
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

209 | P a g e

www.ijacsa.thesai.org

Detection and Prevention of SQL Injection Attack by

Dynamic Analyzer and Testing Model

Rana Muhammad Nadeem1

Computer Science Department

Govt. Post Graduate College

Burewala, Pakistan

Rana Muhammad Saleem2

Computer Science Department

UAF Sub Campus Burewala

Burewala, Pakistan

Rabnawaz Bashir
3

Computer Science Department

Comsats Institute of Information Technology

Vehari, Pakistan

Sidra Habib4

Computer Science Department

UAF Sub Campus Burewala

Burewala, Pakistan

Abstract—With the emergence and popularity of web

application, threats related to web applications has increased to

large extent. Among many other web applications threats

Structured Query Language Injection Attack (SQLIA) is the

dominant in its use due to its ability to access the data. Many

solutions are proposed in this regard that has success in specific

conditions. The proposed model is based on the dynamic analyzer

model. The proposed model also has certain advantages like wide

applicability, fast response time, coverage to large number of

techniques of SQL Injections (SQLI) and efficient in term of

resource usage.

Keywords—Structured Query Language (SQL); injection

attack; request receiver; analyzer and tester

I. INTRODUTION

It is the information age and information is critical for
business process. Web applications are major source of
information for business process critical for the survival for
any organizations [1]. With the popularity of web applications
there is also increase in web application vulnerabilities. Across
many types of web vulnerabilities SQL Injection (SQLI) has
become the predominant method due to its rewarding nature to
have access to the data and due to advances in its techniques. It
is observed that SQLI is the most widely used techniques for
the web applications [2]. According to Open Web Application
Security Project (OWASP) (Organization that ranked the web
Applications risks) in SQLIA is the dominant web application
security risk as shown in Fig. 1.

Fig. 1. OWSAP SQLIA ranking over the years [3].

Due to huge rewarding of having access to the database the
SQLIA has become the predominant web application security
risks and their technique has become more sophisticated over
time [4].

Due to emergence of different sophisticated techniques
SQLIA has shown a tremendous increase in its spread to web
applications of finance banks, educational institutes, global
market and many more [5]. The following Fig. 2 shows the
relative spread of SQLIA as compared to other types of Web
Vulnerabilities. SQLIA is also among the top when compare
the spread or choice of web vulnerability among the intruders.

Fig. 2. Volume percentage of web application security risks [6].

For smooth operations of the organization that utilize web
applications it is necessary that web applications operate at
reasonable level of security. Due to complexities of web
technologies and varieties of risks it is not an easy task to save
the web applications from intruders and threats [7]. Even
sometimes it is very difficult to detect that some serious threat
has been occurred [8]. In Fig. 3 to 5 statistics shows the relative
difficulty in detection of web application threats.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

210 | P a g e

www.ijacsa.thesai.org

Fig. 3. Percentage of web security risks in web applications [6].

Fig. 4. Probability to detect Vulnerabilities in web application [6].

According to the Web Application Security Consortium
(WASC) 78% of web applications are susceptible of security
risks and 49% of web applications are susceptible to risks of
high level [6].

Fig. 5. Growth of web Application vulnerabilities from 2001 to 2010 [9].

SQL Injection Attacks (SQLIA) are among the top of the
Input validation attacks and in top five among all the web
application security risks [10].

It is important to observe that SQLIA injection Attacks are
30% of total web application security risks due to potential

advantage associated with the SQLIA for the intruders to gain
access to the data and much useful information [11]. Due to
emergence of needs of more secure web applications it is
strongly required that research should focus on the SQLIA and
come with a solution that can overcome the problems
associated with previous proposed solutions like performance
issues, code change and inefficient use of the resources [9].

A. SQL Inj]ection Attack (SQLIA) Process

Data driven web sites are vulnerable to SQL Injection
attack where database is a black box in three tier architectures.
In this architecture SQL statements are generated in response
to HTTP requests [12]. These HTTP request may contain
parameters that are used by attackers to produce a query of
their interest to have illegal access to the database as shown in
Fig. 6.

Fig. 6. SQL Injection attack process.

Log In page as shown in Fig. 7 is the most vulnerable for
the SQLIA attack and following is the PHP code snippet that
produce dynamic query in response to user input [9] as shown
in Fig. 8 and 9.

Fig. 7. Log In form.

Fig. 8. PHP Code snippet to generate dynamic query in response to user

input.

Fig. 9. SQL query as a result of code.

In next Fig. 10 at the same form user try to attempt a simple
SQLIA to bypass the authentication.

0

5

10

15

20

25

XSS

Dir Traverse

SQL Intection

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

211 | P a g e

www.ijacsa.thesai.org

Fig. 10. Simple attempt for SQLIA.

Fig. 11. Dynamic generated query in response to above input.

In Fig. 11 attacker try to ignore the password by using the –
comment operator as everything would be ignored after the
comments operator even the password. In this scenario user
name is tried to be true using the OR operator. This, the simple
scenario and with different techniques intruders want to add
query of their interest to have access to the information of their
interest.

B. Techniques of SQL Injection Attack (SQLIA)

1) Tautology Based Attacks
In tautology attack, malicious contents are added using the

conditional statement that always evaluate to true. Previous
scenario is the perfect example of this attack [13].

Select * from tbl users Where username=‟rabnawaz‟ or
„1‟=‟1‟ and password =‟whatever‟

2) Union Attack
In this technique, malicious query is added with the safe

query using the UNION keyword [14].

[„UNION SELECT pwd FROM user-info WHERE
id=‟abc‟ and pwd=‟‟]

3) Logically Incorrect query Attack
In this type of technique logically incorrect type of query is

performed to have information about some structures of the
data base to proceeds further [15].

4) Piggybacked Query
Certain delimiters like “; “, “,” used to join the legitimate

query with the illegitimate one [6].

Select * from users where id=‟rabnawaz‟ and pwd=‟‟; Drop
table users…‟

5) Alternate Encoding
By changing the coding schema, the illegal query can be

bypassed through the filter that tests the legitimacy of the query
[16].

6) Inference Attack
Blind and timing techniques are used in inference attacks.

In blind attack, a series of the simple queries are performed to
have guess about the structure of the data base. In timing attack
the query processing time is observed to infer some
information presence in the data base.

C. Consequences of SQL Injection Attacks

It has been observed that due to access to the data base
SQLIA has become the dominant web application security
risks over the last ten years. Database is the very critical for
successful operations of any organization. Sensitive
information in the database can be used in many ways to serve
the attacker purpose [17]. Followings could be the intentions of
the attackers to use SQLIA.

To gain information about data base finger prints like type
of data base, SQL language used, etc. This information helps
the attacker to proceeds or use more sophisticated attacks [18].

1) To gain information about user credentials [19].

2) To get the database schema [20].

3) To extract and modify the data base [1].

4) To perform Denial of Services like shutting down the

data base, dropping tables, etc. [21].

5) Replacements of files with false or tempered

information [19].

6) Execution of remote commands.

7) Shop lifting, account balance change.

8) Interacting with underlying operating system.

II. INTRODUCTION TO EXISTING TOOLS

Fallowing‟s are the major tools available for detection and
prevention of SQLIA vulnerabilities:

A. Acunetix

Acunetix web application vulnerability detection scanners
that use the XSS black box and Advance SQL injection
techniques. It crawls and scans sites and with help of black box
and grey box hacking techniques for identification of serious
vulnerabilities. Acute nix claimed to detect more than three
thousand web application vulnerability including SQL
injection Attacks, XXS and host header injections [22].

B. SQLmap

SQLmap is open source analysis tool that automatically
detect SQL injection vulnerabilities. It is a powerful tool that
has powerful detection engine many niche database penetration
features [23].

C. SQLiX

SQLiX is a scanner that crawls and detects SQL Injections.
This tool can detect normal and blind SQL injections and there
is no need to change the original SQL request [24].

D. Wapiti

Wapiti is web vulnerability scanner for the web application
that helps to audit or assess the security of a web application. It
uses black box scan that do not scans the code instead use the
script and forms where actually injection took place. Wapiti
can detect the various techniques of SQLIA [25].

E. Paros

Paros is also a scanner for detection of web vulnerabilities
that is java based HTTP/HTTPS proxy. It allows to analysis of
the HTTP request with support of spiders, proxy-chaining,
XSS, SQL Injection Client certification, etc. [26].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

212 | P a g e

www.ijacsa.thesai.org

F. Pixy

Pixy is open source tool to detect web application security
risks [27].

III. PROPOSED SOLUTION

In this article, a solution is proposed that is based on
dynamic analyzer.

A. Proposed Solution Architecture

Proposed model based on the dynamic analyzer that work
as user would request the page and that request is received and
analyzed to check that request is for pages without
vulnerabilities (P‟) and with vulnerabilities (P), with help of
knowledge base. If the user request is for P pages then request
is served and if the request is for the P‟ pages then tester would
handle the situation by testing the user request. Tester would
generate the possible expected response from the user and user
request would be served. On response from the user the
response is compared with the expected result and any
discrepancy is observed. If the user response is normal then the
request is served otherwise user request is rejected and
knowledge base is updated for page vulnerabilities and
possible rule addition. The complete flow of proposed solution
is shown in Fig. 12.

 ∑

Equation 1: Set of Pages without possible vulnerabilities
and P‟ is the pages where no serve side scripting or not
vulnerable.

 ∑

Equation 2: Pages with possible vulnerabilities

 ∑

Equation 3: Set of knowledge base rule

B. Algorithm of Proposed Solution

Function Analyzer (Requested_Page)

{

Mark_Page=Mark(Requested_Page)

If (Mark_Page is Vulnerable)

 {

 Tester(Requested_Page);

 }

else

 {

Serve_Request(Requested_Page)

 }

}

Tester(Requested_Page)

{

Generate_Expected_Response(Page_Request);

Serve_Request(Requested_Page);

Response= Test_Reponse();

If (Response is Expected)

 {

 }

 else

 {

Block_Request ();

Update_Knowledge_Base ();

}

}

C. Flow Chart of Proposed Solution

Fig. 12. Flow chart of the proposed solution.

D. Implementation and Evaluation of the Proposed Solution

To evaluate the proposed solution its performance is
compared with existing tools described in previous sections.
These tools and proposed solutions are applied to detect the
SQLIA and block the SQLIA in different types of web
application specified in Table 1. These tools are evaluated
against different criteria mentioned below.

1) Implementation
Using ASP.Net different classes of web Application are

used to evaluate the different tools against the different SQL
Injection Attack.

2) Test Scenarios
Following criteria are used to judge the performance of

different tools.

a) No of SQLIA attacks detected

b) No of SQLIA attacks blocked

c) Time taken to prevent SQL Injection Attack

d) Time taken to block SQL Injection Attack

e) No of types of SQLIA detected

f) No of types of SQLIA blocked

g) No of Database supported.

Following dataset is used to evaluate the above-mentioned
conditions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

213 | P a g e

www.ijacsa.thesai.org

TABLE. I. DATA SET FOR EVALUATION OF DIFFERENT TOOLS AND

TECHNIQUES

Applications No. of Inputs

Portals 100

Classifieds 100

Online Shopping 100

University Database 100

Financial Database 100

E. Evaluation Results

The different evaluation results have been achieved by
using above mentioned test scenario as shown in Fig. 13 to 19.

Fig. 13. Number of SQL injection attacks detected.

Fig. 14. Number of SQL injection attacks blocked.

Fig. 15. Average time taken to detect SQLIA.

Fig. 16. Average time taken to block SQLIA.

Fig. 17. Number of types of SQL injections techniques detected.

Fig. 18. Number of types of SQL injection techniques blocked.

Fig. 19. Number of database supported.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

214 | P a g e

www.ijacsa.thesai.org

IV. CONCLUSION

SQL Injection Attack has emerged as major threats to web
applications. Many solutions were proposed to detect the
SQLIA vulnerabilities in web application. Proposed solution
based on dynamic Analyzer and tester performed well to detect
and block the SQLIA and response time is also excellent as
compared to another tool. The proposed solution also needs not
to change the source code of the web application and use
minimum resources of the system. One major advantage of the
proposed solution is that it can handle the advanced SQLIA
techniques as knowledge base is updated to handle modern
types of threats.

V. FUTURE WORK

The proposed solution use MS SQL analyzer for possible
vulnerabilities detections and page marking. The tools need to
improve in such a way that any sort of analyzer can be
configured for analysis. Knowledge base maintains the
techniques and knowledge about different attacks. Knowledge
base should be updated using different machine learning
approaches.

REFERENCES

[1] A. Anchlia and S. Jain, “A novel injection aware approach for the
testing of database applications,” in Proceedings of the 2010
International Conference on recent trends in information,
telecommunication and computing ITC, Wasington DC, 2010.

[2] A. Ciampa, C. A. Visaggio and M. D. Penta, “A heuristic-based
approach for detecting sql-injection vulnerabilities in web applications,”
in In Proceedings of the 2010 ICSE Workshop on Software Engineering
for Secure Systems, SESS ‟10, New York, NY, USA, 2010.

[3] “https://www.owasp.org,” 01 June 2017. [Online]. Available:
https://www.owasp.org/index.php/Top_10_2013-Main. [Accessed 12
June 2017].

[4] A. Kieyzun, P. J. Guo and K. Jayaraman, “Ernst. Automatic creation of
sql injection and cross-site scripting attacks,” in 31st International
Conference on Software Engineering, ICSE ‟09,, Washington, 2009.

[5] A. Liu, Y. Yuan, D. Wijesekera and A. Stavrou, “Sqlprob: a proxy-
based architecture towards preventing sql injection attacks,” in 2009
ACM symposium on Applied Computing, SAC ‟09, New York, 2009.

[6] S. Gordeychik, 15 December 2013. [Online]. [Accessed December
2013].

[7] A. Razzaq, A. Hur, N. Haider and F. Ahmad, “Multi-layered defense
against web application attacks,” in Sixth International Conference on
Information Technology: New Generations, Washington, DC, 2009.

[8] A. Tajpour, M. Massrum and M. Heydari, “Comparison of sql injection
detection and prevention techniques,” in Education Technology and
Computer (ICETC), 2010 2nd International Conference, 2010.

[9] D. A. Anup Shakya, “A Taxonomy of SQL Injection Defense
Techniques,” Karlskrona Sweden, 2011.

[10] A. Tajpour and .. Shooshtari, “Evaluation of sql injection detection and
prevention techniques,” in Computational Intelligence, Communication
Systems and Networks (CICSyN), 2010 Second International
Conference, 2010.

[11] A. Ciampa, C. A. Visaggio and M. D. Penta, “A heuristic-based
approach for detecting SQL-injection vulnerabilities in web
applications,” in Proceeding SESS '10 Proceedings of the 2010 ICSE
Workshop on Software Engineering for Secure Systems, New York,
2010.

[12] A. Tajpour, S. Ibrahim and M. Masrom, “SQL injection Prevnetion and
detection Techniques,” International Journal of Advancements in
Computing Technology, vol. 3, no. 7, pp. 85-91, August 2011.

[13] B. Indrani and E. Ramaraj., “X–log authentication technique to prevent
sql injection attacks,” International Journal of Information Technology
and Knowledge Management ., vol. 4, pp. 4:323–328,, 2011.

[14] C. T. M and B. J., “Design considerations for a honeypot for sql
injection attacks,” in LCN‟09, 2009.

[15] D. Das, U. Sharma and D. Bhattacharyya, “An approach to detection of
sql injection attack based on dynamic query matching,” International
Journal of Computer Applications, vol. 1, no. 25, p. 28–34, February
2010.

[16] K. Amirathimasebi, S. Jalalinia and S. Khadem, “A Survey of sql
injection defence mechanisms,” in International Conference Internet
Technology and Secured Transactions ICITST 2009, 2009.

[17] A. Moosa, “Artificial Neural Network based Web Application Firewall
for SQL Injection,” World Academy of Science, Engineering and
Technology, vol. 40, pp. 42-51, April 2010.

[18] Z. Lijiu, Q. Gu, S. Peng and X. Chen, “D-WAV A Web Application
Vulnerabilities Detection Tool Using Characteristics of Web Forms,” in
Fifth International Conference on Software Engineering Advances
(ICSEA), 2010, Nice, 2010.

[19] Z. Jan, M. Shah, A. Rauf, M. Khan and S. Mahfooz, “Access control
mechanism for web databases by using parameterized cursor,” in Future
Information Technology (FutureTech), 2010 5th International
Conference, 2010.

[20] Xiang Fu and K. Qian, “SAFELI – SQL Injection Scanner Using
Symbolic Execution,” in Workshop on Testing, Analysis and
Verification of Web Software, July 21, 2008.

[21] M. Cova, D. Balzarotti, V. Felmetsger and G. Vigna, “Swaddler: An
Approach for the Anomaly-based Detection of State Violations in Web
Applications,” 12 December 2013. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.6909.

[22] I. Musacat, “https://www.acunetix.com/blog/docs/blind-sql-injector/,” 1
Feburary 2017. [Online]. Available:
https://www.acunetix.com/blog/docs/blind-sql-injector/. [Accessed 15
June 2017].

[23] B. Damele A. G. and . S. Miroslav, “http://sqlmap.org/,” 12 June 2016.
[Online]. Available: http://sqlmap.org/. [Accessed 13 June 2017].

[24] AnirudhAnand,
“https://www.owasp.org/index.php/Category:OWASP_SQLiX_Project,”
16 March 2014. [Online]. Available:
https://www.owasp.org/index.php/Category:OWASP_SQLiX_Project.
[Accessed 10 June 2017].

[25] “http://wapiti.sourceforge.net/,” 20 October 2014. [Online]. Available:
http://wapiti.sourceforge.net/. [Accessed 10 June 2017].

[26] “http://sectools.org/,” 15 December 2015. [Online]. Available:
http://sectools.org/tool/paros/. [Accessed 05 june 2017].

[27] J. N., C. Kruegel and E. K. , “Pixy: a static analysis tool for detecting
Web application vulnerabilities,” Security and Privacy, 2006 IEEE
Symposium on, pp. 41-46, 2006.

