
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

8 | P a g e

www.ijacsa.thesai.org

A Comparison between Chemical Reaction

Optimization and Genetic Algorithms for Max Flow

Problem

Mohammad Y. Khanafseh

King Abdulla II School for

Information and Technology

University of Jordan

Amman-Jordan

Ola M. Surakhi

King Abdulla II School for

Information and Technology

University of Jordan

Amman-Jordan

Ahmad Sharieh

King Abdulla II School for

Information and Technology

University of Jordan

Amman-Jordan

Azzam Sleit

King Abdulla II School for

Information and Technology

University of Jordan

Amman-Jordan

Abstract—This paper presents a comparison between the

performance of Chemical Reaction Optimization algorithm and

Genetic algorithm in solving maximum flow problem with the

performance of Ford-Fulkerson algorithm in that. The

algorithms have been implemented sequentially using JAVA

programming language, and executed to find maximum flow

problem using different network size. Ford-Fulkerson algorithm

which is based on the idea of finding augmenting path is the most

popular algorithm used to find maximum flow value but its time

complexity is high. The main aim of this study is to determine

which algorithm will give results closer to the Ford-Fulkerson

results in less time and with the same degree of accuracy. The

results showed that both algorithms can solve Max Flow problem

with accuracy results close to Ford Fulkerson results, with a

better performance achieved when using the genetic algorithm in

term of time and accuracy.

Keywords—Chemical reaction optimization; Ford-Fulkerson

algorithm; genetic algorithm; maximum flow problem

I. INTRODUCTION

A flow network is a weighted directed graph where each
edge has a capacity and receives a flow [17]. The amount of
flow on an edge cannot exceed the capacity of the edge. A
flow must satisfy the restriction that the amount of flow into a
node equals the amount of flow out of it, except when it is a
source or sink. The maximum flow problem is to determine an
optimal solution for the directed graph by finding the
maximum flow from the source to the sink node [17].

Flow network can represent many real-life situations like a
traffic in a road system, fluids in pipes, currents in an electrical
circuit, or anything similar in which something travels through
a network of nodes [15]. Due to its importance in many areas
of applications such as computer science, engineering and
operations research, the maximum flow problem has been
extensively studied by many researchers using a variety of

methods [14], [15]. They include: a classic approach [8],
maximal flow problem in layered network [3], the shortest
augmenting path algorithm [10], and more [2], [4]-[6], [9],
[11]-[13].

In this study, Chemical Reaction Optimization (CRO)
algorithm and Genetic algorithm (GA) will be implemented
and tested on the maximum flow problem. The goal is to
determine which algorithm could give a better performance on
finding a solution to the maximum flow problem near to the
Ford-Fulkerson (FF) solution with less running time duration
and same accuracy.

The rest of paper is organized as follows: Section 1
introduces the maximum flow problem. Section 2 presents
some related works. Sections 3 and 4 explains the review the
CRO and Genetic algorithms, respectively for solving the
maximum flow problem. Section 5 shows the experimental
and comparison results and Section 6 presents the conclusion

and future works.

II. RELATED WORKS

A. Maximum Flow Problem

The flow network is a directed graph with two special
vertices; the source and the sink [17]. Each edge in the graph
connect two verticies and has a capacity and receives a flow
that should be less than or equal to its capacity. In the
operation research, a directed graph is called a network, the
vertices are called nodes and the edges are called arcs [17].

A network is a directed graph G = (V, E), with two special
kinds of vertices are distinguished: a source S and a sink T,
and every edge e = (u,v) ∈ E has a non-negative, real-valued
capacity c(u,v). A flow network is an integer valued function f
defined on the edges of G and satisfying that 0 ≤ f(u,v) ≤
c(u,v), for every Edge (u,v) in E.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

9 | P a g e

www.ijacsa.thesai.org

For each edge (u,v) in E, the flow f(u,v) is a real valued
function that must satisfy the following three properties for all
nodes u and v:

1) Capacity constraints: f(u,v) ≤ c(u,v). The flow along an

edge cannot exceed its capacity.

2) Skew symmetry: f(u,v) = −f(v,u). The flow from u to v

must be the opposite of the net flow from v to u.

3) Flow conservation: f(s, v) = 0,

 vV

unless u = s or u = t. The flow to a node is zero, except for
the source, which “produces” flow, and the sink, which
“consumes” flow.

To achieve flow conservation, the flow into the node
should be equal to the flow going out from the node. Also, the
total amount of flow going from source s equals total amount
of flow going into the sink t. The value of the flow is given
by (1):

| f | = Σ f (s , v) = Σ f (v , t)

 v ϵ V v ϵ V (1)
 An example of the flow network with a source node s,

sink node t and four additional nodes is shown in Fig. 1. The
flow and the capacity is denoted by f/c. The network upholds
skew symmetry and capacity constraints. The total amount of
flow from s is 5, which is also the incoming flow to t.

Fig. 1. A flow network with the flow and capacity.

The maximum flow problem involves finding a maximum
flow through a single-source, single-sink flow network.

B. Ford-Fulkersom Algorithm

The Ford-Fulkerson method [1] (named for L. R. Ford, Jr.
and D. R. Fulkerson) is the most popular algorithm used to
computes the maximum flow in a flow network. The main idea
of the algorithm is to find an augmenting path from the source
to the sink with available capacity on all edges in the path to
send flow along it. While there exist an augmenting path, you
send a flow along it.

The Ford-Fulkerson algorithm has two main steps as
shown in Fig. 2. The first is a labeling process that searches
for a flow augmenting path i.e., a path from the source s to the
sink t where the flow is less than the capacity along all
forward arcs and the flow > 0 along all backward arcs. If this
step finds a flow augmenting path, the second step changes the
flow accordingly. Otherwise, no augmenting path exists then
you get the maximum flow.

The runtime of Ford–Fulkerson is bounded by O(Ef),
where E is the number of edges in the graph and f is the
maximum flow in the graph. We run a loop as long as there
exists an augmenting path, each iteration of the loop takes
O(E) time to find an augmenting path, and increases the flow
by at least 1 and un upper bound f, so the time complexity of
the algorithm might not be a polynomial.

To decrease the computational time and get a better
performance, many researches gave different algorithms.

1. Ford-Fulkerson algorithm:

2. initialize flow to 0

3. path = find Augmenting Path(G, s, t)

4. while path exists:

5. augment flow along path

6. G_f = create Residual Graph()

7. path = find Augmenting Path(G_f, s, t)

8. return flow

9. end algorithm

Fig. 2. Ford-Fulkerson algorithm.

Because of the importance of the maximum flow problem
in many applications such as computer science, engineering
researches, it has been extensively studied by many
researchers using a variety of methods and techniques. A
recent research in [15] applied to solve maximum flow
problem using Chemical Reaction Optimization algorithm.
The results showed a better performance with a complexity of
O(I E2), for I iterations and E edges. Genetic algorithm was
also used to solve maximum flow problem in [13]. The
algorithm was implemented sequentially, and the fitness
function is defined to reflect two characteristics: balancing
vertices and the saturation rate of the flow. The performance
of the algorithm depends on the population size and the
number of generations needed to find the solution. In order to
reduce running time of the algorithm, a parallel
implementation was proposed in [18], the results showed a
good enhancement in terms of the running time and system
performance.

III. CHEMICAL REACTION OPTIMIZATION

Chemical reaction optimization (CRO), proposed in [6], is
a chemical-reaction-inspired general-propose meta-heuristic
established for optimization and inspired by the nature of
chemical reactions.

CRO refers to multi-agent algorithm which consists of
different molecules, where each molecule has different
attributes. Some of these attributes are important to CRO
operations like molecular structure, kinetic energy (KE) and
potential energy (PE) which refers to flow at the graph.

There are four main elementary reactions in CRO
operation that take place at the CRO iteration, and are
employed to manipulate the solution and distribute the energy
through the molecule.

The molecule, here, can be described as container where
these molecules are interacting with each other through this
container with different forms as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

10 | P a g e

www.ijacsa.thesai.org

On-wall effective collision which refers to situation when
different molecules collide with the wall of the container that
contains different molecules. This collide converts the
structure of molecule when collision happens new structure
like this ω → ω'.

 Decomposition interaction, this refers to situation when
a molecule was collided with the wall of the container
and then a molecule was divided into two parts ω →
ω1 + ω2.

 Inter-molecular ineffective collision: this situation of
collision between molecules happens when two
molecules collide with each other and they bounce
away, like this example when there are ω1 and ω2
where both collide with each other, then two new
molecules ω'1 and ω'2 were produced from those two
molecules which interact or collide with each other.
This can be presented as: ω1+ ω2→ ω'1 + ω'2.

 Synthesis: This makes an opposite of decomposition.
Through this kind of interaction between molecules,
two molecules hit with each other to produce new
molecule. It can be implemented as ω1 + ω2 → ω'.

The CRO can be implemented to solve Maxflow problem.
This needs to explore search space and to generate number of
solutions and molecules to achieve optimal solution. Different
solutions will be happening due to reaction between different
selected molecules. Some of these solutions are near to desired
solution and others were far away from it. After a selected
number of iterations, the best solution will be taken from the
list of these generated solutions.

In this paper, the CRO was applied to generate a possible
solution for the Maxflow problem.

A. Cro-Maxflow Algorithm

The CRO-Maxflow implementation has three main phases,
initialization, iteration and final phase.

 The initialization phase. In this phase, we define the
graph as a source, sink node and a number of graph
nodes. The nodes on graph are connected by edges
where each edge has a weight value or capacity. From
the source to the sink node, there are different flows
that can be found, these flows refer to parent size and
number of generated parent which depends on the
value of parent size that had been specified through
this step.

The first population will make the reaction with each other
or with the wall of the container to generate other molecule or
populations.

Some other basic CRO parameters like KE and molecule
random number used as stopping criteria beside the use of the
number of iteration that had been defined. The Maxflow value
can be found in CRO using objective function, which can be
computed using shortest augmenting path from source to sink.
This value determines the Maxflow value which will be
improved by the number of iterations. The objective function
was used here as potential energy, other values were defined
in the initialization step, such as α which refers to

decomposition threshold and β which refers to synthesis
threshold.

 The iteration step, the goal of this step is to improve
solution or objective function value. Most of the
heuristic algorithms depend on the number of iteration
to get a better solution. Through iteration step,
potential energy or objective function was calculated
for each iteration until reaching to iteration number,
which was specified at previous step. Other collision
happens based on the value of β which refers to the
value generated randomly. This value is compared with
molecule value. If β value is greater than molecule
value, then one parent will be selected. Parent selection
is important to know what kind of collision will happen
when one parent is selected and this will give the
ability for the decomposition reaction or on-wall-
effective collision to occur; otherwise the other type of
collision will occur.

 After selecting different molecule and calculating
Potential energy for different iteration and the number
of iterations reach max, the last step will start that
refers to selection step. Through this step molecules
with best value or largest value for Potential energy
will be selected, this value present Maxflow result for
the graph.

The pseudo code for the CRO-Maxflow algortithm is
shown in Fig. 3 [15].

1. CRO-Maxflow algorithm:

2. Initialization phase

3. Set flow_network_size, C[i][j]: maximum capacity

4. ParentSize, iterationNumber,s: source node, t:

5. Sink node

6. HIT= 0

7. Β =parentSize/2

8. Α =parentSize/2

9. KE = parentSize/ 1.5

10. Generate molecule ϵ [0,1]

11. parentGeneratins (C[i][j], parentSize)

12. for (int i=1 to iterationNumber) //iteration phase

13. Generate b ϵ [0,1]

14. If b> Molecule then

15. Randomly select one parent

16. If (HIT > α) then

17. Decomposition()

18. Else

19. OnWallIneffectiveCollision ()

20. End if

21.

22. Else

23. Randomly select two molecules

24. If (KE <=β && parentSize >=2) then

25. Synthesis ()

26. Else if (parentSize >=2)

27. IntermolecularIneffectiveCollision ()

28. End if

29. End if

30. HIT ++

31. KE - -

32. Check for any new maximum solution

33. End for-loop //final stage

34. Return best solution found

35. End algorithm

Fig. 3. Pseudo-code for CRO-Maxflow algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

11 | P a g e

www.ijacsa.thesai.org

IV. GENETIC ALGORITHM

A genetic algorithm (GA) is a method for solving complex
optimization problems based on a natural selection process
that mimics biological evolution. It can be used to design
computer algorithms, to schedule tasks, and to solve other
optimization problems.

Population can be viewed as binary bit strings. The initial
values of this population are usually randomly generated and
evaluated. The relation between the combination of ones or
zeros in the population is found by an evaluation function that
return a „fitness‟ value for some bit string [7].

The three main operations of the genetic algorithm are:
Reproduction (or Selection), Crossover and Mutation.

 Reproduction: use a fitness value to selects the best
individuals and discards the bad ones from the
population. The best individuals are those having more
chances to survive in the next generation.

 Crossover: includes two steps. First, pairs of bit strings
will be mated randomly to become the parents of two
new bit strings. The second part consists of choosing a
place (crossover site) in the bit string and exchanges all
characters of the parents after that point. The process
tries to artificially reproduce the mating process where
the DNA of two parents determines the DNA for the
newly born.

 Mutation: changes a 0 for a 1 and vice versa for the
bits that can‟t be changed by the previous operations
due to its absence from the generation, either by a
random chance or because it has been discarded.

 Repeat the above steps until reaching the termination
condition. The pseudo code of the Genetic algorithm is
shown in Fig. 4 [16].

1. Genetic algorithm:

2. Initialize population

3. Evaluate population

4. While (!stopCondition) do

5. Select the best-fit individuals for reproduction

6. Breed new individuals through crossover and mutation

operations

7. Evaluate the individuals fitness of new individuals

8. Replace least-fit population with new individuals

9. End algorithm

Fig. 4. Pseudo-code of Genetic algorithm [16].

A sequential implementation for Genetic algorithm has
been applied to solve max flow optimization problems [14].
The number of iterations have been determined according to
previous GA applications to achieve optimal or near optimal
solutions.

This study aims to apply a sequential version of genetic
algorithm on the max flow problem again. In order to get
better results and performance, one of the possible solutions
here is to reduce the number of generations required to
determine the solutions.

A. Genetic-Maxflow ALGORITHM

Maxflow problem consist of graph with number of nodes
and edges between these nodes. Each edge has specific weight
or capacity which is saved in matrix called C[i,j]. Based on
this value, different optimistic path was selected for each
iteration and solution will be build based on this paths
between source and sink. These solutions in the Genetic
algorithm refer to population and will be saved in population
matrix.

For a graph, G, with n vertices and m edges; G is
represented by the flow capacity matrix, C = [cij], i, j = 1, n.
Each solution is represented by a flow matrix F = [fij], i, j = 1,
n. The initial flow was generated randomly.

The first step of Genetic-Maxflow refers to initialization
step. In this step, number of iteration, population size and
mutation ratio values must be defined. After this step, the
selection step must be implemented to select best solution
from different solutions. This is implemented based on the
fitness function to find path between source and sink. Based
on the value of Fitness Function, it will select some ratio for
all matrix. Next the crossover will be implemented between
different solutions. The first population or solution have best
Maxflow result, then generate a new population in new matrix
Pop1 with good results for Maxflow. After that step, mutation
will be implemented to change some of solution to different
one from parent solution which depends on doing a crossover
process. This mutation based on specific ration. This ration
must be small between 0.01 and 0.025 of all population to
change population. New solutions for Maxflow problem was
generated in new Matrix Pop2. This solution for one iteration.
Genetic algorithm is heuristic algorithm where number of
iterations was important to achieve enhancement of solution at
each iteration. These steps were repeated at each iteration in
the proposed solution and best population will be selected
based on population size which specified at the beginning of
the algorithm.

V. EXPERIMENTAL RESULTS AND COMPARISONS

In this study, a sequential implementation for FF, CRO
and GA is applied to find maximum flow problem with a
different network size. The algorithms FF, CRO and GA were
tested using Intel core I7-3632QM CPU2.20GHz, 8GB of
RAM and windows 7 64 bits. The application programs were
written using java and executed on Net-Beans IDE 8.1. The
implementations were done over different network size started
from 50 nodes until 6030 nodes, with different number of
parents and different number of iterations, in order to achieve
the best solution which is near to Ford-Fulkerson one, as we
will see from results. Each experiment was repeated 10 times,
and the average results were calculated.

The first comparison was made between the Ford
Fulkerson algorithm and the CRO algorithm on the Maxflow
problem based on the time needs to calculate Maxflow and the
accuracy level of the proposed solution for a graph when using
different number of nodes, and different number of iterations.
Each experiment was executed for 10 times and the average
result was calculated.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

12 | P a g e

www.ijacsa.thesai.org

Different results for CRO-Maxflow were conducted. These
results were optimized until reaching to accuracy level near to
the Ford-Fulkerson with less time than the Ford-Fulkerson
algorithm running time and using different network size. A
part of comparison between the program results with optimal
Ford Fulkerson results are shown in Table 1. Runtime in
Table 1 is in milliseconds. Table 1 shows the results for the
implementation of CRO-Maxflow and Ford Fulkerson
Maxflow.

The number of nodes plays an important role in Ford-
Fulkerson solution. The CRO algorithm took less time to find
maxflow than Ford-Fulkerson for large number of nodes. The
four main steps for CRO were repeated based on the number
of iterations needed to reach to a solution near the Ford-
Fulkerson according to the accuracy when finding Maxflow.
The number of iterations have some limitations when
increasing it to be more than some specific value it will
consumes the memory efficiency.

TABLE. I. RESULTS FOR IMPLEMENTING CRO-MAXFLOW AND FF

MAXFLOW, WITH NUMBER OF NODES= 50 TO 6030

Size CRO Time FF Time FF result CRO result Quality

3550 8.3 14.3 14.2 9.7 0.683099

3602 14.3 15.1 13.4 13.4 1

3654 9.2 15.2 14.7 13.2 0.897959

3706 6.3 15.7 37.2 33.2 0.892473

3758 13.9 16.3 22.5 22.3 0.991111

3810 16.5 16.5 24.3 19.7 0.8107

3862 11.5 17 22.8 21.8 0.95614

3914 17.1 17.5 17.1 14.7 0.859649

3966 15.4 18.1 22.8 16 0.701754

4018 10.7 18.3 17.4 16.7 0.95977

4070 8.2 19 19.1 15.4 0.806283

4122 19 20.1 30.6 27.5 0.898693

4226 22.6 20.1 22.9 22.5 0.982533

4278 15.1 20.8 22.2 19.4 0.873874

4330 20.3 21.3 16.5 15.3 0.927273

4486 13.5 22.9 23.2 14.4 0.62069

4590 20.6 24.1 13.6 12.6 0.926471

4746 25.5 25.6 20.9 14.3 0.684211

5162 11.7 29.9 16.4 12.4 0.756098

5214 26.4 30.6 11.6 6.7 0.577586

5422 20.2 33.4 22.2 18.8 0.846847

5474 13 34.3 20.3 20.3 1

5942 31.2 39.8 19.6 18.6 0.94898

5990 18.8 40.6 18.8 18.4 0.978723

6098 25.5 41.7 21.3 19 0.892019

6306 46 49 29 28.5 0.982759

From the result of 1000 nodes and 10 iterations, we can
say that the CRO-Maxflow gives less time for execution than
Optimal of Ford-Fulkerson Maxflow with accuracy rate near
to 90% to Ford-Fulkerson results. This gives a good
enhancement when use a heuristic algorithm to solve Maxflow
problem with less time and same level of accuracy, which we
implemented through the proposed solution. To compare
results for Maxflow problem using CRO and Ford-Fulkerson
solution, Fig. 5 presents the relation between time needed for
CRO and Ford-Fulkerson Solution at same data sets.

Fig. 5 shows that run time needed to solve Maxflow using
CRO is less than that needed to solve the same problem on the
same dataset and using same machine and environment for
optimal Ford Fulkerson algorithm.

Fig. 5. Execution time of CRO and FF algorithm to solve max flow

problem.

Fig. 6 shows the accuracy of CRO-Maxflow problem and
Ford-Fulkerson Maxflow. This results for different number of
nodes, started from 50 nodes to 1000 nodes. The proposed
solution to solve Maxflow has accuracy near to Ford-
Fulkerson accuracy, which is a good achievement.

Fig. 6. Accuracy results for calculating Maxflow using CRO and FF.

The second comparison was between Genetic-Maxflow
and FF Maxflow.

In [14], the authors applied GA to find the maximum flow
from the source to sink in a weighted directed graph. The
experiment was run for various graphs with different number
of vertices. The results showed that Genetic algorithm found
an optimal or near optimal solution for the maximum flow
problem, with a reasonable number of iterations compared to
other previous GA applications [14].

0

20

40

60

1 9 17 25 33 41 49 57 65

n
o

. o
f

n
o

d
e

s

Time

CRO Time

Optimal
Time

0

10

20

30

40

1 7 13 19 25 31 37 43 49 55 61 67

n
o

. o
f

n
o

d
es

Results

FF

CRO

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

13 | P a g e

www.ijacsa.thesai.org

TABLE. II. RESULTS FOR IMPLEMENTING GENETIC-MAXFLOW AND FF

MAXFLOW, FOR DIFFERENT NUMBER OF NODES STARTED FROM 50 NOD

UNTIL 1986

Size GA Time FF Time FF result GA result

4590 12.9 23.5 13.6 12.6

4642 12.8 23.8 20.2 18.7

4694 13.5 24.4 15.7 15.6

4746 12.9 24.7 20.9 20.7

4798 13.8 25.4 19.3 17.5

4850 14.8 26.9 24.6 20.6

4902 15.3 26.8 17.1 14

4954 14.7 27.2 14.4 13.1

5006 14.3 27.7 27.4 27.4

5058 14.7 28.2 17.9 16.8

5110 14.6 28.4 17.1 16.3

5162 14.5 29.4 16.4 15.1

5214 14.8 29.9 11.6 8.1

5266 14.7 30.3 19.1 18.9

5318 14.1 30.8 26.1 25.5

5370 16.1 31.7 19.3 14.8

5422 16.9 32.6 22.2 20.5

5474 17.2 33.1 20.3 19.9

5526 17.9 33.8 20.9 17.8

5578 17.2 34.2 28.1 26

5630 17.6 34.7 22 22

5682 17.5 35.3 15.7 15.3

5734 17.7 36.2 16.6 14

5786 18.3 37.9 12.7 11.7

5838 18.1 37.7 14.6 13.3

5890 19.7 38 12.7 10.7

5942 18.3 38.9 19.6 19.6

5994 18.9 39.4 22 12.4

6046 20.5 39.8 21 20

6098 19.5 40.7 21.3 19.7

6150 21.7 41.6 20.3 18.2

6202 20.2 41.7 25.1 20.9

6254 21 42.6 19.9 18.4

6306 21.4 43.5 29 26.9

6358 20.9 44 19.7 19.3

We implemented the GA to solve Maxflow problem and
compare results. The implementation of the three algorithms
FF, CRO and GA were tested on the same data and the same
environment. Both objective functions which we used to
calculate Maxflow in CRO, are the same as Fitness functions
which we used in GA.

When implementing GA on Maxflow problem, the
population is selected first then we start with genetic steps
from selection of best population of all populations to cross
over process. Through this process, we did cross over for two
selected solutions from selection process then we
implemented the mutation step in order to make changes for
the generated population. After the cross over step, the
mutation step was checked to make sure it does not exceed the
range from 0.01- 0.025 for all populations. The process was
done randomly.

These steps of GA were repeated based on the number of
iterations, which specified to reach solutions near to FF one in
accuracy level to find Maxflow. But generating number has
some limitation. If you increase this number more than
specific value, it will affect the memory space.

The GA was implemented at the same environment that
used to implement CRO-Maxflow. We compared results of
GA with results of optimal FF for the same experiment. Each
experiment with specific size of network was repeated 10
times and average result for this repeated time was calculated
with specific number of iterations similar to process which is
done in CRO-Maxflow experiment. Table 2 shows part of the
results for the time needed for Genetic-Maxflow less than time
which needs to solve Maxflow problem using FF solution, at
level of accuracy near to FF level.

The results show that GA reach to accuracy near to FF
with time less than time needs to solve maxflow by FF
algorithm as shown in Fig. 7 and 8, respectively.

Fig. 7. Relation between time needs for Maxflow Problem using GA and FF,

at same node.

0

10

20

30

40

50

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

n
o

. o
f

n
o

d
e

s

Time

Genetic
Time

Optimal
Time

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

14 | P a g e

www.ijacsa.thesai.org

Fig. 8. Accuracy results for calculate Maxflow using GA and FF.

The results from using CRO-Maxflow were compared
with the Genetic-Maxflow as shown in Table 3 and Fig. 9.

TABLE. III. CRO-MAXFLOW VS GENETIC-MAXFLOW

Size CRO Time FF Time GA Time CRO Result GA Result

3550 8.3 14.3 14.7 9.7 16.8

3602 14.3 15.1 14.6 13.4 16.3

3654 9.2 15.2 14.5 13.2 15.1

3706 6.3 15.7 14.8 33.2 8.1

3758 13.9 16.3 14.7 22.3 18.9

3810 16.5 16.5 14.1 19.7 25.5

3862 11.5 17 16.1 21.8 14.8

3914 17.1 17.5 16.9 14.7 20.5

3966 15.4 18.1 17.2 16 19.9

4018 10.7 18.3 17.9 16.7 17.8

4070 8.2 19 17.2 15.4 26

4122 19 20.1 17.6 27.5 22

4226 22.6 20.1 17.5 22.5 15.3

4278 15.1 20.8 17.7 19.4 14

4330 20.3 21.3 18.3 15.3 11.7

4486 13.5 22.9 18.1 14.4 13.3

4590 20.6 24.1 19.7 12.6 10.7

4746 25.5 25.6 18.3 14.3 19.6

5162 11.7 29.9 18.9 12.4 12.4

5214 26.4 30.6 20.5 6.7 20

5422 20.2 33.4 19.5 18.8 19.7

5474 13 34.3 21.7 20.3 18.2

5942 31.2 39.8 20.2 18.6 20.9

5990 18.8 40.6 21 18.4 18.4

6098 25.5 41.7 21.4 19 26.9

6306 46 49 20.9 28.5 19.3

The results show that GA took less time with same level of
accuracy as CRO algorithm for the same network size and
same number of iterations. As the performance of the GA
depends on doing the cross over and mutation steps by each
iteration. While CRO algorithm depends on different number
of collisions that can be happened between different molecules
which compared with molecule value to determine number of
molecules that will be selected on interaction or collision
process. This will need more time to achieve it. Through the
experiment of implementation, both algorithms were
implemented using java programming language. Based on the
results for each step, calculate the time needs for each step for
both experiments GA and CRO to decide which step consume
most of the time. According to that optimize that step which
spent most of execution time in CRO and GA to achieve same
level of enhancement on both algorithms.

The copy matrix step consumes most of the time, some
optimization steps was done to enhance time results like
allocation and de allocation for matrix when one matrix for a
graph was deleted, new matrix for a new graph was build and
this consumes time and memory through the implementation,
because of that we reuse the matrix by using a java object pool
feature that allow to use the same matrix with replacing the
nodes for the old matrix with a new matrix results.

Other technical enhancement which has been done for both
the CRO and GA deals with the connected edges. As the
matrix presents a graph with nodes and edges, we worked with
the submatrix that contains ones instead of dealing with the
whole matrix with its connected and disconnected edges.

Both algorithms, CRO and GA gave better execution time
than FF algorithm for large network size. When this number
becomes very large, the CRO and GA keep on the same level
of efficiency in terms of accuracy and velocity.

Fig. 9. Relation between time needs for Maxflow problem using CRO, GA

and FF, at same node.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, CRO and Genetic algorithms were
implemented sequentially on Intel core I7-3632QM
CPU2.20GHz, 8GB of RAM and windows 7 64 bits to solve
the Maxflow problem. The application programs were written
using java and executed on Net-Beans IDE 8.1. The
implementations were done over different network size started

0

5

10

15

20

25

30

35

40

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

n
o

. o
f

n
o

d
es

Result

FF

GA

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25

n
o

. o
f

n
o

d
es

Time

CRO Time FF Time GA Time

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

15 | P a g e

www.ijacsa.thesai.org

from 50 nodes until 6030 nodes, with different number of
parents and different number of iterations, in order to achieve
the best solution which is near to Ford-Fulkerson one.

The results show that GA and CRO both can solve Max
Flow problem with accuracy result near to FF results, with
better performance achieved when using the genetic algorithm
in term of time and accuracy.

For future work, we need to implement both Genetic and
CRO on parallel to solve max flow problem by using a super
computer to test the amount of enhancement on time with
large number of network size.

REFERENCES

[1] FORD.L.R. AND D. R. FULKERSON 1956. Maximal Flow Through a
Network. Can. J. Math. 8,399-404

[2] Edmonds, Jack; Karp, Richard M. (1972). “Theoretical improvements in
algorithmic efficiency for network flow problems”. Journal of the ACM.
Association for Computing Machinery. 19 (2): 248–264.
doi:10.1145/321694.321699.

[3] Dinic, E. A. (1970). “Algorithm for solution of a problem of maximum
flow in a network with power estimation”. Soviet Math. Doklady.
Doklady. 11: 1277–1280.

[4] KARZANOVA.V. 1974. Determining the Maximal Row in a Network
by the Method of Preflows. Soviet Math.Dokl.15,434-437.

[5] Baumann N, Skutella M (2006) Solving evacuation problems
efficiently–earliest arrival flows with multiple sources. In: 47th annual
IEEE symposium on foundations of computer science (FOCS‟06), pp
399–410

[6] A. Y. S. Lam and V. O. K. Li, “Chemical-reaction-inspired
metaheuristic for optimization,” IEEE Trans. Evol. Comput., vol. 14, no.
3, pp. 381– 399, 2010

[7] D. Arjona, “A hybrid artificial neural network/genetic algorithm
approach to on-line switching operations for the optimization of

electrical power systems”, appears in “Energy Conversion Engineering
Conference”, pp 2286 – 2290, vol.4, Aug 1996.

[8] L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks, Princeton, NJ:
Princeton University Press, 1962

[9] Goldberg, A.V., Tarjan, R.E., “A new approach to the maximum flow
problem”. Proc. 18th ACM STOC, 1986, pp. 136-146

[10] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin., Network Flows: Theory,
Algorithms, and Applications, Prentice Hall, 1993.

[11] G. Mazzoni, S. Pallottino and M.G. Scutella, “The Maximum Flow
Problem: A Max-Preflow Approach,” European Journal of Operations
Research, vol. 53, pp. 257-278, 1991

[12] J. B. Orlin. Max flows in o(nm) time, or better. In STOC‟13:
Proceedings of the 45th Annual ACM Symposium on the Theory of
Computing, 2013, pp.765–774.

[13] V. King, S. Rao, and R. Tarjan, “A faster deterministic maximum flow
algorithm”, In Proceedings of the 8th Annual ACM–SIAM Symposium
on Discrete Algorithms, 1992, pp. 157–164.

[14] Munakata, T. and Hashier, D.J. “A genetic algorithm applied to the
maximum flow problem”, Proc. 5thInt. Conf. Genetic Algorithms, 1993,
pp. 488-493

[15] R.Barham, A.Sharieh, A.Sliet. “Chemical Reaction Optimization for
Max Flow Problem”, (IJACSA) International Journal of Advanced
Computer Science and Applications, Vol. 7, No. 8, 2016

[16] MahmoodA.Rashid, M.A.Hakim Newton,Md. Tamjidul Hoque, Abdul.
Sattar,” Mixing Energy Models in Genetic Algorithms for On-Lattice
Protein Structure Prediction”, Hindawi Publishing Corporation Bio Med
Research International, Volume2013,ArticleID924137,15pages

[17] Zhipeng Jiang, Xiaodong Hu, and Suixiang Gao, “A Parallel Ford-
Fulkerson Algorithm For Maximum Flow Problem”, The Allen Institute
for Artificial Intelligence, SemanticScholar.

[18] Ola M.Surakhi, Mohammad Qatawneh, Hussein A.. “A Parallel Genetic
Algorithm for Maximum Flow Problem”, International Journal of
Advanced Computer Science and Applications, 2017.

https://en.wikipedia.org/wiki/Jack_Edmonds
https://en.wikipedia.org/wiki/Richard_Karp
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%2F321694.321699

