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Abstract—This paper presents a comparison between the 

performance of Chemical Reaction Optimization algorithm and 

Genetic algorithm in solving maximum flow problem with the 

performance of Ford-Fulkerson algorithm in that. The 

algorithms have been implemented sequentially using JAVA 

programming language, and executed to find maximum flow 

problem using different network size. Ford-Fulkerson algorithm 

which is based on the idea of finding augmenting path is the most 

popular algorithm used to find maximum flow value but its time 

complexity is high.  The main aim of this study is to determine 

which algorithm will give results closer to the Ford-Fulkerson 

results in less time and with the same degree of accuracy. The 

results showed that both algorithms can solve Max Flow problem 

with accuracy results close to Ford Fulkerson results, with a 

better performance achieved when using the genetic algorithm in 

term of time and accuracy. 

Keywords—Chemical reaction optimization; Ford-Fulkerson 

algorithm; genetic algorithm; maximum flow problem 

I. INTRODUCTION 

A flow network is a weighted directed graph where each 
edge has a capacity and receives a flow [17]. The amount of 
flow on an edge cannot exceed the capacity of the edge. A 
flow must satisfy the restriction that the amount of flow into a 
node equals the amount of flow out of it, except when it is a 
source or sink. The maximum flow problem is to determine an 
optimal solution for the directed graph by finding the 
maximum flow from the source to the sink node [17]. 

Flow network can represent many real-life situations like a 
traffic in a road system, fluids in pipes, currents in an electrical 
circuit, or anything similar in which something travels through 
a network of nodes [15]. Due to its importance in many areas 
of applications such as computer science, engineering and 
operations research, the maximum flow problem has been 
extensively studied by many researchers using a variety of 

methods [14], [15]. They include: a classic approach [8], 
maximal flow problem in layered network [3], the shortest 
augmenting path algorithm [10], and more [2], [4]-[6], [9], 
[11]-[13]. 

In this study, Chemical Reaction Optimization (CRO) 
algorithm and Genetic algorithm (GA) will be implemented 
and tested on the maximum flow problem. The goal is to 
determine which algorithm could give a better performance on 
finding a solution to the maximum flow problem near to the 
Ford-Fulkerson (FF) solution with less running time duration 
and same accuracy. 

The rest of paper is organized as follows: Section 1 
introduces the maximum flow problem. Section 2 presents 
some related works. Sections 3 and 4 explains the review the 
CRO and Genetic algorithms, respectively for solving the 
maximum flow problem. Section 5 shows the experimental 
and comparison results and Section 6 presents the conclusion 

and future works. 

II. RELATED WORKS 

A. Maximum Flow Problem 

The flow network is a directed graph with two special 
vertices; the source and the sink [17]. Each edge in the graph 
connect two verticies and has a capacity and receives a flow 
that should be less than or equal to its capacity. In the 
operation research, a directed graph is called a network, the 
vertices are called nodes and the edges are called arcs [17]. 

A network is a directed graph G = (V, E), with two special 
kinds of vertices are distinguished: a source S and a sink T, 
and every edge e = (u,v) ∈ E has a non-negative, real-valued 
capacity c(u,v). A flow network is an integer valued function f 
defined on the edges of G and satisfying that 0 ≤ f(u,v) ≤ 
c(u,v), for every Edge (u,v) in E. 
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For each edge (u,v) in E, the flow f(u,v) is a real valued 
function that must satisfy the following three properties for all 
nodes u and v: 

1) Capacity constraints: f(u,v) ≤ c(u,v). The flow along an 

edge cannot exceed its capacity. 

2) Skew symmetry: f(u,v) = −f(v,u). The flow from u to v 

must be the opposite of the net flow from v to u. 

3) Flow conservation:   f(s, v) = 0, 

 vV 

unless u = s or u = t. The flow to a node is zero, except for 
the source, which “produces” flow, and the sink, which 
“consumes” flow. 

To achieve flow conservation, the flow into the node 
should be equal to the flow going out from the node. Also, the 
total amount of flow going from source s equals total amount 
of flow going into the sink t. The value of the flow is given 
by (1): 

| f |  =  Σ f ( s , v ) = Σ f (v , t )  

                                                                                                                                                               v ϵ V     v ϵ V                              (1) 
  An example of the flow network with a source node s, 

sink node t and four additional nodes is shown in Fig. 1. The 
flow and the capacity is denoted by f/c. The network upholds 
skew symmetry and capacity constraints. The total amount of 
flow from s is 5, which is also the incoming flow to t. 

 

Fig. 1. A flow network with the flow and capacity. 

The maximum flow problem involves finding a maximum 
flow through a single-source, single-sink flow network. 

B. Ford-Fulkersom Algorithm 

The Ford-Fulkerson method [1] (named for L. R. Ford, Jr. 
and D. R. Fulkerson) is the most popular algorithm used to 
computes the maximum flow in a flow network. The main idea 
of the algorithm is to find an augmenting path from the source 
to the sink with available capacity on all edges in the path to 
send flow along it. While there exist an augmenting path, you 
send a flow along it. 

The Ford-Fulkerson algorithm has two main steps as 
shown in Fig. 2. The first is a labeling process that searches 
for a flow augmenting path i.e., a path from the source s to the 
sink t where the flow is less than the capacity along all 
forward arcs and the flow > 0 along all backward arcs. If this 
step finds a flow augmenting path, the second step changes the 
flow accordingly. Otherwise, no augmenting path exists then 
you get the maximum flow. 

The runtime of Ford–Fulkerson is bounded by O(Ef), 
where E is the number of edges in the graph and  f is the 
maximum flow in the graph. We run a loop as long as there 
exists an augmenting path, each iteration of the loop takes 
O(E) time to find an augmenting path, and increases the flow 
by at least 1 and un upper bound f, so the time complexity of 
the algorithm might not be a polynomial. 

To decrease the computational time and get a better 
performance, many researches gave different algorithms. 

1. Ford-Fulkerson algorithm: 

2. initialize flow to 0 

3. path = find Augmenting Path(G, s, t) 

4. while path exists: 

5. augment flow along path                  

6. G_f = create Residual Graph() 

7. path = find Augmenting Path(G_f, s, t) 

8. return flow 

9. end algorithm 

Fig. 2. Ford-Fulkerson algorithm. 

Because of the importance of the maximum flow problem 
in many applications such as computer science, engineering 
researches, it has been extensively studied by many 
researchers using a variety of methods and techniques. A 
recent research in [15] applied to solve maximum flow 
problem using Chemical Reaction Optimization algorithm. 
The results showed a better performance with a complexity of 
O(I E2), for I iterations and E edges. Genetic algorithm was 
also used to solve maximum flow problem in [13]. The 
algorithm was implemented sequentially, and the fitness 
function is defined to reflect two characteristics: balancing 
vertices and the saturation rate of the flow. The performance 
of the algorithm depends on the population size and the 
number of generations needed to find the solution. In order to 
reduce running time of the algorithm, a parallel 
implementation was proposed in [18], the results showed a 
good enhancement in terms of the running time and system 
performance. 

III. CHEMICAL REACTION OPTIMIZATION 

Chemical reaction optimization (CRO), proposed in [6], is 
a chemical-reaction-inspired general-propose meta-heuristic 
established for optimization and inspired by the nature of 
chemical reactions. 

CRO refers to multi-agent algorithm which consists of 
different molecules, where each molecule has different 
attributes. Some of these attributes are important to CRO 
operations like molecular structure, kinetic energy (KE) and 
potential energy (PE) which refers to flow at the graph. 

There are four main elementary reactions in CRO 
operation that take place at the CRO iteration, and are 
employed to manipulate the solution and distribute the energy 
through the molecule. 

The molecule, here, can be described as container where 
these molecules are interacting with each other through this 
container with different forms as follows: 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 8, 2017 

10 | P a g e  

www.ijacsa.thesai.org 

On-wall effective collision which refers to situation when 
different molecules collide with the wall of the container that 
contains different molecules. This collide converts the 
structure of molecule when collision happens new structure 
like this ω → ω'. 

 Decomposition interaction, this refers to situation when 
a molecule was collided with the wall of the container 
and then a molecule was divided into two parts ω → 
ω1 + ω2. 

 Inter-molecular ineffective collision: this situation of 
collision between molecules happens when two 
molecules collide with each other and they bounce 
away, like this example when there are ω1 and ω2 
where both collide with each other, then two new 
molecules ω'1 and ω'2 were produced from those two 
molecules which interact or collide with each other. 
This can be presented as: ω1+ ω2→ ω'1 + ω'2. 

 Synthesis: This makes an opposite of decomposition. 
Through this kind of interaction between molecules, 
two molecules hit with each other to produce new 
molecule. It can be implemented as ω1 + ω2 → ω'. 

The CRO can be implemented to solve Maxflow problem. 
This needs to explore search space and to generate number of 
solutions and molecules to achieve optimal solution. Different 
solutions will be happening due to reaction between different 
selected molecules. Some of these solutions are near to desired 
solution and others were far away from it. After a selected 
number of iterations, the best solution will be taken from the 
list of these generated solutions. 

In this paper, the CRO was applied to generate a possible 
solution for the Maxflow problem. 

A. Cro-Maxflow Algorithm 

The CRO-Maxflow implementation has three main phases, 
initialization, iteration and final phase. 

 The initialization phase. In this phase, we define the 
graph as a source, sink node and a number of graph 
nodes. The nodes on graph are connected by edges 
where each edge has a weight value or capacity. From 
the source to the sink node, there are different flows 
that can be found, these flows refer to parent size and 
number of generated parent which depends on the 
value of parent size that had been specified through 
this step. 

The first population will make the reaction with each other 
or with the wall of the container to generate other molecule or 
populations. 

Some other basic CRO parameters like KE and molecule 
random number used as stopping criteria beside the use of the 
number of iteration that had been defined. The Maxflow value 
can be found in CRO using objective function, which can be 
computed using shortest augmenting path from source to sink. 
This value determines the Maxflow value which will be 
improved by the number of iterations. The objective function 
was used here as potential energy, other values were defined 
in the initialization step, such as α which refers to 

decomposition threshold and β which refers to synthesis 
threshold. 

 The iteration step, the goal of this step is to improve 
solution or objective function value. Most of the 
heuristic algorithms depend on the number of iteration 
to get a better solution. Through iteration step, 
potential energy or objective function was calculated 
for each iteration until reaching to iteration number, 
which was specified at previous step. Other collision 
happens based on the value of β which refers to the 
value generated randomly. This value is compared with 
molecule value. If β value is greater than molecule 
value, then one parent will be selected. Parent selection 
is important to know what kind of collision will happen 
when one parent is selected and this will give the 
ability for the decomposition reaction or on-wall-
effective collision to occur; otherwise the other type of 
collision will occur. 

 After selecting different molecule and calculating 
Potential energy for different iteration and the number 
of iterations reach max, the last step will start that 
refers to selection step. Through this step molecules 
with best value or largest value for Potential energy 
will be selected, this value present Maxflow result for 
the graph. 

The pseudo code for the CRO-Maxflow algortithm is 
shown in Fig. 3 [15]. 

1. CRO-Maxflow algorithm: 

2. Initialization phase 

3. Set flow_network_size, C[i][j]: maximum capacity 

4. ParentSize, iterationNumber,s: source node, t: 

5. Sink node 

6. HIT= 0 

7. Β =parentSize/2 

8. Α =parentSize/2 

9. KE = parentSize/ 1.5 

10. Generate molecule ϵ [0,1] 

11. parentGeneratins (C[i][j], parentSize) 

12. for (int i=1 to iterationNumber ) //iteration phase 

13.        Generate b ϵ [0,1] 

14.        If b> Molecule   then 

15.        Randomly select one parent 

16.        If (HIT > α) then 

17.            Decomposition() 

18.        Else 

19.           OnWallIneffectiveCollision () 

20.        End if 

21.         

22.        Else 

23.        Randomly select two molecules 

24.        If (KE <=β && parentSize >=2) then 

25.        Synthesis () 

26.        Else if (parentSize >=2) 

27.            IntermolecularIneffectiveCollision () 

28.         End if      

29.         End if 

30.      HIT ++ 

31.      KE - - 

32.      Check for any new maximum solution 

33.      End for-loop //final stage 

34.      Return best solution found 

35.      End algorithm 

Fig. 3. Pseudo-code for CRO-Maxflow algorithm. 
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IV. GENETIC ALGORITHM 

A genetic algorithm (GA) is a method for solving complex 
optimization problems based on a natural selection process 
that mimics biological evolution. It can be used to design 
computer algorithms, to schedule tasks, and to solve other 
optimization problems. 

Population can be viewed as binary bit strings. The initial 
values of this population are usually randomly generated and 
evaluated. The relation between the combination of ones or 
zeros in the population is found by an evaluation function that 
return a „fitness‟ value for some bit string [7]. 

The three main operations of the genetic algorithm are: 
Reproduction (or Selection), Crossover and Mutation. 

 Reproduction: use a fitness value to selects the best 
individuals and discards the bad ones from the 
population. The best individuals are those having more 
chances to survive in the next generation. 

 Crossover: includes two steps. First, pairs of bit strings 
will be mated randomly to become the parents of two 
new bit strings. The second part consists of choosing a 
place (crossover site) in the bit string and exchanges all 
characters of the parents after that point. The process 
tries to artificially reproduce the mating process where 
the DNA of two parents determines the DNA for the 
newly born. 

 Mutation: changes a 0 for a 1 and vice versa for the 
bits that can‟t be changed by the previous operations 
due to its absence from the generation, either by a 
random chance or because it has been discarded. 

 Repeat the above steps until reaching the termination 
condition. The pseudo code of the Genetic algorithm is 
shown in Fig. 4 [16]. 

1. Genetic algorithm: 

2. Initialize population 

3. Evaluate population 

4. While (!stopCondition) do 

5.     Select the best-fit individuals  for reproduction 

6.     Breed new individuals through crossover and mutation 

operations 

7.     Evaluate the individuals fitness of new individuals  

8.     Replace least-fit population with new individuals  

9.  End algorithm    

Fig. 4. Pseudo-code of Genetic algorithm [16]. 

A sequential implementation for Genetic algorithm has 
been applied to solve max flow optimization problems [14]. 
The number of iterations have been determined according to 
previous GA applications to achieve optimal or near optimal 
solutions. 

This study aims to apply a sequential version of genetic 
algorithm on the max flow problem again. In order to get 
better results and performance, one of the possible solutions 
here is to reduce the number of generations required to 
determine the solutions. 

A. Genetic-Maxflow ALGORITHM 

Maxflow problem consist of graph with number of nodes 
and edges between these nodes. Each edge has specific weight 
or capacity which is saved in matrix called C[i,j]. Based on 
this value, different optimistic path was selected for each 
iteration and solution will be build based on this paths 
between source and sink. These solutions in the Genetic 
algorithm refer to population and will be saved in population 
matrix. 

For a graph, G, with n vertices and m edges; G is 
represented by the flow capacity matrix, C = [cij], i, j = 1, n.  
Each solution is represented by a flow matrix F = [fij], i, j = 1, 
n.  The initial flow was generated randomly. 

The first step of Genetic-Maxflow refers to initialization 
step. In  this step, number of iteration, population size and 
mutation ratio values must be defined. After this step, the 
selection step must be implemented to select best solution 
from different solutions. This is implemented based on the 
fitness function to find path between source and sink. Based 
on the value of Fitness Function, it will select some ratio for 
all matrix. Next the crossover will be implemented between 
different solutions. The first population or solution have best 
Maxflow result, then generate a new population in new matrix 
Pop1 with good results for Maxflow. After that step, mutation 
will be implemented to change some of solution to different 
one from parent solution which depends on doing a crossover 
process. This mutation based on specific ration. This ration 
must be small between 0.01 and 0.025 of all population to 
change population. New solutions for Maxflow problem was 
generated in new Matrix Pop2. This solution for one iteration. 
Genetic algorithm is heuristic algorithm where number of 
iterations was important to achieve enhancement of solution at 
each iteration. These steps were repeated at each iteration in 
the proposed solution and best population will be selected 
based on population size which specified at the beginning of 
the algorithm. 

V. EXPERIMENTAL RESULTS AND COMPARISONS 

In this study, a sequential implementation for FF, CRO 
and GA is applied to find maximum flow problem with a 
different network size. The algorithms FF, CRO and GA were 
tested using Intel core I7-3632QM CPU2.20GHz, 8GB of 
RAM and windows 7 64 bits. The application programs were 
written using java and executed on Net-Beans IDE 8.1. The 
implementations were done over different network size started 
from 50 nodes until 6030 nodes, with different number of 
parents and different number of iterations, in order to achieve 
the best solution which is near to Ford-Fulkerson one, as we 
will see from results. Each experiment was repeated 10 times, 
and the average results were calculated. 

The first comparison was made between the Ford 
Fulkerson algorithm and the CRO algorithm on the Maxflow 
problem based on the time needs to calculate Maxflow and the 
accuracy level of the proposed solution for a graph when using 
different number of nodes, and different number of iterations. 
Each experiment was executed for 10 times and the average 
result was calculated. 
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Different results for CRO-Maxflow were conducted. These 
results were optimized until reaching to accuracy level near to 
the Ford-Fulkerson with less time than the Ford-Fulkerson 
algorithm running time and using different network size. A 
part of comparison between the program results with optimal 
Ford Fulkerson results are shown in Table 1. Runtime in 
Table 1 is in milliseconds.  Table 1 shows the results for the 
implementation of CRO-Maxflow and Ford Fulkerson 
Maxflow. 

The number of nodes plays an important role in Ford-
Fulkerson solution. The CRO algorithm took less time to find 
maxflow than Ford-Fulkerson for large number of nodes. The 
four main steps for CRO were repeated based on the number 
of iterations needed to reach to a solution near the Ford-
Fulkerson according to the accuracy when finding Maxflow. 
The number of iterations have some limitations when 
increasing it to be more than some specific value it will 
consumes the memory efficiency. 

TABLE. I. RESULTS FOR IMPLEMENTING CRO-MAXFLOW AND FF 

MAXFLOW, WITH NUMBER OF NODES= 50 TO 6030 

Size CRO Time FF  Time FF  result CRO result Quality 

3550 8.3 14.3 14.2 9.7 0.683099 

3602 14.3 15.1 13.4 13.4 1 

3654 9.2 15.2 14.7 13.2 0.897959 

3706 6.3 15.7 37.2 33.2 0.892473 

3758 13.9 16.3 22.5 22.3 0.991111 

3810 16.5 16.5 24.3 19.7 0.8107 

3862 11.5 17 22.8 21.8 0.95614 

3914 17.1 17.5 17.1 14.7 0.859649 

3966 15.4 18.1 22.8 16 0.701754 

4018 10.7 18.3 17.4 16.7 0.95977 

4070 8.2 19 19.1 15.4 0.806283 

4122 19 20.1 30.6 27.5 0.898693 

4226 22.6 20.1 22.9 22.5 0.982533 

4278 15.1 20.8 22.2 19.4 0.873874 

4330 20.3 21.3 16.5 15.3 0.927273 

4486 13.5 22.9 23.2 14.4 0.62069 

4590 20.6 24.1 13.6 12.6 0.926471 

4746 25.5 25.6 20.9 14.3 0.684211 

5162 11.7 29.9 16.4 12.4 0.756098 

5214 26.4 30.6 11.6 6.7 0.577586 

5422 20.2 33.4 22.2 18.8 0.846847 

5474 13 34.3 20.3 20.3 1 

5942 31.2 39.8 19.6 18.6 0.94898 

5990 18.8 40.6 18.8 18.4 0.978723 

6098 25.5 41.7 21.3 19 0.892019 

6306 46 49 29 28.5 0.982759 

From the result of 1000 nodes and 10 iterations, we can 
say that the CRO-Maxflow gives less time for execution than 
Optimal of Ford-Fulkerson Maxflow with accuracy rate near 
to 90% to Ford-Fulkerson results. This gives a good 
enhancement when use a heuristic algorithm to solve Maxflow 
problem with less time and same level of accuracy, which we 
implemented through the proposed solution. To compare 
results for Maxflow problem using CRO and Ford-Fulkerson 
solution, Fig. 5 presents the relation between time needed for 
CRO and Ford-Fulkerson Solution at same data sets. 

Fig. 5 shows that run time needed to solve Maxflow using 
CRO is less than that needed to solve the same problem on the 
same dataset and using same machine and environment for 
optimal Ford Fulkerson algorithm. 

 
Fig. 5. Execution time of CRO and FF algorithm to solve max flow 

problem. 

Fig. 6 shows the accuracy of CRO-Maxflow problem and 
Ford-Fulkerson Maxflow. This results for different number of 
nodes, started from 50 nodes to 1000 nodes. The proposed 
solution to solve Maxflow has accuracy near to Ford-
Fulkerson accuracy, which is a good achievement. 

 
Fig. 6. Accuracy results for calculating Maxflow using CRO and FF. 

The second comparison was between Genetic-Maxflow 
and FF Maxflow. 

In [14], the authors applied GA to find the maximum flow 
from the source to sink in a weighted directed graph. The 
experiment was run for various graphs with different number 
of vertices. The results showed that Genetic algorithm found 
an optimal or near optimal solution for the maximum flow 
problem, with a reasonable number of iterations compared to 
other previous GA applications [14]. 
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TABLE. II. RESULTS FOR IMPLEMENTING GENETIC-MAXFLOW AND FF 

MAXFLOW, FOR DIFFERENT NUMBER OF NODES STARTED FROM 50 NOD 

UNTIL 1986 

Size GA Time FF Time FF result GA result 

4590 12.9 23.5 13.6 12.6 

4642 12.8 23.8 20.2 18.7 

4694 13.5 24.4 15.7 15.6 

4746 12.9 24.7 20.9 20.7 

4798 13.8 25.4 19.3 17.5 

4850 14.8 26.9 24.6 20.6 

4902 15.3 26.8 17.1 14 

4954 14.7 27.2 14.4 13.1 

5006 14.3 27.7 27.4 27.4 

5058 14.7 28.2 17.9 16.8 

5110 14.6 28.4 17.1 16.3 

5162 14.5 29.4 16.4 15.1 

5214 14.8 29.9 11.6 8.1 

5266 14.7 30.3 19.1 18.9 

5318 14.1 30.8 26.1 25.5 

5370 16.1 31.7 19.3 14.8 

5422 16.9 32.6 22.2 20.5 

5474 17.2 33.1 20.3 19.9 

5526 17.9 33.8 20.9 17.8 

5578 17.2 34.2 28.1 26 

5630 17.6 34.7 22 22 

5682 17.5 35.3 15.7 15.3 

5734 17.7 36.2 16.6 14 

5786 18.3 37.9 12.7 11.7 

5838 18.1 37.7 14.6 13.3 

5890 19.7 38 12.7 10.7 

5942 18.3 38.9 19.6 19.6 

5994 18.9 39.4 22 12.4 

6046 20.5 39.8 21 20 

6098 19.5 40.7 21.3 19.7 

6150 21.7 41.6 20.3 18.2 

6202 20.2 41.7 25.1 20.9 

6254 21 42.6 19.9 18.4 

6306 21.4 43.5 29 26.9 

6358 20.9 44 19.7 19.3 

We implemented the GA to solve Maxflow problem and 
compare results. The implementation of the three algorithms 
FF, CRO and GA were tested on the same data and the same 
environment. Both objective functions which we used to 
calculate Maxflow in CRO, are the same as Fitness functions 
which we used in GA. 

When implementing GA on Maxflow problem, the 
population is selected first then we start with genetic steps 
from selection of best population of all populations to cross 
over process. Through this process, we did cross over for two 
selected solutions from selection process then we 
implemented the mutation step in order to make changes for 
the generated population. After the cross over step, the 
mutation step was checked to make sure it does not exceed the 
range from 0.01- 0.025 for all populations. The process was 
done randomly. 

These steps of GA were repeated based on the number of 
iterations, which specified to reach solutions near to FF one in 
accuracy level to find Maxflow. But generating number has 
some limitation. If you increase this number more than 
specific value, it will affect the memory space. 

The GA was implemented at the same environment that 
used to implement CRO-Maxflow. We compared results of 
GA with results of optimal FF for the same experiment. Each 
experiment with specific size of network was repeated 10 
times and average result for this repeated time was calculated 
with specific number of iterations similar to process which is 
done in CRO-Maxflow experiment. Table 2 shows part of the 
results for the time needed for Genetic-Maxflow less than time 
which needs to solve Maxflow problem using FF solution, at 
level of accuracy near to FF level. 

The results show that GA reach to accuracy near to FF 
with time less than time needs to solve maxflow by FF 
algorithm as shown in Fig. 7 and 8, respectively. 

 
Fig. 7. Relation between time needs for Maxflow Problem using GA and FF, 

at same node. 
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Fig. 8. Accuracy results for calculate Maxflow using GA and FF. 

The results from using CRO-Maxflow were compared 
with the Genetic-Maxflow as shown in Table 3 and Fig. 9. 

TABLE. III. CRO-MAXFLOW VS GENETIC-MAXFLOW 

Size CRO Time FF Time GA Time CRO Result GA Result 

3550 8.3 14.3 14.7 9.7 16.8 

3602 14.3 15.1 14.6 13.4 16.3 

3654 9.2 15.2 14.5 13.2 15.1 

3706 6.3 15.7 14.8 33.2 8.1 

3758 13.9 16.3 14.7 22.3 18.9 

3810 16.5 16.5 14.1 19.7 25.5 

3862 11.5 17 16.1 21.8 14.8 

3914 17.1 17.5 16.9 14.7 20.5 

3966 15.4 18.1 17.2 16 19.9 

4018 10.7 18.3 17.9 16.7 17.8 

4070 8.2 19 17.2 15.4 26 

4122 19 20.1 17.6 27.5 22 

4226 22.6 20.1 17.5 22.5 15.3 

4278 15.1 20.8 17.7 19.4 14 

4330 20.3 21.3 18.3 15.3 11.7 

4486 13.5 22.9 18.1 14.4 13.3 

4590 20.6 24.1 19.7 12.6 10.7 

4746 25.5 25.6 18.3 14.3 19.6 

5162 11.7 29.9 18.9 12.4 12.4 

5214 26.4 30.6 20.5 6.7 20 

5422 20.2 33.4 19.5 18.8 19.7 

5474 13 34.3 21.7 20.3 18.2 

5942 31.2 39.8 20.2 18.6 20.9 

5990 18.8 40.6 21 18.4 18.4 

6098 25.5 41.7 21.4 19 26.9 

6306 46 49 20.9 28.5 19.3 

The results show that GA took less time with same level of 
accuracy as CRO algorithm for the same network size and 
same number of iterations. As the performance of the GA 
depends on doing the cross over and mutation steps by each 
iteration. While CRO algorithm depends on different number 
of collisions that can be happened between different molecules 
which compared with molecule value to determine number of 
molecules that will be selected on interaction or collision 
process. This will need more time to achieve it. Through the 
experiment of implementation, both algorithms were 
implemented using java programming language. Based on the 
results for each step, calculate the time needs for each step for 
both experiments GA and CRO to decide which step consume 
most of the time. According to that optimize that step which 
spent most of execution time in CRO and GA to achieve same 
level of enhancement on both algorithms. 

The copy matrix step consumes most of the time, some 
optimization steps was done to enhance time results like 
allocation and de allocation for matrix when one matrix for a 
graph was deleted, new matrix for a new graph was build and 
this consumes time and memory through the implementation, 
because of that we reuse the matrix by using a java object pool 
feature that allow to use the same matrix with replacing the 
nodes for the old matrix with a new matrix results. 

Other technical enhancement which has been done for both 
the CRO and GA deals with the connected edges. As the 
matrix presents a graph with nodes and edges, we worked with 
the submatrix that contains ones instead of dealing with the 
whole matrix with its connected and disconnected edges. 

Both algorithms, CRO and GA gave better execution time 
than FF algorithm for large network size. When this number 
becomes very large, the CRO and GA keep on the same level 
of efficiency in terms of accuracy and velocity. 

 
Fig. 9. Relation between time needs for Maxflow problem using CRO, GA 

and FF, at same node. 

VI. CONCLUSIONS AND FUTURE WORKS 

In this paper, CRO and Genetic algorithms were 
implemented sequentially on Intel core I7-3632QM 
CPU2.20GHz, 8GB of RAM and windows 7 64 bits to solve 
the Maxflow problem. The application programs were written 
using java and executed on Net-Beans IDE 8.1. The 
implementations were done over different network size started 
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from 50 nodes until 6030 nodes, with different number of 
parents and different number of iterations, in order to achieve 
the best solution which is near to Ford-Fulkerson one. 

The results show that GA and CRO both can solve Max 
Flow problem with accuracy result near to FF results, with 
better performance achieved when using the genetic algorithm 
in term of time and accuracy. 

For future work, we need to implement both Genetic and 
CRO on parallel to solve max flow problem by using a super 
computer to test the amount of enhancement on time with 
large number of network size. 
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