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Abstract—Due to the dependency of our daily lives on smart-
phones, the states of the device have impact on the quality of
services offered through a smartphone. In this article, we focus
on the carrying states of the device while the user is walking,
in which 17 states, e.g., in the front-left trouser pocket, calling
phone in the right hand, in a backpack are subjects to recognition
based on supervised learning with accelerometer-derived features.
A large-scale data collection from 70 persons with three walking
speeds allows reliable evaluation regarding suitable features and
classifiers model, the feature selection method, robustness of
localization against unknown person, and effect of walking speed
in training a classifier. Person-independent evaluation shows that
average F-measures of 17 class classification and merged 9 class
classification were 0.823 and 0.913, respectively.
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I. INTRODUCTION

Our daily lives heavily depend on smartphones that pro-
vides not only phone calling functionality, but also ubiquitous
access to the Internet and replacement of objects for specific
purposes, e.g., camera, pedometer, etc. as software. Various
sensors are embedded into the device, which allows the a
system to extract a user’s and/or a device’s context such as
engaging activity [19], [23], [26] and a person/device location
[16], [24], identity of pedestrian [28], environmental conditions
around a user [8], [10], [15], [27], and so on, which contributes
to provide appropriate information/services to a user based on
the context.

According to a phone carrying survey, 17% of people
determine the position of storing a mobile phone based on
contextual restrictions, e.g. no pocket in the T-shirt, too large
phone size for a pants pocket, comfort for an ongoing activity
[4]. These factors are variable throughout the day, and thus
users change their positions in a day. This suggests that a
context, on-body device position, has great potentials in im-
proving the usability of a smartphone and the quality of sensor-
dependent services, facilitating human-human communication,
the reduction of unnecessary energy consumption, etc. [7].
Note that the position is not an exact 3D coordinate, but the
names of the parts of the body, clothes and items to carry the
device during walking such as “inside a chest pocket”, “inside
a bag”, and “calling (attaching to the ear)”.

In this article, we propose a machine learning-based classi-
fier and classification features to identify 17 storing positions
of a smartphone on the body against a segment of data, i.e.,
window, obtained while a person is walking. The contribution
of this article is summarized as follows:

• Classification features suitable for classifying 17
classes are specified, in which we show a subset-
based feature evaluation is superior to a collection of
individual “good” features.

• We show raw acceleration signal shows better classifi-
cation performance than linear and vertical component
of acceleration signals.

• A large scale user independent classification perfor-
mance evaluation is presented, in which 70 persons
provided acceleration signals of smartphone carrying
during walking.

• The effect of heterogeneity of walking speed in train-
ing a classifier is evaluated, in which a training dataset
with various speed can build more robust classifier
than training with single, i.e., normal, speed data only.

The remaining part of this article is organized as follows. In
Section II examines related work regarding on-body position
sensing. Section III describes about dataset used in this study.
The localization method is presented in Section IV, in which
the notion of series is introduced, and classification features are
presented. Section V shows experiments from various aspects
including suitable features and classification model, the feature
selection method, robustness of localization against unknown
person, and effect of walking speed in training a classifier.
Finally, in Section VI, we conclude the article.

II. RELATED WORK

On-body position sensing is getting attention to researchers
in machine learning and ubiquitous computing communities
[7], [25], [29]. A research direction is on the type of a device
which is actually realized or intended to be utilized in the
future as wearable devices [18], [21], [29] or a smartphone
[1], [5]–[7], [12], [14], [22], [25], [30]. The type of a device
relates to the selection of target positions. In the wearable
device approach, the target positions range from the head to
the ankle including fine-grained discrimination such as upper
arm vs. forearm and shin vs. thigh [29]. A device is usually
attached firmly using a belt or a special mounting fixture. This
indicates that the direction of the device might not change
so irregularly within a specific activity in a frequent manner,
given that small displacement might occur during activities
[17]. By contrast, a smartphone terminal is usually stored into
containers such as the pockets of jacket, chest and trousers
pockets and a wide variety of bags, as well as in a user’s
hand, hanging from the neck and on a table as surveyed in
[4], [30]. In this case, the degree of freedom of irregular
movement in a large container, e.g., jacket pocket, handbag,
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would increase. Another aspect is the modality of sensing,
in which an accelerometer is dominant due to its low power
operation and the availability in most commercial smartphones
and wearable devices. Incel [14] shows an extensive study
on acceleration-based phone localization, in which recognition
features are proposed that represent the movement, rotation
and orientation of devices during diverse activities of a person
such as walking, sitting and biking. Fujinami proposed 63
classifier-independent features for 9 on-body phone positions
including bags during walking, which selected based on as
what are more predictive of classes and less correlated with
each other [7]. Shi et al. [25], Alanezi et al. [1], and Incel [14]
utilized a gyroscope in combination with an accelerometer.
They reported that the combined approach slightly improved
the accuracy [1], [14]; however, considering the power-hungry
nature of a gyroscope [32], the improvement would not be the
major reason for utilizing a gyroscope.

Regarding the evaluation method, n-fold cross validation
is often utilized [1], [12], [18], [22], [25], [29], which utilizes
(n-1)/n of dataset for training a classifier and 1/n for testing
the classifier; it tends to result in good recognition performance
because the training dataset may contain (n-1)/n of data from
each person in theory, and hence the classifier “knows” about
the subjects in advance. By contrast, Leave-One-Subject-Out
(LOSO) cross validation is carried out by testing a dataset from
a particular person with a classifier that is trained without a
dataset from the person. So, LOSO-CV is regarded as a fairer
and practical test method, and recently getting attention [1],
[7], [14], [30]. To validate the generalization of a classification
model, the number of subjects is important, i.e., small number
of subjects fail in capturing the characteristic of the population.
Incel [14] carried out a performance evaluation using LOSO-
CV against an integrated dataset from 35 persons in total;
however, the number of persons varies between positions (35
persons for trouser pocket, 25 for backpack, 15 for hand and
10 for messenger bag, jacket, belt and wrist), and the average
number is 15.6. Fujinami utilized LOSO-CV using dataset
from 20 persons, in which data from 9 positions were equally
collected [7]. By contrast, we equally collect data from 17
positions on the body of 70 persons including three states
in hands, i.e., swinging, talking on the phone, watching the
screen from both left and right hands, as well as carrying items,
i.e., bags, which is a unique aspect of our work. In existing
work, the type of a bag is not clearly defined [30] or limited
to a messenger bag [14], [30]. We consider that the scale of
experiment in this article, i.e., 17 positions of 70 persons, is
the largest one in the literature.

III. DATASET

A. Target Positions

We targeted 11 popular positions as shown in Fig. 1, among
which both the left and right sides of three types of “hand”,
trousers front/back pockets, and jacket pockets were collected.
Three type of “hand” correspond to calling, watching the
screen in the portrait direction and swinging during walking.
In total, 17 classes are defined and analyzed.

B. Sensor Modality

The three-axis accelerometer employed in this study is a
primary sensor embedded into almost all of today’s smart-

Fig. 1. Target storing positions.

phones. The signals can be used to characterize the movement
patterns generated while a person is walking. Although the
combination of an accelerometer and a gyroscope slightly
improved the classification accuracy [1], [14], because a gyro-
scope is power-hungry sensor [32]. Typical waveforms of the
target classes are presented in Fig. 2.

C. Data Collection

In data collection, 70 subjects (53 male and 17 female,
undergraduate or graduate students at the age of 20’s) were
recruited with a 2,000 yen equivalent worth of remuneration.
The subjects carried Huawei Ascend P7 smartphone terminals
running Android 4.4 in 2 to 5 positions simultaneously, and
were asked to walk about 5 min per position in the campus
of our university including straight ways and corners at three
walking speeds, i.e., slow, normal and fast. The speeds could
be chosen by the subjects themselves; however, the order of
the trial in the walking speed was kept constant such that fast,
normal and slow. The subjects may get tired as the experiments
proceeds. So, we consider that it is preferable to start walking
with fast speed. We collected raw acceleration signals from
Android API at the speed of SENSOR_DELAY_FASTEST.
The sampled data from Android sensor system are added to an
internal queue of our data collection system and polled at 50
Hz. Note that the data on a phones being carried in trousers
pockets covered four orientations: downward and upward and
with the display surface facing towards and away from the
body.

IV. ON-BODY LOCALIZATION SYSTEM

A. Overview

The localization is carried out to recognize a class of a
position from the 17 candidate positions based on the similarity
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Fig. 2. Signal variations in acceleration during walking.

of patterns of acceleration signals. The recognition process is
carried out window-by-window, in which a window consists of
a certain number of sampled acceleration signals. In line with
the principles of Vahdatpour, et al. [29], Fujinami [7], and
Mannini, et al. [21], primarily recognizes the storing position
of a smartphone while a person is walking. In this article,
we assume that a segment representing a person is walking is
already identified.

B. Signal Series and Axis

The term “series” indicates the type of basic time series
data, which includes raw acceleration signal, linear accel-
eration component, and vertical acceleration component. As
described in Section III-C, the raw acceleration signal is what
is just obtained from accelerometer. In this section, we present
the other two series. Here, the notation as,a,i represents the i-
th sample in a window of a-axis in the s-signal series. The
coordinates in the definition of the three series is illustrated in
Fig. 3.
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Fig. 3. The definition of three series.

1) Linear Component: Linear acceleration is obtained by
removing gravity components from the measured signals. So-
phisticated linear acceleration signal estimation methods have

been proposed by combining gyroscope and magnetometer
[13]; however, we utilize only accelerometer for the same
reason as the choice of an accelerometer as a modality of
storing position recognition. We adopted the method proposed
by Cho et al. [3], in which the gravity components are
approximated by the mean of raw acceleration signals (1) in a
window, and the linear components are obtained by subtracting
the gravity component from the raw acceleration signals (2).
Here, ~araw is a vector of the mean raw acceleration signals of
x, y and z axes in a window. Also, ~alinear and ~araw indicate
a vector of a sample of linear acceleration signal and raw
acceleration signal in a window, respectively.

~agravity = ~araw (1)

~alinear = ~araw − ~agravity (2)

2) Vertical Component: The vertical component is obtained
by decomposing the linear component based on the component
of gravity in each axis (3) [13].

~avertical = |~avertical|
~agravity
|~agravity|

= (|~alinear|cosθ)
~agravity
|~agravity|

(3)

Here, cosθ is obtained based on the definition of inner
product (·) as represented by (4).

cosθ =
~alinear · ~agravity
|~alinear||~agravity|

(4)

Then, (3) is represented with the gravity and the linear
components by assigning (4) as represented by (5).

~avertical = (|~alinear|
~alinear · ~agravity
|~alinear||~agravity|

)
~agravity
|~agravity|

= (
~alinear · ~agravity
~agravity · ~agravity

)~agravity (5)
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In addition to the three axes, i.e., x, y and z, we introduce
the magnitude of the three-axes signals (m) as the forth
dimension for series s as shown in (6).

as,m = |~as| (6)

C. Recognition Features

Recognition features play very important role on determin-
ing the performance of a recognition system. In this section,
we describe the definition of the candidates of features. The
localization is carried out to recognize a class of a position
from the 17 candidate positions based on the similarity of
patterns of acceleration signals. The recognition process is
carried out window-by-window, in which a window consists
of a certain number of sampled acceleration signals. A feature
vector is obtained per window, in which features are calculated
against the three series of acceleration signals.

We take an approach of listing up candidates of fea-
tures from literature [1], [7], [14], [30] and observation of
waveforms (Fig. 2), and selecting relevant and non-redundant
features based on a machine learning technique. We system-
atically calculate the candidates of features from a window
of four-dimensional vector of raw acceleration signals by the
combination of feature types and the axes. Totally, 326 features
are obtained (72 types × 4 axes for individual axes, 5 (one for
time domain and four for frequency domain) types × 6 (=4C2)
pairs for correlation-based features and two types × 4 (=4C3)
triples for features obtained from combination of three axes).
Tables I, II, and III show the features calculated from the four
axes individually, the features regarding the correlation of two
axes, i.e., correlation coefficient, and the features representing
the relationship among three axes, respectively. The feature
selection is described in Section V-B.

Regarding the subscript L, M and H , the frequency
spectrum is equally divided into three “frequency ranges”,
which correspond to 0.001-5.000 Hz, 5.001-10.000 Hz and
10.001-25.000 Hz, respectively. In addition, the subscript all
indicates the entire frequency range of 0.20-25.00 Hz. Note
that a feature maxSdevF is obtained in a way similar to
“sliding window average”; a subwindow with 2.9 Hz range is
created in an entire frequency spectrum to calculate standard
deviation (sdev); the subwindow is slid by 0.1 Hz throughout
the frequency spectrum; and the maximum sdev is found.
maxSdevFF is the central frequency of a particular subwindow
that gives maxSdevF . The size and sliding-width (0.1 Hz) of
subwindow were heuristically determined. A feature calculated
as the sum of squared values of frequency components is
sumPowerF (a.k.a “FFT energy” in [9]) [2]. The FFT entropy
(entropyF ) is then calculated as the normalized information
entropy of FFT component values of acceleration signals,
which represents the distribution of frequency components in
the frequency domain [2].

V. EXPERIMENT

In this section, we describe experiments from various
aspects.

A. Condition

The window size is set to 256 samples, i.e., 5.12 seconds,
with the sliding of every 128 samples (overlapping 50 %).

Throughout the experiment, we utilized a machine learning
toolkit Weka 3.7.13 [20] running on Apple Mac Pro (3.5 GHz
6-Core Intel Xeon E5, 32 GB RAM, OS X El Capitan). Table
IV summarizes average number of recognition instances, i.e.,
feature vectors, and standard deviation per person.

TABLE IV. AVERAGE NUMBER AND STANDARD DEVIATION (S.D.) OF
RECOGNITION INSTANCES PER PERSON

Carrying state Average (S.D.) Carrying state Average (S.D.)

bag backpack 369.7 (32.6) jacket left 366.6 (27.7)
bag handbag 362.5 (24.8) jacket right 368.5 (25.8)
bag shoulderbag 373.6 (31.4) neck 372.5 (30.9)
chest pocket 367.5 (29.9) trousers back left 366.7 (26.0)
hand call left 365.6 (29.3) trousers back right 367.6 (26.2)
hand call right 370.2 (33.5) trousers front left 365.9 (25.2)
hand front left 367.0 (28.6) trousers front right 368.8 (26.6)
hand front right 366.3 (28.7)
hand swing left 369.8 (30.7) total 6253.9 (427.6)
hand swing right 364.9 (27.6)

B. Feature Selection

1) Methodology: Feature selection consists of three phases:
feature subset evaluation, feature subset search, and se-
ries selection. As feature subset evaluation, we utilized a
correlation-based feature selection (CFS) [11], which is called
CfsSubsetEval in Weka. CFS has a heuristic evaluation
function merit, which can specify subset of features that
are highly correlated with classes, i.e., more predictive of
classes, but uncorrelated with each other, i.e., more concise.
As described in Section IV-C, a large number of features
were listed up, which may contain redundant features. So,
we consider that the capability of CFS is suitable for this
problem. Formula (7) defines the heuristic merit Ms of a
feature subset S that contains k features, in which rcf is the
mean feature-class correlation and rff is the mean feature-
feature inter-correlation. For more detail, please refer to [11].
MS acts as a ranking on feature subsets in the search space
of all possible feature subsets. Note that CFS is a classifier-
independent method of feature selection.

MS =
krcf√

k + k(k − 1)rff
(7)

To find the subset of features based on the CFS eval-
uation, we initially attempted to utilize the forward greedy
stepwise search against entire feature set (GreedyStepwise
in Weka). The method searches the best feature subsets, which
begins with no features and greedily adds features one by one.
However, the computation ended up with out of memory error.
So, we needed to take another approach, which finds a subset
with much smaller number of features than entire dataset, i.e.,
326 features, with lightweight computation at first and applies
the greedy stepwise search on the subset. As a lightweight
computation of searching the space of feature subsets, we
utilized, BestFirst in Weka, a greedy hill-climbing method
augmented with a backtracking facility. Setting the number
of consecutive non-improving samples allowed controlling the
level of backtracking done. In this experiment, the number was
set to five.

The dataset of selected feature subset for each “series” is
evaluated by 10 fold cross-validation (10 fold CV) to specify
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TABLE I. CLASSIFICATION FEATURES (x, y AND z AXES AND THE MAGNITUDE (m) OF THE THREE AXES)

Name Description or Formula

meanT Average of time-series data
varT Variance of time-series data
maxT Maximum value of time-series data
minT Minimum value of time-series data
rangeT Difference between max and min, i.e., maxT – minT

skewT Skewness of time-series data, i.e.,

1

N

N∑
i=1

(ai −meanT )3

var
3
2
T

kurtoT Kurtosis of time-series data, i.e.,

1

N

N∑
i=1

(ai −meanT )4

var
4
2
T

RMST Root mean square of time-series data, i.e.,

√√√√ 1

N

N∑
i=1

ai
2

absMeanT Absolute value of meanT , i.e., |meanT |
absMaxT Absolute value of maxT , i.e., |maxT |
absMinT Absolute value of minT , i.e., |minT |
meanAbsDT Averaged absolute value of successive value’s difference,

i.e.,
1

N − 1

N−1∑
i=1

|ai+1 − ai|

meanXingT The number of crossing the mean value
1stQT 1st quartile (1/4 smallest value) of time-series data
3rdQT 3rd quartile (3/4 smallest value) of time-series data
IQRT Inter-quartile range of time-series data, i.e., 3rdQT − 1stQT

energyF,{all|L|M|H} Sum of energy spectrum, i.e.,

N/2∑
i=1

fi
2

entropyF,{all|L|M|H} Frequency entropy, i.e., −
N/2∑
i=1

pi × log2pi, where pi = fi
2/

N/2∑
i=1

fi
2

maxF,{all|L|M|H} Maximum value in an entire frequency spectrum
maxFF,{all|L|M|H} Frequency that gives maxF

meanFF,{all|L|M|H} Mean frequency, i.e.,
∆f

N/2

N/2∑
i=1

(fi × i)

1stQF,{all|L|M|H} 1st quartile (1/4 smallest) frequency spectrum
3rdQF,{all|L|M|H} 3rd quartile (3/4 smallest) frequency spectrum
IQRF,{all|L|M|H} Inter-quartile range of frequency spectrum, i.e., 3rdQF − 1stQF

1stQFF,{all|L|M|H} Frequency that gives 1stQF

3rdQFF,{all|L|M|H} Frequency that gives 3rdQF

varF,{all|L|M|H} Variance in the low-frequency range
maxSdevF,{all|L|M|H} Maximum standard deviation in subwindows in frequency spectrum
maxSdevFF,{all|L|M|H} Central frequency of subwindow that gives maxSdevF

cepDenstF,{all|L|M|H} Cepstrum density, i.e.,
1

N/2

N/2∑
i=1

|Cepi|2, where Cepi is the i-th element of cepstrum coefficient

TABLE II. CLASSIFICATION FEATURES BASED ON CORRELATION COEFFICIENTS BETWEEN TWO AXES

Name Description

corrT Pearson’s correlation coefficient of signals from two axes in time-series data
corrF,{all|L|M|H} Correlation coefficient in an entire frequency spectrum

TABLE III. CLASSIFICATION FEATURES OBTAINED FROM THREE AXES (i, j, k ∈ {x, y, z,m}, i 6= j 6= k)

Name Description

max3axesT Max of the max of 3 out of 4 axes, i.e., max(maxi,T ,maxj,T ,maxk,T )
min3axesT Min of the min of 3 out of 4 axes, i.e., min(mini,T ,minj,T ,mink,T )
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the best feature subset for later analysis. The RandomForest
classifier with 10 trees is utilized as a base classifier for the
cross-validation. The classification result is evaluated by F-
measure. F-measure is a harmonic mean between recall and
precision. F-measure for class i is defined by (8), which is
averaged over 17 classes. The recall and precision for class i
are represented by (9) and (10), where Ncorrecti , Ntestedi

, and
Njudgedi

represent the number of cases correctly classified into
classi, the number of test cases in classi, and the number of
cases classified into classi, respectively, while i corresponds
to either one of 17 classes.

F -measurei =
2

1/recalli + 1/precisioni
(8)

recalli =
Ncorrecti

Ntestedi

(9)

precisioni =
Ncorrecti

Njudgedi

(10)

2) Result: The BestFirst search filtered out about 70
features for each series as initial “meaningful” features. We
then applied GreedyStepwise search against these features
to understand the best combination in particular number of
features. Fig. 4 shows the relationship between the number of
features and the merit score Ms. Here, the number of features
increases in the order of adding to the feature subset. As
shown in the figure, the increase of Ms becomes saturated
at a particular number of features. This indicates that the
redundancy of features increased and/or the predictiveness
of an added feature decreases after a particular number of
features. The merit scores of “raw” series are larger than the
other two series in almost all cases of the number of features.
This suggests that “raw” series contains more predictive and
less redundant than the features from the other two series and
may performs best.

4.1. FEATURE SELECTION CHAPTER 4. EXPERIMENTS

4.1.2 Result

The BestFirst search filtered out approximately 100 features from each series as “mean-
ingful” features. We then applied a GreedyStepwise search to these features to under-
stand the ranking of the features. Figure 4.1 shows the relationship between the number of
features and the merit score Ms. In this experiment, the number of features was increased
in the order in which they were added to the feature subset. As can be seen, the increase
in Ms became saturated. This result indicates that the redundancy of features increased
and/or the predictiveness of each added feature decreased after a particular number of fea-
tures were added. We selected 40, 45 and 40 features for the “raw”, “linear” and “vertical”
data series, respectively, near the saturation points. These are summarized in Tables 4.1,
4.2, and 4.3, respectively.

Note that, as shown in Figure 4.1, the merit scores of the “raw” series were larger than
those of the other two series for almost any number of features. This result suggests that
the features in the “raw” series were more predictive and less redundant than those in the
other two. This characteristic is proven in Section 4.2.
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Figure 4.1: The relationship between number of features and subset merit score.

Table 4.4 summarizes the median ranks (upper row) and ratios of selected features
(lower row) in the “raw” data series. At the point “single axis features vs. correlation-
based features”, features obtained from single axes seems better in the ranking than that of
correlation-based ones, and the number of selected features of single axis features was smaller
than that of correlation-based ones. The time-domain features of the signals contributed to
their classification. In terms of the axis (or “axes” for multi-axis features), the y axis gave
the smallest ranking number and was the most contributed axis, followed by the x axis.

15

Fig. 4. Relationship between the size of feature subset and merit score of
the subset (partially).

We utilized 40, 45 and 40 features for “raw”, “linear” and
“vertical” data series near the saturation points, respectively,
in series selection. Table V summarizes average F-measures of
the three series. As shown in the table, “raw” series performed
the best in the three series using selected feature subsets. Table
VI summarizes the selected features for “raw” data series.

TABLE V. F-MEASURE FOR EACH DATA SERIES

series raw linear vertical

F-measure 0.980 0.940 0.948

TABLE VI. SELECTED FEATURES FOR “RAW” DATA SERIES. “#”
REPRESENTS THE ORDER OF ADDING TO THE FEATURE SUBSET, WHILE

Ms INDICATES THE MERIT SCORE OF THE SUBSET

# Name Ms # Name Ms

1 meanT,y 0.231 21 varF,all,z 0.554
2 energyF,M,y 0.309 22 3rdQT,z 0.557
3 1stQT,x 0.363 23 min3axesT,xym 0.560
4 meanT,z 0.398 24 3rdQF,M,x 0.562
5 3rdQF,M,z 0.426 25 corrF,L,ym 0.564
6 3rdQT,x 0.445 26 corrT,xy 0.566
7 entropyF,H,z 0.462 27 meanXingT,m 0.568
8 corrT,ym 0.476 28 maxT,x 0.570
9 meanAbsDT,x 0.489 29 kurtoT,z 0.572

10 maxSdevF,L,z 0.498 30 skewT,y 0.574
11 meanXingT,x 0.506 31 corrT,zm 0.576
12 meanFF,L,y 0.514 32 meanT,x 0.577
13 1stQT,z 0.519 33 3rdQF,H,y 0.579
14 meanXingT,y 0.525 34 corrF,M,ym 0.581
15 cepDenstF,M,x 0.531 35 cepDenstF,M,m 0.582
16 maxFF,all,x 0.535 36 meanXingT,z 0.584
17 skewT,z 0.539 37 maxFF,all,z 0.585
18 meanT,m 0.543 38 cepDenstF,M,z 0.586
19 corrT,xm 0.547 39 entropyF,H,x 0.587
20 corrF,L,zm 0.550 40 1stQF,H,z 0.588

C. Classifier Selection

To find the best classifier, we compare popular classifiers
by taking into account not only correctness of classification,
but also the computational load for running on a smartphone.

1) Methodology: We carried out 10 fold CVs against
Naı̈ve Bayes, Multi-Layer Perceptron (MLP), J48 Tree and
RandomForest classifiers using 40 features from raw dataset.
We also measured the elapsed time to complete one fold of
evaluation (test) that contains approximately 44,000 instances.
Note that different numbers of trees in RandomForest were
tested, i.e., 10, 50 and 100. The Support Vector Machines
(SVM) has not been tested because it is parameter sensitive.

2) Result and Analysis: Fig. 5 shows the average F-
measure of the classifiers and elapsed time for testing dataset
per one fold. As shown in the figure, three types of Random-
Forest performed better than the others. Paired t-tests showed
significant difference between RandomForest with 10 trees
and Naı̈ve Bayes, MLP, and J48 with p<.05 (t(9)=224.80,
t(9)=94.83, and t(9)=45.99, respectively). Also, the perfor-
mance gets better as the number of threes in creased from
0.980 to 0.987. To determine the number of trees, it is
important to consider the trade-off between the classification
performance and processing workload. As shown in Fig. 5,
the number of trees in RandomForest influences the process-
ing speed because of the nature of the algorithm. Although
paired t-tests showed that RandomForest with 10 trees was
significantly lower in F-measure than RandomForest with
50 and 100 trees with p<.05 (t(9)=-44.03 and t(9)=-47,19,
respectively), we took the number of trees 10 for the following
experiments by taking the processing speed in processing on
the smartphone. Hereinafter, RandomForest with 10 trees is
utilized as a classifier in this article.
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Fig. 5. The difference of F-measure in various classifiers. Note on the
acronyms of classifiers: ANN = Artificial Neural Networks, MLP = Multi-
Layer Perceptron, RF=RandomForest.

D. Feature Subset Evaluation vs. Individual Feature Collection

In Section V-B, 40 features were selected using CFS, which
allows us to find subset of features that are more predictive
of classes yet less correlated with each other. In this section,
we evaluate the subset evaluation approach by comparing a
collection of individual “good” features.

1) Methodology: The contribution of each feature is evalu-
ated based on information gain (IG). IG is commonly used in
feature selection, where the gain of information provided by
a particular feature is calculated by subtracting a conditional
entropy with that feature from the entropy under random guess
[31]. So, the more informative feature has the higher IG.

After specifying the same number of features as those
obtained by CFS method, i.e., 40 features, 10 fold CVs are
performed against these two feature subsets, and F-measures
are compared.

2) Result and Analysis: Table VII summarizes top-40 infor-
mative features based on IG. The features derived from x-axis
show their effectiveness by appearing 7 in top-10 features. The
table also shows the order of adding to the subset of 40 features
obtained by CFS, which shows that individually informative
feature, i.e., high IG, is not always selected in early stage
(or not at all) of adding to CFS-based feature subset, i.e.,
low CFS value. This is natural because CFS is designed to
take into account the redundancy among features and find the
best combination of features, while IG is used to represent the
informativeness of individual features.

Regarding the classification performance, the F-measures
obtained from classifiers trained by IG-based features and
CFS-based features are 0.967 and 0.980, respectively, and
CFS-based feature subset is significantly contributive in classi-
fication compared to IG-based one (t(9)=83.06, p<.05). There-
fore, suppose that the same number of features is utilized, we
consider that the approach of feature subset evaluation was
effective in building better classifier than collecting individual
features with good evaluation results.

TABLE VII. TOP-40 INFORMATIVE FEATURES BASED ON
INFORMATION GAIN FEATURE EVALUATION. THE COLUMN “CFS”

INDICATES THE ORDER OF ADDING TO THE FEATURE SUBSET AS SHOWN
IN TABLE VI, IN WHICH “–” REPRESENTS THAT THE FEATURE IS NOT

INCLUDED IN THE SUBSET OF 40 FEATURES OBTAINED BY CFS

Rank Name IG [bit] CFS Rank Name IG [bit] CFS

1 meanT,y 1.21 1 20 3rdQF,H,y 0.97 33
2 meanT,x 1.13 32 20 meanFF,M,y 0.97 –
3 1stQT,x 1.10 3 20 energyF,M,z 0.97 –
4 3rdQT,x 1.09 6 24 3rdQF,all,y 0.96 –
5 RMST,x 1.08 – 24 3rdQF,M,z 0.96 5
6 cepDenstF,all,x 1.07 – 24 varF,M,z 0.96 –
7 cepDenstF,H,x 1.05 – 24 meanFF,M,z 0.96 –
8 corrT,ym 1.03 8 24 meanAbsDT,y 0.96 –
9 energyF,M,y 1.03 2 29 varF,L,y 0.95 –

10 cepDenstF,L,x 1.01 – 30 meanAbsDT,x 0.94 9
11 cepDenstF,M,x 1.00 15 30 maxSdevF,L,x 0.94 –
11 maxF,all,x 1.00 – 30 maxSdevF,all,x 0.94 –
11 maxF,H,x 1.00 – 30 maxSdevF,H,x 0.94 –
11 maxF,L,x 1.00 – 34 IQRF,M,y 0.93 –
15 3rdQF,M,y 0.99 – 34 1stQT,z 0.93 13
15 meanT,z 0.99 4 36 meanFF,all,y 0.94 –
17 3rdQT,y 0.98 – 36 3rdQT,z 0.94 22
17 meanAbsDT,z 0.98 – 36 1stQF,all,z 0.94 –
19 varF,M,y 0.97 – 36 entropyF,H,z 0.94 7
20 meanFF,L,y 0.97 12 40 1stQT,y 0.93 –

E. Recognition against Unknown Person

As described in Section II, LOSO-CV is regarded as a fairer
and more practical test method under a condition in which
individual difference exists. In this section, we apply LOSO-
CV to 70 subjects, which we consider the largest case in on-
body smartphone localization.

1) Methodology: The dataset from one subject is treated
as a test set, while the dataset from remaining 69 subjects are
utilized for training a classifier. The train-and-test process is
iterated 70 times.

2) Result and Analysis: Table VIII shows the detail of
the classification result in the form of confusion matrix. The
average F-measure in the classification of 17 classes against
70 subjects is 0.823. Although the value decreased by 0.157
from the one by 10 fold-CV, we consider that the performance
is rather good given that there are 17 classes. Especially, by
taking into account that no data from person for testing are
included in the training data, it is surprising that left and right
sides in “hand call” and “hand swing” were separated with
very high F-measure (>0.93), in which clear differences in x-
axis are observed as shown in Fig. 2. “Neck” also has high
F-measure (0.932). A smartphone hanging from the neck is
hit by the user’s body as he/she walks forward, which causes
strong impact on z-axis (Fig. 2(a)). However, as shown in Table
VIII, the discriminations of left and right sides of “hand front”,
“trousers back”, and “trousers front” are often confused with
each other. As shown in Fig. 2, less differences are observed
in the left and right sides of theses classes than the successful
cases. Also, the confusion within “bags” is slightly observed.

So, we merged the left and the right sides into one class,
e.g., “hand call left” and “hand call right” → “hand call”,
against “hand call”, “hand front” and “hand swing”. Also,
three types of bags are merged into one “bag” class. The
result of the merging is summarized in Table IX, in which the
mean F-measure is 0.913 (increased by 0.090 from original
17 classes). Furthermore, three subclasses of hand and two
subclasses of trousers pockets, i.e., front and back, are merged
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into single class “hand” and “trousers pocket”, respectively,
resulting in six class classification, which is shown in Table
X. As shown in these tables, merging of multiple classes into
a single class increases the performance metrics. Application
designers should consider the required resolution, i.e., the level
of detail of position recognition, for their target applications.

F. Effect of Various Walking Speed in Classifier Training

As described in Section III-C, we collected data with
three walking speeds based on the decision of the subjects.
The above experiments were carried out with dataset that
contains all walking speeds. Training a classifier with single,
i.e., “normal”, speed is easy for the participants in data
collection; however, it may sacrifice the robustness against
different speed. Data collection process can be simplified if no
difference exists in the robustness between classifiers modeled
with heterogeneous speed and single speed. In this section, we
explore the effect of walking speed in classifier training.

1) Methodology: The experiment follows LOSO-CV prin-
ciple with a slight difference in walking speed between training
and test datasets. More specifically, two classifiers for 17 class
classification are trained using 1) dataset that contains all
speeds and 2) dataset with only “normal” speed, in which
training a classifier with “normal” speed is a traditional ap-
proach. Here, a dataset obtained from a test subject is excluded
from the training dataset. Meanwhile, the dataset for test is
either “slow”, “normal”, and “fast” speed. For example, a
combination of “normal” speed for training with “fast” speed
for testing represents a case where a person is walking faster
than what the classifier knows.

In training classifiers with three walking speeds, we re-
duced the size of dataset to 1/3 so that it can become similar
size to that of “normal” speed to avoid the bias of the number
of training instances. Actually, three sets of 1/3 sampled
dataset are applied, and F-measures are averaged. Regarding
the classification features for training with “normal” speed,
we selected dedicated ones in the same way as with all speeds
(Section V-B) because we consider that suitable set of features
can be different from each other due to the variation of walking
speed in “all speed” case.

2) Result and Analysis: Table XI summarizes average F-
measures in different combinations of walking speed in train-
ing and test datasets. Paired t-tests regarding the heterogeneity
in training datasets showed that using three walking speeds
performed better classification than using single, i.e., “normal”,
speed (p<.05) in all cases of walking speeds in test datasets
(t(69)=-2.34, t(69)=2.64, and t(69)=5.30 for “slow”, “normal”,
and “fast”, respectively). The result shows that, in building
a classifier, heterogeneity of walking speed is important for
robust classifier.

TABLE XI. AVERAGE F-MEASURES IN DIFFERENT COMBINATIONS OF
TRAINING AND TEST DATASETS

Trained\Tested Slow Normal Fast

All 0.799 0.814 0.787
Normal 0.786 0.801 0.758

VI. CONCLUSION

In this article, we proposed a machine learning-based
classifier and classification features to identify 17 states of
a smartphone while the user is walking. A large-scale data
collection from 70 persons were carried out with three different
walking speeds to evaluate the effect of heterogeneity of
walking speed in training a classifier. The following results
were obtained:

• In feature calculation, we introduced three series of
acceleration signals, raw, linear, and vertical compo-
nents, in which the raw acceleration series showed the
highest classification performance in the three series.

• 40 features in the raw series were selected from 326
candidates features based on correlation-based feature
subset evaluation. The comparison with a subset by
collecting individually informative features based on
information gain showed that the subset evaluation
method was superior to the collection-based method
with the same number of features.

• Person-independent evaluation (LOSO-CV) showed
that an average F-measure of 17 class classification
was 0.823, while 9 class classification by merging left
and right sides into one class showed an average F-
measure of 0.913.

• Comparison of the heterogeneity of walking speeds in
training dataset showed that the classifier built from
various walking speed allowed us to realize more
robust classifier than using a classifier with a single
walking speed (normal speed).

We consider that the F-measure of 0.824 for 17 class classifica-
tion has still room for improvement by using suitable classifier
to address “classifier compatibility” issue as suggested in [7].
In addition, the classification in the experiment was carried out
against a window, which means that decisions of successive
windows may differ due to mis-classification. For practical
recognition, we will investigate temporal smoothing techniques
to smoothen such “discontinuity” of recognition results. We
have already developed a mechanism to identify a segment of
walking, to which these future investigation will be integrated.
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