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Abstract—Advancement in deep unsupervised learning are
finally bringing machine learning close to natural learning,
which happens with as few as one labeled instance. Ladder
Networks are the newest deep learning architecture that proposes
semi-supervised learning at scale. This work discusses how the
ladder network model successfully combines supervised and
unsupervised learning taking it beyond the pre-training realm.
The model learns from the structure, rather than the labels alone
transforming it from a label learner to a structural observer. We
extend the previously-reported results by lowering the number
of labels, and report an error of 1.27 on 40 labels only, on the
MNIST dataset that in a fully supervised setting, uses 60000
labeled training instances.
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I. INTRODUCTION

Over the past decades, there has been an effort in machine
learning theoretical research to move from supervised to un-
supervised methods, for the reasons of 1. arduous effort in
labeling data, and 2. the inherent aptitude of unsupervised
approaches to discover the latent structure of data without the
guiding (or misguiding) external influence of labels.

The paper discusses the opportunities and strengths in deep
unsupervised learning and its implications towards unsuper-
vised and weekly supervised learning in general. The model
selected for this purpose is the recently-introduced ladder
network designed by Valpola [1]. This work modifies the
model configuration and reports an error on the extremely
popular MNIST benchmark of 1.27 using 40 labels only. This
is 10 labels fewer than previously reported results.

Ladder networks successfully combine supervised learning
with unsupervised learning in deep neural networks models.
Prior to this unsupervised learning was used for specialized
pre-training task, followed by supervised learning. However
ladder networks, are trained to simultaneously minimize the
sum of supervised and unsupervised cost functions using
backpropagation, thus eliminating the need for layer-wise pre-
training.

The model has the distinctive feature of learning from the
structure in the data instead of solely from the labels alone.
This novelty results in minimizing the amount of labelled data
required for training the network. As most of the data are
unlabeled, the model learns principal features from the small
set of labelled data and correlated features from the large set

of unlabeled data concurrently [2]. This makes the machine
learning process narrowly closer to natural learning.

The rest of the paper is organized as follows. Section II -
‘Deep Unsupervised Learning’ discusses the models namely
RBM and Auto encoders. Section III - ‘Semi Supervised
Learning’ discusses the Ladder Networks model followed
by the experiments and results. Section IV - ‘Conclusion’
concludes the paper and discusses future research directions.

II. DEEP UNSUPERVISED LEARNING

A. Relaxing Supervision

Unsupervised learning forms a class of machine learning tech-
niques of deducing a function to disentangle hidden structure
from unlabeled data. What clearly distinguishes unsupervised
learning from supervised learning is unlabeled samples are
used during training so there is no error or reward signal
to evaluate a potential solution. As unsupervised learning
attempts to draw inferences from datasets consisting of input
data without labeled responses it is closely related to the
problem of density estimation in statistics [3].

Hinton and Salakudinov [4] proposed the idea of the
stochastic RBM; symmetrical arrangement of binary stochastic
neurons in a Boltzmann Machine where the two layers of
the model for a bipartite graph. Later works by [5] suggested
Auto Encoders for pre training; pre train each successive layers
using unsupervised measure thus producing an enriched useful
higher-level representation from the lower-level representation
output. State of the art generalization can later be achieved by
running Gradient descent on supervised format. Transitioning
probability to unsupervised learning looks promising based
on the fact - natural learning is unsupervised; we learn the
structure around us by observing not by the names of the
associated objects.

B. Greedy Unsupervised Pre-training

The year 2006 marks the breakthrough in training deep
architectures as RBM were proposed followed by stacked
autoencoders (SAEs) (Fig. 1). Both approaches used the notion
of Greedy layer-wise unsupervised pre-training followed by
supervised fine-tuning. The concepts Greedy layer wise pre
training and Supervised fine tuning have profound impacts on
Unsupervised Learning. Unsupervised pre-training leads to

• Pre-conditioning the model, whereby arranging the
parameter values in suitable ranges later to be used in
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Fig. 1. RBM and Autoencoder architectures [6].

supervised training. This is completely different than
a generic random initialization.

• Model initialization to an already close to optimal
configuration in parameter space leads to an opti-
mization of the optimization process. The appropriate
range increases backpropagation efficiency and error
minimization.

Greedy layer-wise unsupervised pre-training introduces a
useful prior to the supervised fine-tuning training [7].

• Unsupervised learning is used to draw inferences
from datasets consisting of input data without labeled
responses, this makes it different from the supervised
counterpart.

• Only use the inputs x(t) for learning.

• Auto extracting meaningful features from data. This
distinctive feature extraction capability without utiliza-
tion of labels, makes unsupervised learning a prime
candidate simulating near to human learning behavior.

• Leverage the availability of unlabeled data. Most data
being unlabeled and natural intelligence deals with
analyzing the bulk of objects via structures rather than
labels, therefore unsupervised learning can utilize this
massive data in training deep models exhibiting the
distinction of learning via structures and not simply
labels.

Two popular neural models for unsupervised learning are:

1) Restricted Boltzmann Machines
2) Autoencoders

C. Restriced Boltzmann Machines

Restricted Boltzmann Machines are autoencoder models that
have the distinctive capability of transforming and reducing
high dimensional data to low dimension. These use an effective
way to initialize the weights of the model with calibrated
values followed by gradient descent for fine tuning.

This model uses the sigmoid non-linearity, thus be called
nonlinear generalization of the PCA. The model has outper-
formed the Linear PCA producing outstanding results, [8].

Trials confirm that weight optimization is challenging in
Deep Non Linear Auto Encoders. Initialization with Large
weight values leads to poor local minima problem, while
initializing with small weights leads to very small gradients.
However if an Auto Encoder initialized is with good calibrated
weights, Gradient Descent performs well, but this initialization
requires a novel algorithm which learns one layer of feature
at a time. Each layer captures strong, high-order correlations
b/w activities of units in layer below it.

As examples of unsupervised learning, RBM are used for
pre-training phase extensively. The phase consists of learning a
stacked RBM each having only one layer of feature detectors.
The learned feature activations of one RBM are used as data
for training the next RBM in the stack. After pre training these
RBM are unfolded to create a deep auto encoder, which is later
fine-tuned using back propagation.

D. Free Energy

The RBM model defines a distribution over x with latent
variables via an energy function E. The function gives the
probability distribution P (v, h) where:

E(v, h) = −
∑

iεpixels

bivi −
∑

jεfeatures

bjvj −
∑
i,j

vihjwij

(1)

If w is negative it leads to high energy and the probability
decreases, if w is positive it leads to low energy and the
probability increases. The challenge here: the function is
divided by the partition function Z, the sum over all values
of v and h. As v, h are binary, so Z can take many values
leading to an exponential sum over the numerator, thus making
computing it intractable. To overcome this challenge Hinton et
al. proposed contrastive divergence.

E. Contrastive Divergence: The Negative Sample

Contrastive divergence [9] was proposed by Hinton. It uses
Gibbs sampling to approximate joint distribution when direct
sampling is difficult. Alternating between layers, given one
unit in visible layer, all units are independent in hidden layer,
values in one layer be sampled given a value in another layer
(Fig. 2). Using contrastive Divergence we get the following
interesting relations between Energy and Probability.

• Increase probability of observing xt at hidden layer,
decrease the energy

• Decrease probability of observing x t at hidden layer
increase the energy.

• Increase probability of observing digits from training
set.

• Decrease probability of observing noise.

• Decreasing energy of things that looks like what is in
training set.
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Fig. 2. Negative sample.

• Increase energy of things that are hallucinated or
sampled by the model

• Ultimately model spits out things similar to the what
in the model i.e. after a series of cycles x becomes
closer to x t

F. Auto Encoders

An autoencoder model [10] attempts to regenerate its input.
It has a hidden layer that describes a code used to represent the
input. The model network comprises of an encoder function
h = f(x) and a decoder that produces a reconstruction r =
g(h). Auto encoders are designed to be unable to learn to copy
perfectly. As the model is forced to prioritize which aspects
of the input should be copied, it often learns useful properties
of the data [11].

As discussed above the model has two parts namely the
encoder and the decoder. Encoder takes an input and encodes it
in a linear representation. Encoder is sigmoid of a linear trans-
formation. Decoder takes latent representation h(x), passes it
to non-linearity, generating the output. As the Auto encoder
attempts to minimize the reconstruction error between actual
and generated value during training, a typical Loss function
is:

L(x, x′) = ‖x− x′‖2 = ‖x− σ2(W ′(σ1(Wx+ b) + b′))‖2
(2)

For deep autoencoders, their representational power, layer
size and depth can be elaborated as:

• Universal Approximation Theorem [12] says feed for-
ward network with a linear output layer and one hid-
den layer with non-linearity based squashing function
can approximates any function. However the hidden
layer may be large leading to generalization failure.

• Reduction in number of units can happen in deep
models to represent the desired function get a better
and generalization error.

• Exponential Reduction in Computational cost of rep-
resenting a function and training data needed to learn
can be done by increasing the depth of the model.

TABLE I. RESTRICTED BOLTZMANN MACHINE AND AUTO ENCODERS

RBM Auto encoder

Stochastic model setting with
symmetric connectivity b/w
the visible and hidden layers.

Deterministic model with
two weight matrices w1
and w2 representing the
flow of data from the
visible-to-hidden and
hidden-to-visible layers.

Energy based models.
Achieved considerable
success via de-noising
the input.

Trained using contrastive
divergence that performs
Gibbs sampling and is
used inside a gradient
descent procedure.

Trained to perform optimal
reconstruction of the visible
layer by minimizing the
mean-squared error in a
reconstruction task.

Preferred in High Noise
Scenarios & Speech
Recognition.

Preferred in Low Noise
Scenarios.

• Deep auto encoders yield better compression than
shallow or linear auto encoders [13].

G. RBM and Auto Encoders

Restricted Boltzmann Machines and Auto encoder models;
both are used for training deep architectures using an unsuper-
vised greedy layer wise pre training followed by supervised
fine tuning. Table I compares these two models.

III. SEMI-SUPERVISED LEARNING

Semi-supervised learning a class of machine learning tech-
niques that has the capability of utilizing small volume of
labeled data with a large volume of unlabeled data; leading
to substantial improvement in learning precision. Thus it
therefore falls between unsupervised learning and supervised
learning realm. As the acquisition and labelling cost of labeled
data for a specific learning problem is high making the
dataset set infeasible, whereas acquisition of unlabeled data
is relatively inexpensive. These settings make semi-supervised
learning of great technical and practical value.

It is worth noting that supervised learning has achieved
good results as opposed to unsupervised learning. The reason
being that implementations of unsupervised learning are not
are incompatible with supervised learning. Supervised Learn-
ing processes filter out non relevant information preserving
only the important features where as unsupervised learning
methods try retain and represent as much information about
the original data as possible. This is where semi-supervised
learning comes into play, integrating both supervised and
unsupervised learning together in a novel architecture - The
Ladder Networks.

A. Ladder Network An Autoencoder with shortcut connections

The Ladder Network model is an autoencoder with adjacent
shortcut connections from the encoder to decoder at each layer.
These connections let the higher layers to focus on abstract
invariant and consistent features. Comparatively standard auto
encoders are equivalent to latent variable models with a
single layer of stochastic variables only; however the ladder
network is equivalent in strength to hierarchically ranked latent
variables models [14].

Ladder networks combine supervised learning with unsu-
pervised learning in deep neural networks. As stated before, in
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classical setting, unsupervised learning was used only for pre-
training the network this was followed by supervised learning.
However ladder networks integrates the two together. Similar
to feedforward networks, learning occurs via minimizing the
relevant cost function. Another important aspect is higher
layers can focus on consistent features only leaving the details
for the lower layers to represent. Classically unsupervised
learning has been used for pre-training prior to supervised
learning. However here, it continues to work after Supervised
Learning has commenced. Relevant features are selected via
supervised learning using labelled samples while unsupervised
learning selects correlated features using bulk of unlabeled
data. This improves generalization to new samples.

It is important to note that in this integrated model,
once supervised learning starts selecting significant features,
unsupervised learning only focuses on and selects co-related
features which are useful for supervised learning. This charac-
teristic is completely in contrast with the classic pre-training
approach where unsupervised learning selected all the features
via which input could be re generated.

B. Stochastic Latent Variable Models and Deterministic Au-
toencoders

Unsupervised learning methods where latent variables generate
observed data are called Latent variable models. These have
the capability of forecasting the mean of the observations.
Minimizing the mismatch between the observed data and
its reconstruction results in inference of the unknown latent
variables.

Single layer latent models do not discard information and
represent everything about the data; discarding information
in a single layer model would increase the reconstruction
error. For better reconstruction error management, subsidiary
information along with the abstract consistent features is also
required. The solution being using latent variables in a multi-
layer hierarchy. This leads to higher layer levels to focus on
abstract consistent features and leaving the details to lower
levels. Finally higher-level latent variable models can easily
represent the mean of the lower-level variables. This hierar-
chical arrangement provides stochasticity to latent variables
but with a forewarning. Computing the posterior probability
of the latent variables and their parameters is mathematically
inflexible. Another problem with these models is the extensive
usage of variational Bayesian probabilistic methods or training
leading to a significant compromise in their performance.

Autoencoders are equivalent in representational power to
single-layer latent variable models. Learning is based on
minimizing the difference between the observation and its
reconstruction. Similar to latent variable models, auto encoders
have the capability of being stacked together. Training follows
a layer wise approach as new layers are added to the previ-
ously trained network. After this, training later continues in
a supervised manner, [15]. An important point to be noted
is a hierarchical/stacked auto encoder is not equivalent in
representational power to the hierarchical latent variable model
counterpart. The difference being that the middle layers in an
auto encoder are strongly deterministic while the hierarchical
latent variable model has complete stochasticity. To elaborate
more, regardless of whatever the priors are, stochastic variables

Fig. 3. A two layer ladder network [15].

have independent representational aptitude and thus can add
information at the time of reconstruction. In stark contrast,
deterministic variables cannot add any information at recon-
struction time [16].

This clearly shows that both autoencoders and latent vari-
able models have their pros and cons. This paves way for a
more robust model that has the capability of combining the
strengths of the two models making it an ideal candidate for
deep semi-supervised learning.

C. The Ladder model

The ladder network attempts to combine best of the breed
from both Latent Variable Models and Stacked Auto encoder
models. As is evident from the equations, h(t) in an auto
encoder depends only on top-down information and cannot add
any new information to the representation because it does not
receive information from the bottom-up path. On the contrary
inference of s(l)(t) in the latent model combines information
from top-down priors and bottom-up likelihood.

The Hierarchical Latent Variable Model can therefore be
expressed as:

p(sl(t)|sl+1(t), ξl) (3)

The Stacked Auto encoder can be expressed as:

hl−1(t) = gl(h′l(t)) (4)

Likewise the Ladder Network can be expressed as:

hl−1(t) = gl(h′l(t)), h(l−1)(t)) (5)

Transformation of an Autoencoder into a Latent Model
when shortcut adjacent connections are added from the bottom-
up encoder path to the modified top-down decoder path. This
empowers the hidden layer to recover information which is
missing from the higher layers, thus relieving higher layers to
represent all the details. The mapping function g in the Ladder
Model combines abstract information from higher layers with
detailed information from lower layers (Fig. 3).
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D. Distributed Layer-wise Learning

Deep networks have error functions only at the output layer.
Keeping this in mind if similar training procedure is adopted
for Ladder Networks as with Auto encoders; this leads to a
considerable increase in the reconstruction error as the lateral
connections also contributes to the reconstruction, leaving min-
imum error contribution from the higher layers which are the
custodians of most consistent information. Auto encoder model
has the inherent capability of routing all the signals through
all layers and making learning difficult and slow. However
latent variable models have cost functions for all stochastic
variables. As the ladder network combines its structure from
both these models, it introduces training signals at each level
of the hierarchy exhibiting the novel feature of distributed
learning.

The cost Function of the ladder network can be expressed
as:

C =
1

T

T∑
t=1

‖s(t)− s′(t)‖2 =
1

T

T∑
t=1

∥∥f1x(t)− s′(t)∥∥2 (6)

Cl =
1

T

T∑
t=1

∥∥hl(t)− h′l(t)∥∥2 (7)

The first cost function of the ladder network expressed as
(6) does not directly refer to the input but only to the latent
variable and its corrupted counterpart. This leads to the fact
that each layer in the hierarchical model contributes to the
cost function, bringing the basis of training signals close to the
parameters on the relevant layer. The 2nd function expressed
as (7) shows that error term can be used at each layer, thus
leading to Layered Learning novelty. Layer wise denoising is
also used in the Model. The idea taken from [13] corrupting
the input of auto encoders with noise and let the network
attempt to reconstruct the original uncorrupted inputs. This
forces the auto encoder to learn how to denoise the corrupted
inputs. Bengio stated denoising not only the inputs but on
all levels of the encoder path in a hierarchical model results
in efficient sampling; and called such networks generative
stochastic networks (GSN) [17]. Another important aspect is
that a model with reconstruction capability of missing data can
be turned into a probability density estimator.

E. Implementation

A typical implementation of the ladder network include:

1) A feedforward model which serves supervised learn-
ing with 2 encoder - clean and corrupted. The cor-
rupted encoder adds Gaussian noise at all layers.

2) A decoder which has the capability to invert the
mappings on each encoder layer and provisions unsu-
pervised learning. Decoder uses a denoising function
to reconstruct the activations of each layer. The target
at each layer is the clean version of the activation
where as the difference between the reconstruction
and the clean version serves as the denoising cost of
that layer.

3) The supervised cost is calculated from the output
of the corrupted encoder and the output target. The

unsupervised cost is the sum of denoising cost of all
layers scaled by a hyper parameter. The final cost is
the sum of supervised and unsupervised cost.

4) Train the whole network in a semi-supervised ar-
rangement using standard optimization techniques.

F. Experiments and Results

TABLE II. ERROR REPORTED WITH 40 LABELS ON (SET 1)

Initial Learning rate = 0.002
Annealed linearly to zero
Decay Rate = 0.67
Layers 784-1000-500-250-250-250-10
Epochs = 150 / Dataset = MNIST

Models/ No of Labels 40 100 1000 All
Full Model 1.27 1.07 0.71 0.6
Sigma (Top) Model 3.9 3.4 1.9 0.9
Bottom Model 1.30 1.09 1.0 0.71

TABLE III. DENOISING VALUES FOR 6 LAYERS (SET 1)

Denoising Cost configured on Layer wise basis
Models/
No of Labels 100 1000 All

Full Model
1000,10,0.1,
0.1,0.1,0.1,
0.1

2000,20,0.1,
0.1,0.1,0.1,
0.1

1000,1,0.01,
0.01,0.01,0.01,
0.01

Sigma (Top)
Model 0,0,0,0,0,0,0.5 0,0,0,0,0,0,10 0,0,0,0,0,0,2

Bottom Model 5000,0,0,0,0,
0,0

2000,0,0,0,0,
0,0

2000,0,0,0,0,
0,0

TABLE IV. ERROR REPORTED WITH 100 LABELS (SET 2)

Initial Learning rate = 0.002,
Annealed linearly to zero
Decay Rate = 0.67
Layers 784-1000-500-250-10
Epochs = 150 / Dataset = MNIST

Models/
No of Labels 100 1000 All

Full Model 1.22 0.852 0.72
Sigma (Top)
Model 4.08 1.28 1.08

Bottom Model 1.308 1.23 0.852

The Tables II, III, IV summarize the results of the exper-
iments conducted in this research. Table II shows the results
obtained using a 6 layers model while Table IV shows the
results obtained using a 4 layers model. The Table III shows
the layer wise denoising values used. These results are further
elaborated in the Inferences section below.

G. Inferences

1) Table II shows, with 60000 labels the error rate is
around 0.6, while with 1000 labels its 0.71, with 100
labels it is 1.06 and with merely 40 labels its 1.27.

2) The Top Model in Table II has also impressive results
of 3.4 with 100 labels. It has cost function at only top
layer, thus most of its denoising part can be bypassed.
It has the capability of being plugged in any neural
network.

3) Reducing the number of layers from 6 (Table II) to
4 (Table IV), increases the error by around 21

4) Top and bottom models have denoising cost at the
top and bottom layer only as shown in Table III.

5) Applying noise to each layer and specifically to the
first layer leads to regularization thus minimizing the
generalization error as shown in Table III.
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IV. CONCLUSION

This exploratory research highlights the impact ladder
networks has brought upon deep unsupervised learning by
alleviating pre-training and successfully synthesizing the two
forms of learning which are usually considered under exclusiv-
ity. As for semi-supervised learning, it can be concluded that
the most important contribution is made by the lateral adjacent
connections. These connections being a vital component to
the level that removing them declines the performance for all
of the semi supervised tasks. The second important contri-
bution is introduction of noise at each layer. As the number
of labeled examples increases, the adjacent connections and
the re construction criterion become less significant and the
generalization enhancement coming from the induction of
noise in each layer and vice versa [18]. Ladder networks have
transformed the neural network model from a label learner to
a structural observer, thus narrowing the gap between machine
learning and machine intelligence.

In our opinion, the ladder network could be applied in these
future directions: data generated in high velocity environments
are unlabeled, which makes training models difficult; we
envisage to use the Ladder model exhibiting-semi supervised
learning in these settings. Semi-supervised models require
large training time, optimizing it is a potential challenge.
Ladder Networks have shown promising results with low
dimensional data sets, so their use on high dimensional data
sets is a possibility for exploration.
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