247 268.516 

Bypass BAE 51 417.81 

Total BAE (without clock gating) 298 268.516 

Total BAE(with clock gating) 300 268.516 

TABLE. III. COMPARISON OF PERFORMANCE RESULTS 

 
Process 

technology 

Clock 

frequency 

(MHz) 

Circuit 

Area 

(LUT 

slices) 

Total 

power 

(mW) 

Design 

parts  

[5] Virtex 5 189 436 Na BAE 

[6] Startix II 130 603 Na 
Total 

CABAC 

[7] 
Virtex4 FPGA 145 2559 Na Total 

CABAC ASIC 0.13 µm 200 Na 26.6 

[8] ASIC 0.15 µm 333 
13.3K 
gates 

Na 
Total 
CABAC 

Proposed 
Virtex4 FPGA 219.479 298 43 

BAE 
Virtex5 FPGA 268.516 300 17.77 

 
Fig. 9. Diagram of dynamic power consumption of our proposed BAE 

Fig. 9 shows the power consumption for both designs (BAE 
without clock gating and BAE with clock gating). With the 
insertion of a clock-gating technique, there is about 17% of 
dynamic power consumption reduction. 

VII. CONCLUSION 

In this paper, our design has focused on the BAE that 
presents the critical sub-block of the CABAC. Furthermore, a 

clock-gating technique has been employed to reduce the power 
consumption. As a result, power consumption can be reduced 
by about 17%. Therefore, our design can be suitable for low 
power video coding applications. The synthesis results on 
Virtex 5 have indicated that the design is capable of operating 
at 268.516 MHz. Finally, it is important to mention that our 
BAE can fit both H.264/AVC and HEVC formats. 
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