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Abstract—The paper presents approaches for nodule detection
and extraction in axial lung computed tomography. The goal is
to detect correctly pulmonary nodule to recognize and screen
lung cancer patients. The pulmonary nodule detection is very
challenging problem. The proposed model developed a hybrid
efficient model based on affine-invariant representation and shape
of segmented nodule. Due to large number of extracted features
for all slices on patient, feature selection is an important step
to select the most important feature for classification. We apply
forward stepwise least squares regression that maximizes the R-
squared value, this criterion provides a fast preprocessing feature
selection assessment for systems with huge volumes of features
based on a linear models framework. Moreover, gradient boosting
have been suggested to select the relevant features based on
boosting approach. Classification of patients has been done by
support vector machine. Kaggle DSB dataset is used to test the
accuracy of our model. The results show major improvement in
accuracy and the features are reduced.
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I. INTRODUCTION

Lung cancer has the second highest incidence of cancers
worldwide for both the male and female population, and
remains the cancer with the highest mortality. This is because
it remains asymptomatic for a long time, and is therefore
diagnosed mostly at such a late stage that treatment outcome
is poor. Despite this, most countries currently do not have a
lung cancer screening programme for early detection of lung
cancer. This is not only due to the high costs involved if
applied to a large proportion of the population, but also the lack
of a sufficiently sensitive diagnostic test, including imaging.
Current research in screening for lung cancer is therefore
limited to patients identified at high risk of developing lung
cancer, such as smokers or patients with COPD (or both), but
it is anticipated that this research could form an important
foundation for a future national screening programme [1].

CT scan is an extended version of X-ray in which computer
is attached to the X-ray machine. Pictures that are taken
from angles and distances are processed in the computer and
presented in the 3-dimensional, cross-sectional (tomographic)
and in slices form. In this way, bones, tissues, blood vessels,
and organs are shown up clearly. The imaging of CT scan is

useful for diagnosis, treatment and progress of medication. Re-
cently, helical or multi-slice scanning is introduced that almost
eliminated gaps in the collection of slides [2]. The radiologists
miss detecting lung nodules in early stage due to dramatic
expanding in number of image slices in high resolution images.
A lung Cancer screening computer-aided detection/diagnosis
(CAD) system can reduce cost and speed up screening. CAD
systems help radiologists in building decisions and enhance
process of detection and observation of diseases in screening.
CAD can enhance nodule detection step by detecting missed
nodules, reduce reading time so that the screening process
is made possible and helps differentiate between benign and
malignant lesions.

In this paper, we introduce an efficient model to de-
tect and diagnose lung cancer patients. Based on watershed
segmentation, nodules are detected and shape features are
applied to describe the nodules using affine moments. Gradient
boosting is used which can identify a robust feature selection
through ensemble learning by combining weak classifiers to
yield strong, robust and accurate classifier. The variations in
the target classes are identified by the best selected features
through R-Squared regression criterion.

The paper’s arrangement is describes as follows: Related
work is summarized briefly in Section II. The model architec-
ture is presented in Section III. The nodule segmentation is
introduced in Section IV based on watershed algorithm. The
feature extraction process based on affine moments and shape
features are presented in Section V. Section VI presents feature
selection models based on ensemble-based feature selection
models which include Gradient Boosting and regression-based
feature selection using R-squared model. The classification
process using SVM is mentioned in Section VII. Our discus-
sion and results are described in details in Section VIII. Section
IX summarizes the conclusion of paper.

II. RELATED WORK

Recent research tries to encourage developing an image-
based model that is able to improve, as a second opinion,
in conjunction with the radiologist, the detection accuracy of
a radiologist,and reduce mistakes related to false positives.
A CAD system generally consists of several steps when
processing medical images. Images are preprocessed to remove
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noise and enhance quality. Then Region of Interest is seg-
mented from other structures. Features are extracted from these
ROIs ,such as geometrical, textural, and statistical features.
Accordingly, a classification step is done, to decide if the image
contains malignant nodule. There has been exhastive efforts on
computer aided diagnosis for lung images.

In [3], [4], Hamada et al. evaluated their system on the
Japanese Society of Radiological Technology (JSRT) standard
dataset of chest radiographs. The two preprocessing techniques
were histogram equalization and Laplacian filter. Contrast
was enhanced and the rapid intensity change was examined.
Wavelet transform was used for feature extraction. To select
the most important features the proposed model calculated
the variance and the energy. The dimensions of the overall
features is then reduced. For classification K-nearest neighbor
classifier was employed. The proposed model was tested on
154 nodule regions with 100 malignant and 54 benign nodules.
The Accuracy was 99.15% for normal versus abnormal and
98.70% for benign and versus malignant.

In [5] many techniques were applied for lung region detec-
tion. Bit plane slicing algorithm is used to generate different
binary slices which then were enhanced by erosion algorithm
and dilation and median filters. After detection of lung region,
segmentation was applied to identify the lung nodules. Fuzzy
Possibilistic C Mean (FPCM), which is a clustering algorithm
that combines the characteristics of a fuzzy and possibility
c-means, was applied for segmentation. Area and the mean
intensity value of the candidate region are the features that
were used to classify the nodule on. Support Vector Machine
was used for binary classification. The proposed model was
tested on experimentation data consists of 1000 lung images
obtained from the reputed hospital.

In [6], Ada and Rajneet K. proposed a hybrid approach on
feature extraction and Principal Component Analysis (PCA).
Histogram Equalization is used for preprocessing of the im-
ages. Features were Extracted using Binarization and Masking
Approach. A Grey Level Co-occurrence Method was created to
make different combinations of pixel brightness. The features
used in this approach were entropy, contrast, energy, and
maximum probability. The exact output and results were not
clearly specified.

In [7], FFT, Auto enhancement and Gabor filtering were
used for image enhancement step. Topology surface and wa-
tershed algorithm were applied to the marker location and seg-
mentation progress. The features that were extracted from ROI
were area, perimeter, eccentricity and average intensity. In [8]
Kamil Dimililer et al. used many image processing techniques:
grayscale conversion, thresholding, erosion, median filtering
and image subtraction.

In [9], many filters were applied in the preprocessing
step, such as low pass filters, contrast stretching histogram
equalization, negativity and power law transformation. For
segmentation modified thresholding, labeling algorithm and
edge detection were taken off. Features such as geometric
properties, textural properties and mathematical properties
were calculated. Gray Level Co-occurrence Matrix (GLCM)
is a used to examine relationship of image pixels.

In [10] a computer aided diagnosing system was proposed
to detect lung cancer based on texture features take out from

the slice of DICOM Lung CT images. For preprocessing step
K Nearest Neighbors and Weiner filters were used. Sobel
Methods was suggested for segmentation. The set of texture
features that were used for diagnosis are area of the interest,
Calcification, Shape, Size of nodule and Contrast Enhance-
ment. Artificial neural network was used for classification.
This CAD system neglects all the false positive cancer regions
and detects the cancer regions. The used dataset was obtained
from NIH/NCI Lung Image Database Consortium (LIDC).
There were about 1000 lung images. This approach showed
sensitivity of 90% with 0.05 false positives per image.

In [11], Hashemi et al. proposed a system based on fuzzy
inference. Starting with image enhancement and noise removal,
Linear-Filtering was used. A region growing based technique
was used for segmentation. A Fuzzy Inference System was
implemented to determine the type of the mass diagnosed. The
system was 95% accurate. Features such as area and color were
used. This method was tested on 1000-tumor contained 10000
CT slices from 1000 lung tumor patients. The accuracy of the
proposed systems was 95%.

III. PROPOSED METHODOLOGY

The suggested framework of Lung cancer detection and
classification is composed of four stages: Nodule segmentation,
feature extraction, feature selection and patient classification.
As shown in Fig. 1, the overall architecture is drawn. Water-
shed segmentation is used to detect the nodule in lung cancer
slices in CT scan as feature detection. Then, shape features and
invariant affine moments are applied to describe the extracted
nodules. For feature selection, we developed ensemble models
and regression model to select the best important and relevant
features to avoid the over-fitting problems. Finally, patient is
classified by SVM. The main tasks of our model are presented
in details through the next sections.

IV. NODULE DETECTION AND SEGMENTATION

One of the main tasks in medical diagnosis is the segmenta-
tion, especially in lung cancer using CT scans. Segmentation
is a commonly preprocessing step for more enhancement in
anomalies and lung structures, such as nodules.

The watershed algorithm is a common segmentation tech-
nique based on morphology mathematics. It depends on an
intensity based topographical representation. The higher alti-
tudes (hills) are represented by brighter pixels and the valleys
are represented by dark pixels to determine the path of a falling
raindrop would follow. The different regions are separated
by watershed lines in watershed algorithm. Fig. 2 shows the
resulted nodules extracted using watershed.

V. FEATURE EXTRACTION

A. Moments Invariant Features

Moments are applied in many applications. Many of these
techniques are essentially based on the general moment theory
widely known and applied in research in several areas of statis-
tics and mechanics. In particular, geometric moments have vast
practical applications in many area of computer vision and
invariant pattern recognition, ranging from lower-level recogni-
tion such as pose estimation to higher-level recognition such as
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Figure 1: Pipline of the proposed model

(a) (b) (c)

(d) (e) (f)

Figure 2: An axial slices of CT scans for Three Different Pa-
tients 2a, 2b, 2c and Segmented Nodules Based on Watershed
Algorithm for Each Patient 2d, 2e, and 2f

activity recognition and analysis. When applied to images, they
were identified to be most descriptive of the image contents
(i.e., intensity distribution) with respect to its axes. Once
such moments are properly defined, both global and detailed
geometric information of image contents can be reasonably
expected to be detected robustly. In such a scenario, moments
would be able to characterize various image objects such that
the properties with analogies in statistics or mechanics are
extracted, and thus the shape of all objects of interest can
be described well. Formally speaking, in continuous domain,
an image is viewed as a 2-D Cartesian density distribution
function f(x, y). The general form of the geometric moments
of order (p + q) for the function f(x, y), evaluated over the
entire plane Ω is defined by the following discrete form:

Mpq =
∑
y

∑
x

ϕpq(x, y)I(x, y), p, q = 0, 1, 2, ...,∞ (1)

Where, ϕpq is a basis function or weighting kernel by
which a weighted description for the image function f(x, y)
across the entire plane Ω is generated. It is perhaps worthwhile
to point out here that the choice of above basis functions ϕpq
greatly depends on the application of use, and on the invariant
properties desired. Furthermore, it is expected that choosing a

specific basis function results in some constraints, such as to
restrict the range of the image coordinates, x and y, enable the
image and its descriptors to be translated to other coordinates
(e.g., polar coordinates), etc. In [12], Hu stated that the 2-D
Cartesian moment of order (p + q) for an m × n discretized
image, I(x, y) can be defined by taking the basis function in
(1) as a monomial of power p + q (product of powers of the
variables x and y, i.e., ϕpq(x, y) = xpyq as follows:

Mpq =

n−1∑
y=0

m−1∑
x=0

xpyqI(x, y), p, q = 0, 1, 2, ...,∞ (2)

The full moment set of order k that includes all moments,
Mpq , such that p+q ≥ k compromises of exactly 1

2 (k+1)(k+
2) elements. Ever since the pioneering work of Hu [12] on
moment functions that has explored quite thoroughly the use of
moments for image analysis and object representation, a broad
range of new applications utilizing moment invariants in image
analysis and pattern recognition fields has started to evolve.
It is clear that the Cartesian moments given by (2) are not
invariant to geometric transformations. To achieve invariance
under translation, these moments are calculated with respect
the center of mass as follows:

µpq =

n−1∑
y=0

m−1∑
x=0

(x− x̄)p(y − ȳ)qI(x, y), p, q = 0, 1, 2, ...,∞

(3)

Where, x and y are the coordinates of the centroid and
given by:

x̄ =
M10

M00
, ȳ =

M01

M00
(4)

After a bit tedious but straightforward manipulation, (2)
and (3) lead to the following relation between the Cartesian
and centralized moments:

µpq =

p∑
i

q∑
j

(
p

i

)(
q

j

)
(−x̄)p−i(−ȳ)q−jMij (5)

However, it should be emphasized that the expression in
(3) suggests that the centralized moments are only invariant
to translation. To enable invariance under scale changes, the
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2-D centralized moments µpq need to be normalized to obtain
scale-normalized centralized moments ηpq as follows:

ηpq =
µpq
µγ00

(6)

Where, the exponent γ is given in terms of p and q as
follows:

γ =
p+ q

2
+ 1, p+ q ≥ 2

Strictly speaking, the moments present the shape properties
for appearance of a nodule. Affine moments are invariant under
six transform and derived based on central moments [13] as
follows:

I1 =
1

η400
[η20η02 − η211],

I2 =
1

η1000
[η203η

2
30 − 6η30η21η12η03 + 4η30η

3
12

+ 4η03η
3
21 − 3η221η

2
12],

I3 =
1

η700
[η20(η21η03η21 − η212)− η11(η30η03 − η21η12)

+ η02(η03η12 − η221)],

I4 =
1

η1100
[η320η

2
03 − 6η220η11η12η03 − 6η220η02η21η03

+ 9η220η02η
2
12 + 12η20η

2
11η21η03 + 6η20η11η02η30η03

+ 18η20η11η02η30η12 − 8η311η30η03 − 6η20η
2
02η30η12

+ 9η20η
2
02η

2
21 + 12η211η02η30η12 + η302η

3
30],

I5 =
1

η600
[η40η04 − 4η31η13 + 3η222],

I6 =
1

η900
[η40η04η22 − 4η31η13η22 − η40η213 − η04η213 − η222]

(7)

B. Shape Features

After segmentation, the nodule candidate is selected and
two different types of features are extracted, namely, 2-D
geometric, 3-D geometric. A median slice INC,m is extracted
from 2-D features because the area of the segmented object is
the largest. The shape of nodule candidates are worthy features
to recognize the objects in Lung. The shape of nodules are
described as 2-D and 3-D geometric features. Area, Perimeter,
and Eccentricity are the most common used in our paper to
describe the segmented regions in lung cancer slices.

VI. FEATURE SELECTION

Feature selection is a worthy stage in medical diagnosis
to choose the best features that enhance the model accuracy.
Furthermore, the models can be simpler and faster in under-
standing and building with the least number of features. In
our paper, we applied two approaches: regression-based feature
selection and tree-based feature selection.

 3.2  Simple Linear Regression 3-37 

 

Explained versus Unexplained Variability

32

Ȳ
Y = β0 + β1X

*

Total
Explained

Unexplained

^ ^ ^

 

To determine whether a simple linear regression model is better than the baseline model, compare the 
explained variability to the unexplained variability. 

Explained variability is related to the difference between the regression line and the mean of the 
response variable. The model sum of squares (SSM) is the amount of 
variability explained by your model. The model sum of squares is equal to 

( )2ˆ YYi −∑ . 

Unexplained variability is related to the difference between the observed values and the regression 
line. The error sum of squares (SSE) is the amount of variability unexplained 

by your model. The error sum of squares is equal to ( )2

îi YY −∑ . 

Total variability is related to the difference between the observed values and the mean of the 
response variable. The corrected total sum of squares is the sum of the 
explained and unexplained variability. The corrected total sum of squares is 
equal to ( )2YYi −∑ . 

 The plot shows a seemingly contradictory relationship between explained, unexplained  
and total variability. Contribution to total variability for the data point is smaller than contribution 
to explained and unexplained variability. Remember that the relationship of  
total=unexplained + explained holds for sums of squares over all observations and not  
necessarily for any individual observation. 

Figure 3: Explained vs. Unexplained variability.

A. Regression-Based Feature Selection

Fitting regression line with statistical measure of how the
data is close called R-squared statistical measure or coefficient
of determination. It employs a forward step-wise least squares
regression that optimize the model r-squared value. It is used
in huge data as a preparatory step to assess the features very
fast and can identify quickly the useful features. The varia-
tions in target that explained by single feature with deleting
the calculations of other features called squared correlation
coefficient. The range of values between 0 and 1 (1 means the
input feature can explain totally the variation in target) and 0
denotes that the target and input feature have not a relationship.
In lung cancer recognition, the calculated squared correlation
coefficient in a simple linear regression for all input features
that are interval is mentioned as follows:

Y = β0 + β1X + ε (8)

where
X: input feature,
Y: response variable or target,
β0: intercept parameter,
β1: slope parameter
ε: error deviation of Y about β0 + β1X .

The feature that explains the target is a worthy feature, thus
it is selected in simple linear regression. In a baseline model,
the target class and the input features have not a relationship.
thus, any feature value does not improve predictions of the
target class over simply using the mean of the target class for
everyone.

R-Squared the ratio of variations explained via regression
line in the observed data. The R-Squared is equal to R2 =
SSM
SST = 1− SSE

SST , where SSM indicates sum square of model.
It is the total variations explained by regression model and
equal to SSM =

∑
(Ŷi− Ȳ )2, SSE indicates to sum square of

error. It is the total variations unexplained by regression model
which means the error, and equal to SSE =

∑
(Yi − Ŷi)2.

Finally, SST indicates to total sum of square and equal to
SST =

∑
(Yi − Ȳ )2. It is the correct total variations in the

target class. Fig. 3 describes visually the relationships between
the data, baseline model, total variability, explained variability
and unexplained variability. A comparison between the squared
correlation coefficient and the default Minimum R-Square of
0.005 is calculated and the feature is rejected if its value is
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less than the cut-off criterion. The feature is selected if its R-
square is greater than than the cut-off criterion. The sequential
process of feature selection starts by choosing the feature that
explains the large amount of changes in the target class. The
stepwise process terminates when no remaining input feature
can meet the Stop R-Square criterion.

B. Ensemble Based Feature Selection

Tree algorithms (decision trees, random forest, and gradient
boosting) are powerful predictive models. They are the most
widely used supervised learning due to their stability, high
accuracy and ease of interpretation, considered to be one
of the best and mostly used supervised learning methods.
Decision tree is a type of supervised learning algorithm that
is mostly used in classification problems. As shown in Fig.
4, a decision tree separates the data into segments, and a
target value is assigned to each identical segment. A greedy,
top-down recursive separating method is used. It employs
exhaustive search at each phase by attempting all compositions
of features and partition values to gain the maximum decrease
in impurity. Subsequently, feature selection can be identified
in tree building process. The process of selecting a specific
feature based on its relative importance to split in impurity
reduction can consider as a kind of feature selection. In our

Figure 4: Decision Tree Diagram

model, the measures for feature importance or selection is
based on the following metrics: count, surrogate count, residual
sum square (RSS), and relative importance. The count-based
feature importance simply counts the number of times in the
tree that a particular feature is used in a split. Similarly, the
surrogate count calculates the number of times that a variable
is used in a surrogate splitting rule.

Feature importance measure is calculated for a single
decision tree as:

V I(xi, T ) =
∑
t∈T
4I(xi, t) (9)

Where, 4I(xi, t) = I(t) − pLI(tL) − pRI(tR) is the
reduction in impurity on feature xi in tree T at a node t during
split. pL is the percentage of left observations by xi and pR
for right. Gini index is calculated for classification of node t
as:

Gini(t) =
∑
i 6=j

ptip
t
j (10)

Where, pti is the percentage of observations in t with
class target equal i (y=i) and i,j run through target class.
The Entropy= −

∑
i p
t
ilog(pti) is similar to Gini index which

evaluates impurity at a node t and its value is zero when node
has observations from one class. When node has observations
from mixture of classes, then entropy value is maximum.

Gradient boosting is a boosting approach that divides the
dataset several times using random sampling to create outputs
that form a weighted average of the re-sampled data set. Tree
boosting generates a series of decision trees which together
form a single predictive model. A tree in the series is fit to the
residual of the prediction from the earlier trees in the series.
The residual is defined in terms of the derivative of a loss
function. For the stochastic tree ensemble (Gradient Boosting)
of M trees, the generalized importance measure is calculated
over the trees:

M(xi) =
1

M

M∑
j=1

V I(xi, Tj) (11)

In Gradient Boosting, separate models fk(x) are built to
classify every k classes.

Fk(x) =

M∑
j=1

Tkj(x) (12)

The general ((11)) is calculated as:

M(xi, k) =
1

M

M∑
j=1

V I(xi, Tkj) (13)

The total importance of xi can be calculated with all classes
as:

M(xi) =
1

K

K∑
k=1

M(xi, k) (14)

The proposed methodology for feature selection using
gradient boosting is described in Algorithm 1 as:

VII. SUPPORT VECTOR MACHINE

Lung Cancer detection and recognition is formulated by
binary classification problem. Each patient is classified as
normal or abnormal. The goal is labeling a patient to detect
the cancer and do the required steps. Many supervised learning
methods are learned as computer aided system. In this section,
we describe Support Vector Machines (SVMs) as an activity
classifier we used in most of the experimental work presented
in this field. SVMs are seen as relatively new supervised ML
methodology developed by Cortes & Vapnik [14], which were
first applied as an alternative to multi-layer neural networks.
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1 begin
2 Compute variable importance for a single decision

tree as: V I(xi, T ) =
∑
t∈T 4I(xi, t)

3 Compute the reduction in impurity on feature xi in
tree T as: 4I(xi, t) = I(t)− pLI(tL)− pRI(tR)

4 For M trees, the generalized importance measure is:
M(xi) = 1

M

∑M
j=1 V I(xi, Tj)

5 For every class, the generalized importance measure
is: M(xi, k) = 1

M

∑M
j=1 V I(xi, Tkj)

6 The total importance of xi can be calculated with
all classes as: M(xi) = 1

K

∑K
k=1M(xi, k)

7 end
Algorithm 1: PROPOSED GRADIENT BOOSTING FEA-
TURE SELECTION ALGORITHM

To obtain the optimum decision boundary, SVM attempts to
maximize the minimal distance from the decision boundary
to the labeled data. Once this decision boundary is decided,
a given unseen activity can be checked on which side of the
decision boundary it lies (Fig. 5).

4 ISRNMachine Vision
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Figure 3: Plots of 2D affine moment invariants (𝐼
𝑖
, 𝑖 = 1, . . . , 6) computed on the average images of walking, jogging, running, boxing,

waving, and clapping sequences.

shows a series of plots of 2D dynamic affine invariants with
different action classes computed on the average images of
action sequences.

3.4. Action Classification Using SVM. In this section, we for-
mulate the action recognition task as a multiclass learning
problem, where there is one class for each action, and the
goal is to assign an action to an individual in each video
sequence [1, 29]. There are various supervised learning algo-
rithms by which action recognizer can be trained. Support
Vector Machines (SVMs) are used in this work due to their
outstanding generalization capability and reputation of a
highly accurate paradigm [30]. SVMs that provide a best
solution to data overfitting in neural networks are based
on the structural risk minimization principle from compu-
tational theory. Originally, SVMs were designed to handle
dichotomic classes in a higher dimensional space where a
maximal separating hyperplane is created. On each side of
this hyperplane, two parallel hyperplanes are conducted.
Then, SVM attempts to find the separating hyperplane that
maximizes the distance between the two parallel hyperplanes
(see Figure 4). Intuitively, a good separation is achieved by
the hyperplane having the largest distance. Hence, the larger
themargin, the lower the generalization error of the classifier.
Formally, let D = {(x

𝑖
, 𝑦
𝑖
) | x
𝑖

∈ R𝑑, 𝑦
𝑖

∈ {−1, +1}} be a
training dataset; Vapnik [30] shows that the problem is best

𝜉i

xi

𝜉j

xj

𝛽x
+ 𝛽0

= +1

𝛽x
+ 𝛽0

= 0

𝛽x
+ 𝛽0

= −1

Figure 4: Generalized optimal separating hyperplane.

addressed by allowing some examples to violate the margin
constraints. These potential violations are formulated with
some positive slack variables 𝜉

𝑖
and a penalty parameter 𝐶 ≥

0 that penalize the margin violations. Thus, the generalized
optimal separating hyperplane is determined by solving the
following quadratic programming problem:

min
𝛽,𝛽0

1

2

𝛽


2

+ 𝐶∑

𝑖

𝜉
𝑖 (7)

subject to (𝑦
𝑖
(⟨x
𝑖
,𝛽⟩ + 𝛽

0
) ≥ 1 − 𝜉

𝑖
∀𝑖) ∧ (𝜉

𝑖
≥ 0 ∀𝑖).

Figure 5: Support Vector Machine

Formally, let S = {{xi, yi}ni=1 | xi ∈ <d, yi ∈ {−1,+1}}
be the training samples (i.e., feature vectors of patients), and
yi ∈ {−1,+1}} be the class label of xi, thus two parallel
separating hyperplanes can be formed such that:

yi =

{
+1, wTxi + b > 1

−1, wTxi + b 6 −1
(15)

Where, T denotes the transpose operator, w is a perpen-
dicular vector to the two hyperplanes and b is the bias, as
shown in Fig. 5. Thus, the separating decision boundary (i.e.
the optimal hyperplane) that maximizes the margin between
the two classes is created by solving the following constrained
optimization problem:

Minimize : 1
2 ‖ w ‖

2

subject to yi(w
Txi + b) > 1 ∀i

(16)

By Lagrange duality, after some lengthy but straightfor-
ward calculations, the dual problem of the primal problem in
(16) is given as:

Maximize : W(α) =
∑n
i=1 αi −

1
2

∑n
i,j=1 αiαjyiyjx

T
i xj

subject to αi > 0,
∑n
i=1 αiyi = 0

(17)

Where, αi > 0 are the lagrangian multipliers. Since (17)
describes a Quadratic Programming (QP) problem, and a
global maximum always exists for αi, ω can be deduced as:

ω =

n∑
i=1

αiyixi (18)

VIII. SIMULATION RESULTS

The experiments are applied on kaggle DSB dataset. In
this dataset, a thousand low-dose CT images from high-risk
patients in DICOM format is given. The DSB database consists
of 1397 CT scans and 248580 slices. Each scan contains a
series with multiple axial slices of the chest cavity. Each scan
has a variable number of 2D slices (Fig. 6), which can vary
based on the machine taking the scan and patient. The DICOM
files have a header that contains the necessary information
about the patient ID, as well as scan parameters such as
the slice thickness. It is publicly available in the Kaggle1.
DICOM is the defacto file standard in medical imaging. This
pixel size/coarseness of the scan differs from scan to scan
(e.g. the distance between slices may differ), which can hurt
performance of our model.
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Figure 6: Number of slices per patient in data science bowl
dataset.

The experiments are implemented on computer and its
properties are described as follows: CPU i7, 2.6 GHz, 16
RAM, Matlab 2016b, R-Studio, and Python. Initially speak-
ing, The nodules in Kaggle DSB dataset are detected and
segmented using the watershed algorithm. The diameters of
the nodules range from 3 to 30 mm. Each slice has 512× 512
pixels and 4096 gray level values in Hounsfield Unit (HU),
which is a measure of radiodensity.

After segmentation process, binarization process is done.
In the screening setting, the annual low-dose CT study is
one of the most difficult decisions whether CT or another
investigation is needed. The nodule is very complex to be
guided using current clinical guidelines due to its size and
appearance. Moreover, the most important features of lung
cancer are the size, number of nodules, location of the nodule,

1https://www.kaggle.com/c/data-science-bowl-2017/data
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and type. The shape features are extracted which describe the
shape of extracted nodules. Also, six moments are extracted
for each slice of CT lung cancer that has a nodule. The
concatenated features are selected based on forward step-
wise least squared regression and gradient boosting to select
the most important/relevant features and avoid the irrelevant,
redundant features, and over-fitting problems.

Gradient Boosting builds a sequential decision tree to form
a predictive model. Each iteration, the residuals of classifica-
tion are updated using loss function derivatives from previous
decision trees. The number of iterations in the boosting series
is 50 iterations with 60% train proportion. In feature selection
algorithm using R-square step-wise regression, the minimum
R-square is 0.005 which is the cut-off threshold of a feature
to be selected for R-square model selection and other features
are irrelevant or redundant.

To evaluate the effectiveness of discrimination subset of
features, we apply SVM with a linear kernel using 30%
split for testing. Kaggle DSB dataset is divided into 60% for
training, 10% for validation and 30% for testing. The accuracy
of our proposed model is shown in Table I. As shown from
Table I, the best accuracy is 88.07% with gradient boosting,
watershed segmentation, and combination of moments and
shape features.

Table I: Accuracy Results of our Algorithms on DSB Dataset

Method Accuracy

Watershed+Moments+SVM 82.34%
Watershed+Shape+SVM 81.62%
Watershed+(Moments+Shape)+SVM 85.68%
Watershed+(Shape+Moments)+R2+SVM 87.11%
Watershed+(Shape+Moments)+Gradient Boosting+SVM 88.07%

The recognition results are shown by confusion matrix
achieved on the DSB dataset with gradient boosting feature
selection as shown in Table II. As shown from the Table II, Ac-
curacy of model is 88.06%, Mis-classification rate is 11.93%,
False positive rate is 11.29%, and False Negative is 13.76%.
Almost all patients are classified correctly. Additionally, there
is an enhancement on accuracy due to feature selection and
efficient feature extraction.

Table II: Confusion Matrix of Watershed, Moments, Shape
Feature, and Gradient Boosting Feature Selection using 30%
Testing with SVM

Predicted
Abnormal Normal

Actual

Abnormal 94 15
Normal 35 275

IX. CONCLUSION

Lung cancer recognition and detection based on gradient
boosting and regression feature selection and watershed seg-
mentation is presented. Due to the high dimensional data in

medical images with hundreds of CT slices, feature selection
is an important step to remove the irrelevant or redundant
features. Also, the accuracy of models may be degraded with
large number of features if there are not enough training
observations to learn all parameters in model activities. In
this paper, the features of CT scan for patients are extracted
from simple and advanced discriminating method called shape
and moments features, then feature selection methods are
applied. The gradient boosting and regression models achieved
the best accuracy compared to original features and state
of the art. Also, ensemble-based or regression-based feature
selection methods using random forest, gradient boosting, and
R2 reduced the size of features which contribute to avoid
over-fitting problems. In the future, we plan to investigate
the problem of high dimensional data with different features,
different datasets and different approaches like deep learning.
Three dimensional convolution neural network (3D CNN) can
improve the accuracy of model but it has more powerful
machines to run with GPU.
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