
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 8, 2017

Solving the Free Clustered TSP Using a Memetic
Algorithm

Abdullah Alsheddy
College of Computer and Information Sciences

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)
Riyadh, Saudi Arabia

Abstract—The free clustered travelling salesman problem
(FCTSP) is an extension of the classical travelling salesman
problem where the set of vertices is partitioned into clusters, and
the task is to find a minimum cost Hamiltonian tour such that
the vertices in any cluster are visited contiguously. This paper
proposes the use of a memetic algorithm (MA) that combines the
global search ability of Genetic Algorithm with local search to
refine solutions to the FCTSP. The effectiveness of the proposed
algorithm is examined on a set of TSPLIB instances with up
to 318 vertices and clusters varying between 2 and 50 clusters.
Moreover, the performance of the MA is compared with a Genetic
Algorithm and a GRASP with path relinking. The computational
results confirm the effectiveness of the MA in terms of both
solution quality and computational time.

Keywords—Combinatorial optimization; clustered travelling
salesman problem; memetic algorithm; guided local search; genetic
algorithm

I. INTRODUCTION

The travelling salesman problem (TSP) is one of the best
known and most widely studied combinatorial optimization
problems. Many variants of the TSP have been proposed and
solved during the last decades. This paper focuses on the
clustered travelling salesman problem (CTSP), a variant of the
TSP that was introduced by Chisman [1]. Similar to the TSP,
the objective of the CTSP is to construct a Hamiltonian path
with minimum distance, visiting all cities exactly once. Cities
in the CTSP, however, are partitioned into predefined clusters
and all cities belonging to the same cluster should be visited
consecutively.

The CTSP has several applications in various fields. Ex-
amples of CTSP applications include automated warehouse
routing [1], shops and grocery suppliers [2] and emergency
vehicle dispatching [3] in the vehicle routing domain; disk
fragmentation and computer operations in the IT domain
[4]; machine scheduling and production planning [5] in the
manufacturing domain; and microscopy (cytology) [4].

Most of the related research addressed the so-called or-
dered CTSP (OCTSP) in which the clusters has to be visited
in a prespecified order. Although such a prespecified order
is not necessarily defined in real-life applications, there are
few algorithms developed for the CTSP without a pre-order
[6]. This variant of the CTSP is referred to as the free CTSP
(FCTSP).

This paper considers the FCTSP which can be formally
defined as follows. Given a complete undirected graph G =
(V,E) with vertex set V = {v1, v2, ..., vn}, and edge set

E = {(vi, vj) : vi, vj ∈ V, i 6= j}. The vertex set V is par-
titioned into m predefined clusters: V1, V2, ..., Vm. Assuming
that a non-negative cost or distance cij is associated with each
edge (vi, vj) ∈ E, the FCTSP consists of determining a least
cost Hamiltonian cycle on G such that the vertices of each
cluster are visited contiguously and the clusters can be visited
in any order. For illustration, Fig. 1 shows examples of several
solutions to a FCTSP.

There have been several exact and metaheuristics algo-
rithms developed for the OCTSP. An approximation algorithm
and some other heurisics were proposed in [7]. The LBD-
COMP is an exact partitioning algorithm proposed in [8]. Other
approximation algorithms were developed in [9] and [10]. A
hybrid of Tabu Search (TS) and Genetic Algorithm (GA) was
developed for solving the OCTSP in [11]. This hybrid algo-
rithm runs multiple TS search threads while periodically ap-
plying a phase of diversification using the Edge Recombination
crossover operator to generate offspring solutions that will seed
the TS search threads again. Ahmed [12] developed a hybrid
genetic algorithm using sequential constructive crossover, the
2-opt algorithm and local search for the OCTSP.

For the FCTSP, a genetic algorithm was proposed in [13],
which first searches for an optimal inter-cluster edges and
then the intra-cluster edges. The two-level Genetic Algorithm
(TLGA) is another algorithm developed for the FCTSP in
[14]. The TLGA consists of two interrelated levels; the lower
level focuses on finding the shortest Hamiltonian cycle for
each cluster, whereas the higher level constructs the complete
tour by randomly deleting an edge from each cycle and then
heuristically connecting the clusters through the intra-cluster
edges. As reported in [14], the TLGA performed well in
comparison to other GA variants. Later, Mestria et al. [6]
developed several path-relinking strategies incorporated to a
Greedy Randomized Adaptive Search Procedure (GRASP) for
solving the FCTSP. The best performing heuristic was the
GRASP that uses path-relinking in each iteration and as a post-
optimization strategy, outperforming other GRASP variants
and the TLGA [14].

The GRASP algorithm proposed in [6] has two important
characteristics: 1) it deals with the whole FCTSP in a single
phase without differentiation between the search for the inter-
cluster and for the intra-cluster edges, unlike the two phases
approach of the TLGA; and 2) the underlying local search
procedure implements the well-known 2-Opt heuristic as one
of the most effective local search heuristic for the classical
TSP. These characteristics suggest the potential of adapting
and then applying successful TSP heuristics to the FCTSP.

www.ijacsa.thesai.org 404 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 8, 2017

Fig. 1. Examples of two possible solutions to a FCTSP with 4 clusters and
12 vertices.

Thus, we propose in this paper a memetic algorithm that
combines the global search ability of Genetic Algorithm with a
local-search-based metaheuristic, namely Guided Local Search
(GLS) [15], to refine solutions to the FCTSP. GLS, which is a
successful algorithm for the TSP [16], incorporates a straight
forward extension of the 2-Opt heuristic to handle the clus-
tering constraint of FCTSP. The performance of the proposed
memetic algorithm is evaluated through several experiments
that include comparisons with the TLGA [14] and the GRASP
algorithm [6].

This paper is organized as follows. The proposed approach
and its application to the FCTSP is described in section II.
Then, the experimental results in comparison with state-of-the-
art algorithms are presented in Section III. Finally, concluded
remarks and further research are given in Section IV.

II. PROPOSED APPROACH

A. Memetic Algorithms

Local search is the basis of many heuristic methods for
combinatorial optimization problems. Starting from an initial
solution, local search algorithms iteratively improve the current
solution by exploring its neighbourhood for better movements.
Although local search algorithms usually return good solutions,
these would easily get stuck in local optima, which are
typically overcome by an escape mechanism as in Tabu Search,
Simulated Annealing and Guided Local Search (GLS) [17].
In GLS, the escaping mechanism is based on augmenting the
objective function with penalties. Every time the underlying
local search algorithm reaches a local optimal, GLS augments
the cost function by adding penalties to selected bad features,
and then restarts the local search algorithm while using the
augmented function h(s) in the search process instead of the
main objective function, g(s):

h(s) = g(s) + λ
∑
i∈F

pi ∗ Ii(s) (1)

where, s is a candidate solution and λ is a parameter of the
GLS algorithm. F refers to the set of all features that were used
to distinguish between solutions with different characteristics.
pi is the penalty of feature i (each pi is initialized to 0, and
incremented by 1 whenever it is selected for penalization), and
Ii(s) is an indicator which is equal to 1 only if s exhibits the
feature i; 0 otherwise. GLS penalizes the most costly features
in the current solution, weighted by the number of times the
feature has been penalized so far.

In contrast to local search algorithms, global search algo-
rithms try to overcome local optima in order to find more glob-
ally optimal solutions. Genetic Algorithms are very popular
global search algorithms which have been successfully applied
to many combinatorial optimisation problems. A GA is a
population-based search technique inspired from the biological
principals of natural selection and genetic recombination. At
every generation, a GA maintains a population of individuals
that represent candidate solutions to the problem. This popula-
tion evolves throughout the optimization process to find global
solutions by applying reproduction operators. Each individual
is evaluated to give some measure of its “fitness”. Selection
of parents for reproduction is based on their fitness. The
reproduction operators include crossover and mutation which
are both applied with certain probabilities. The evolution of
the GA continues until either an optimal solution is found, or
some other stopping criteria have been met.

Memetic algorithms [18] denote a broad class of meta-
heuristics that extend global search methods, such as GA, by
incorporating problem-specific knowledge, usually in the form
of a local search strategy or through the use of specialised
search operators. Thus, a memetic algorithm hybridizes global
and local search, such that the individuals of a population
in a global search algorithm have the opportunity for local
improvement in terms of local search. The applications of MAs
are enormous, including areas such as routing, assignment and
planning problems [18].

B. Memetic Algorithm for the FCTSP

Our memetic algorithm (MA) is a hybrid of GA for global
search and GLS for local search. In GLS, the underlying local
search is the 2-Opt heuristic which is a well-known TSP
heuristic. GLS is a simple local-search-based metaheuristic
with only one parameter to tune. Nevertheless, GLS was shown
to be a very effective method for the TSP [16] and other
routing and planning problems [15]. In the proposed MA,
GLS is complemented by the genetic operators to enhance the
exploration of the space of FCTSP solutions.

The proposed MA is outlined in Algorithm 1. It starts by
randomly generating an initial population of N solutions. Each
individual in this population undergoes local improvement
by applying GLS. Then, the algorithm iteratively evolves the
population by applying genetic operators and GLS. Since GLS
is more computationally expensive than the genetic operators,
it is performed in the proposed MA periodically, every 10
generations. A description of the algorithm design for the
FCTSP is given below:

C. Guided Local Search (GLS)

In the proposed method, a solution of the FCTSP is a tour
that is represented by a permutation (i.e. vector) of cities.

www.ijacsa.thesai.org 405 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 8, 2017

MA(Problem instance (problem), population size
(N), stopping criterion (maxGene))
P ← RandomPopoulation(problem,N);
P ∗ ← GuidedLocalSearch(P);
for generation← 1 until maxGene do
P ‘ ←MatingSelection(P ∗);
P ‘ ← GeneticOperators(P ‘);
if generation mod 10 = 0 then
P ‘ ← GuidedLocalSearch(P ‘);

end if
P ∗ ← SurvivorSelection(P ∪ P ‘);

end for
return P ∗;

Algorithm 1: Memetic Algorithm

The permutation determines the order of the cities in the
tour. The 2-Opt heuristic is a well-known and very simple,
yet effective local search algorithm for the classical TSP. The
2-Opt heuristic iteratively improves an initial tour by testing
all neighbour solutions obtained by applying the 2-exchange
neighbourhood operator (i.e. a neighbour is obtained from the
current tour by deleting two edges and reconnecting the two
resulting paths with the only possible way that yields a new
tour). To implement the 2-Opt heuristic for the FCTSP, the
feasibility of the newly generated solutions with respect to the
clustering constraint is maintained by applying the 2-exchange
operator to any two non-adjacent edges if and only if both
edges are in the same cluster or are inter-cluster edges.

As reported in [16], GLS can sit on top of the 2-Opt
heuristic and guide it to escape local minima in an efficient
and effective manner. GLS converges quickly to a close to
optimal solution, particularly when it is coupled with Fast
Local Search [15]. The latter is a general method that divides
a neighbourhood set into sub-groups. Each subgroup is as-
sociated with an activation bit, to control which sub-groups
will be explored during the search process. The proposed MA
incorporates GLS as the local search procedure, and the same
algorithm design presented in [16] to implement GLS for the
FCTSP are followed in this study.

The key element of GLS is the definition of a set of solution
features. A feature should contribute to part of the overall
solution cost. For the FCTSP, a tour includes a number of
edges, and each edge is associated with a cost (edge length).
Therefore, the set of all edges defines the set of features for
the FCTSP. Each tour either includes (i.e. exhibits) an edge
(i.e. feature) or not.

D. Fitness Function and Mating Selection

For the FCTSP, the fitness of each individual chromosome
in the population is the length of the entire tour specified by
the chromosome. Mating selection determines the procedure
to choose individuals from the current population to undergo
the genetic operators. In the proposed MA, the idea is to use a
selection strategy that favours exploration. Thus, all individuals
in the current population are subjected to undergo the genetic
operators. This is attained by randomly ordering parents, and
then the genetic operator will use the first and second parents
to generate the first offspring, the second and third parents to
generate the second offspring, and so on.

E. Genetic Operator

The genetic operators, both crossover and mutation, for
the FCTSP can be used at the inter-cluster level by changing
the visiting sequence of clusters, or at the intra-cluster level
by changing the gene segment for each cluster. In this study,
the genetic operator at the inter-cluster level is implemented
in order to intensify exploration. The following describe the
details of the crossover and mutation operators.

Among the several effective crossover operators that have
been proposed for the TSP and its variants is the sequential
constructive crossover (SCX). The SCX operator has been
modified and applied to the OCTSP in [12]. We follow the
same implementation to apply the SCX to the FCTSP, however,
with slight modifications. The following procedure describes
how the offspring is constructed from Parent1 and Parent2
using the modified SCX:

• Step 1: The first vertex of Parent1 is chosen to be
the first gene of the offspring chromosome.

• Step 2: Given the current vertex v of the offspring
chromosome, and the two candidate vertices v1 and
v2 that represent the first legitimate vertices appeared
after v in the chromosome of Parent1 and Parent2
respectively, the next gene in the offspring chromo-
some will be v1 if it is nearer to v, and v2 otherwise.

• Step 3: Once all vertices in the current cluster are
added to the offspring chromosome, move to the next
cluster according to the order of clusters in Parent1
and repeat Step 2 until the offspring chromosome is
completed.

Mutation plays an important role to help GA avoids es-
tablishing a uniform population unable to evolve. It usually
modifies the genes of a chromosome selected with a mutation
probability. For the FCTSP, the reciprocal exchange mutation
operator is implemented, which selects two positions within
a chromosome at random and then swaps their contents to
produce new chromosomes. The swap is applied to every
cluster in the chromosome. This mutation was used in a GA
proposed for the OCTSP in [12].

F. Survivor Selection

The survivor selection procedure selects the next generation
from parents in the current population and the offspring that
are generated by the genetic operators. The proposed MA im-
plements a fitness-biased survivor selection method where all
candidate individuals are ranked, and the fitter N individuals
are chosen to form the population of the next generation.

III. EXPERIMENTS AND RESULTS

This section presents the conducted experiments and their
results during the evaluation of the performance of the pro-
posed MA for the FCTSP. The MA was implemented in Java
programming language and executed on a PC with 3.40 GHz
Intel(R) Core(TM) i7-2600 CPU and 4.00 GB RAM under MS
Windows 7 operating system. The algorithm is evaluated on a
set of TSPLIB instances 1 as used in [6].

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

www.ijacsa.thesai.org 406 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 8, 2017

TABLE I. PERFORMANCE OF THE MA VS. PERFORMANCE OF THE
GRASP AND THE TLGA ON FCTSP INSTANCES

TLGA GRASP MA
Instance % tsec % tsec % tsec
5-eil51 8.47 0.4 0 1 0 0.138
10-eil51 2.73 0.4 0 1 0 0.009
15-eil51 7.78 0.4 0 1 0 0.012
5-berlin52 1.44 0.6 0 1 0 0.008
10-berlin52 10.18 0.4 0 1 0 0.007
15-berlin52 14.69 0.4 0 1 0 0.008
5-st70 0.86 1.6 0 2.2 0 0.033
10-st70 1.88 1 0 1.8 0 0.021
15-st70 7.23 0.8 0 1.8 0 0.016
5-eil76 3.94 1.8 0.54 2.4 0 0.298
10-eil76 9.45 1.2 0.71 2.4 0 0.043
15-eil76 2.48 1.2 0.35 2.4 0 0.093
5-pr76 1.78 2 0.92 2.6 0 0.087
10-pr76 1.02 1.2 0.01 2.4 0 0.029
15-pr76 5.95 1.2 0.15 2.4 0 0.127
10-rat99 6.7 3.4 0.24 4.6 0 0.042
25-rat99 23.48 2.4 1.02 4.6 0 0.042
25-kroA100 5.69 2.2 0 4.8 0 0.271
50-kroA100 22.23 2.8 1.02 5 0 0.054
10-kroB100 2.49 3.8 0.07 4.8 0 0.095
50-kroB100 25.36 2.2 0.16 5 0 0.393
25-eil101 6.33 2.2 1.51 4.8 0 2.731
50-eil101 20.34 2.2 2.95 5 0 0.402
25-lin105 19.39 2 0.15 5.2 0 0.199
50-lin105 26.29 3.2 0.54 5.8 0 0.216

A. Parameter Settings

The proposed MA is controlled by a number of parameters
that need to be set. The genetic operators include three
parameters, namely crossover probability, mutation probability
and population size, which are empirically set to 1.0, 0.2 and
20 respectively. The only control parameter of GLS is λ which
is calculated as follows: 0.3×g∗(s)/|F ∗|, where g∗(s) is the
cost of the first local optimal and |F ∗| is the average number of
features exhibited in a solution. The GLS stops when the best
solution is not updated for a maxIter number of consecutive
penalizations (i.e. local search calls). The maxIter is set as a
function of the problem size, i.e. maxIter is set to the number
of the cities in the considered FCTSP instance. The stopping
criterion for the MA is controlled by the maximum number of
generations (maxGene) which is set to 5000.

B. Comparing the MA with State-of-the-Art Techniques

In [6], an algorithm based on GRASP with path-relinking
was proposed and compared to the Two-level Genetic Algo-
rithm (TLGA) [14], on a set of small size TSPLIB instances.
These algorithms were encoded in the C programming lan-
guage, and executed on a 2.83 GHz Intel Core 2 Quad with
4 cores and 8 GBs of RAM running the Ubuntu Linux OS
(version 4.3.2-1). In order to evaluate the performance of the
proposed MA, it is applied to the same set of instances, and
make direct comparisons to the results of the GRASP and the
TLGA algorithms as presented in [6].

Table I shows this comparative study between MA and
both the TLGA and the GRASP methods. It gives, for each
combination of algorithm and problem instance, the following
performance measures: the average solution quality (%) which
represents the mean excess above the best known solution in
20 runs, and the average computational time (t). The reported
results for TLGA and GRASP are obtained from [6]. The
number that precedes the TSPLIB instance name gives the
number of clusters. The results suggest the following remarks:

• In terms of solution quality, the MA solves all the 25
instances to optimality, whereas the GRASP method
constantly obtains the optimal solution only on 10
instances, and none of the instances was solved to
optimality by the TLGA.

• In terms of the computational time, the comparison
cannot be made directly as they were executed in
different machines. However, the results show a signif-
icant gap between the MA and the other two methods,
and the MA is capable to obtain better performance
in much less time. On average, the amount of time
that the MA requires to solve the considered FCTSP
instances to optimality is less than 10% of that of the
GRASP algorithm on all of the instances solved by the
GRASP algorithm. Even on the unsolved instances by
the GRASP method, the MA solves them to optimality
in a very short time compared to the GRASP and
TLGA methods.

These remarks reveal the outstanding performance of the
proposed MA on these FCTSP instances in terms of both
solution quality and computational time.

C. Evaluating the MA on Various Instances with Different
Clusters

This experiment aims to evaluate the impact of the number
and size of the clusters of the FCTSP on the performance of
the MA. The experiment is designed as follows:

• A set of 20 TSPLIB instances are selected. They are
of various names and sizes up to 318 cities.

• Since the best-known solution for each of these in-
stances is already known, an optimal tour for each
instance is obtained, and then the clusters are defined
accordingly. Consequently, the best-known solution
for the TSPLIB instance will be the same for its
FCTSP counterpart.

• Nine FCTSP instances are derived from each
TSPLIB instance by using different number of
clusters (C) of almost equal sizes, where C ∈
{2, 4, 6, 8, 10, 20, 30, 40, 50}.

• On each FCTSP instance, the MA is applied while
using similar experimental settings to the previous
experiment.

The computational results reveal that the MA always solves
to optimality all the FCTSP instances without any sensitivity
to the number of clusters. Therefore, only the computational
time required by the MA to solve each instance is reported
in Table II. The results for selected instances are plotted in
Fig. III-C. The results show that the hardness of the FCTSP
instance for the MA to solve an instance to optimality grows
as the number of clusters shrinks. For example, the complete
time required by the MA to find optimal solutions on kroA200
with 2, 4, 10 and 50 clusters are 16.5, 3.2, 1.9 and 0.4 seconds,
respectively.

IV. CONCLUSION

In this study, a new memetic algorithm based on the GA,
GLS and 2-Opt algorithms is proposed for solving the free

www.ijacsa.thesai.org 407 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 8, 2017

TABLE II. AVERAGE COMPUTATIONAL TIME REQUIRED BY THE MA TO SOLVE SOME TSPLIB INSTANCES WITH VARIOUS CLUSTERS TO OPTIMALITY

Clusters
Instance 2 4 6 8 10 20 30 40 50
kroA100 0.095 0.053 0.037 0.03 0.024 0.028 0.032 0.03 0.028
kroB100 0.063 0.035 0.027 0.022 0.039 0.021 0.024 0.025 0.026
rd100 0.061 0.04 0.037 0.025 0.022 0.02 0.019 0.025 0.027
eil101 0.137 0.033 0.041 0.034 0.023 0.023 0.027 0.034 0.034
lin105 0.186 0.096 0.052 0.042 0.036 0.028 0.031 0.037 0.03
pr107 0.184 0.272 0.112 0.123 0.093 0.105 0.037 0.191 0.153
pr124 0.101 0.051 0.036 0.03 0.028 0.023 0.023 0.026 0.031
bier127 0.234 0.201 0.344 0.301 0.22 0.125 0.18 0.139 0.23
pr144 0.286 0.126 0.24 0.068 0.056 0.038 0.034 0.047 0.063
kroA150 0.854 0.283 0.164 0.105 0.084 0.055 0.064 0.094 0.064
kroB150 1.911 0.718 0.213 0.351 0.273 0.084 0.081 0.122 0.085
ch150 0.756 0.154 0.118 0.085 0.093 0.059 0.07 0.068 0.055
pr152 0.375 0.304 0.273 0.069 0.101 0.074 0.091 0.095 0.085
rat195 1.163 0.853 0.127 0.094 0.096 0.108 0.095 0.086 0.131
kroA200 16.564 3.286 3.991 2.759 1.913 0.917 0.276 0.317 0.416
kroB200 93.54 17.229 3.688 3.603 0.989 0.84 0.592 0.098 0.355
ts225 5.853 1.963 0.65 0.845 0.376 0.141 0.22 0.16 0.182
a280 1.763 0.997 0.533 0.472 0.895 0.264 0.135 0.192 0.252
pr299 69.791 24.579 17.487 3.017 7.634 2.076 0.985 1.715 1.87
lin318 34.536 12.599 7.977 7.249 5.385 1.049 0.701 1.734 1.03

Fig. 2. Average computational time required by the MA as a function of the
number of clusters, on selected TSPLIB instances.

clustered travelling salesman problems. In this method, the
GA, which implements the sequential constructive crossover
and the reciprocal exchange mutation operator, is used for
global search; while the GLS algorithm that sits on top of the
2-Opt heuristic is used for local search. The performance of
this proposed method is evaluated in terms of solution quality
and speed on a set of TSPLIB, with comparison to a GA
and GRASP methods. The impacts of the different number
of clusters on the performance of the proposed method are
also analyzed. The obtained experimental results reveal the
outstanding performance of the proposed memetic algorithm
which solves to optimality all the instances used in this study
in a reasonable amount of time.

REFERENCES

[1] James A. Chisman. The clustered traveling salesman problem. Com-
puters and Operations Research, 2(2):115 – 119, 1975.

[2] Hassan Ghaziri and Ibrahim H Osman. A neural network algorithm
for the traveling salesman problem with backhauls. Computers and
Industrial Engineering, 44(2):267 – 281, 2003.

[3] A. Weintraub, J. Aboud, C. Fernandez, G. Laporte, and E. Ramirez. An
emergency vehicle dispatching system for an electric utility in chile.
Journal of the Operational Research Society, 50(7):690–696, 1999.

[4] G. Laporte and U. Palekar. Some applications of the clustered travelling
salesman problem. Journal of the Operational Research Society,
53(9):972–976, 2002.

[5] F.C.J. Lokin. Procedures for travelling salesman problems with addi-
tional constraints. European Journal of Operational Research, 3(2):135
– 141, 1979.

[6] Mário Mestria, Luiz Satoru Ochi, and Simone de Lima Martins. GRASP
with path relinking for the symmetric euclidean clustered traveling
salesman problem. Computers and Operations Research, 40(12):3218
– 3229, 2013.

[7] Michel Gendreau, Gilbert Laporte, and Jean-Yves Potvin. Heuristics
for the clustered traveling salesman problem. Technical Report CRT-
94-54, Centre de Recherche sur les Transports, Université de Montréal,
Montreal, Canada, 1994.

[8] T Aramgiatisiris. An exact decomposition algorithm for the traveling
salesman problem with backhauls. Journal of Research in Engineering
and Technology, 1:151–164, 2004.

[9] N. Guttmann-Beck, R. Hassin, S. Khuller, and B. Raghavachari. Ap-
proximation algorithms with bounded performance guarantees for the
clustered traveling salesman problem. Algorithmica, 28(4):422–437,
2000.

[10] Shoshana Anily, Julien Bramel, and Alain Hertz. A 53-approximation
algorithm for the clustered traveling salesman tour and path problems.
Operations Research Letters, 24(12):29 – 35, 1999.

[11] Gilbert Laporte, Jean-Yves Potvin, and Florence Quilleret. A tabu
search heuristic using genetic diversification for the clustered traveling
salesman problem. Journal of Heuristics, 2(3):187–200, 1997.

[12] Zakir Hussain Ahmed. The ordered clustered travelling salesman
problem: A hybrid genetic algorithm. The Scientific World Journal,
2014:1–13, 2014.

[13] Jean-Yves Potvin and François Guertin. The Clustered Traveling
Salesman Problem: A Genetic Approach, pages 619–631. Springer US,
Boston, MA, 1996.

[14] Chao Ding, Ye Cheng, and Miao He. Two-level genetic algorithm
for clustered traveling salesman problem with application in large-scale
tsps. Tsinghua Science and Technology, 12(4):459 – 465, 2007.

[15] Christos Voudouris, Edward Tsang, and Abdullah Alsheddy. Guided
local search. Handbook of metaheuristics, pages 321–361, 2010.

[16] Christos Voudouris and Edward Tsang. Guided local search and its
application to the traveling salesman problem. European journal of
operational research, 113(2):469–499, 1999.

[17] Michel Gendreau and Jean-Yves Potvin. Handbook of metaheuristics,
volume 146. Springer, 2010.

[18] Pablo Moscato and Carlos Cotta. A Modern Introduction to Memetic
Algorithms, pages 141–183. Springer US, Boston, MA, 2010.

www.ijacsa.thesai.org 408 | P a g e

