
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

233 | P a g e

www.ijacsa.thesai.org

A New Design of In-Memory File System based on

File Virtual Address Framework

Fahad Samad

Department of Computer Science

FAST – National University of Computer and Emerging

Sciences

Karachi, Pakistan

Zulfiqar Ali Memon

Department of Computer Science

FAST – National University of Computer and Emerging

Sciences

Karachi, Pakistan

Abstract—Rapid growth in technology is increasing day by

day that demands computer systems to work better, should be

reliable and have faster performance with fair cost and best

functionalities. In the modern era of technology, memory files are

used to shorten the performance gap between memory and

storage. Sustainable in-memory file system (SIMFS) was the first

that introduces the concept of open file address space into the

address space of the process and exploits the memory mapping

hardware while accessing files. The purpose of designing and

implementing the SIMFS architecture is to achieve performance

improvement of in-memory file system. SCMFS are designed for

the storage class system that uses the presented memory

management component in the operating system to assist in

managing block, and it manages the space for each and every file

adjacent to the virtual address space. A recent study has

proposed that non-volatile memories are powerful enough to

minimize the performance gap, as compared to previous

generation non-volatile memories. This is because the

performance gap between non-volatile and volatile memories has

been reduced and there are possibilities of using a non-volatile

memory as a computer’s main memory in near future. Lately,

high-speed non-volatile storage media, such as Phase Change

Memory (PCM) has come into view and it is expected that for

storage device PCM will be used by replacing the hard disk in

upcoming years. Moreover, the PCM is byte-addressable, it

means that it can access individual byte of data rather than word

and data access time is expected to be almost indistinguishable of

DRAM, a volatile memory. These features and innovations in

computer architecture are making the computer system more

reliable and faster.

Keywords—Phase change memory; non-volatile memory; Spin

Transfer Torque – RAM; sustainable in-memory file system;

journaling file system

I. INTRODUCTION

With the passage of time, increasing demands of new
technologies with better and faster performance and rapid data
processing at a reasonable cost, demand system to be designed
accordingly to behave and work efficiently [1].

Many new designs are incorporated to fulfill these
functionalities. Likewise, we have in-memory file systems that
are used to diminish the performance gap between memory
and storage device. There are two types of in-memory file
system, i.e. temporary and persistent. The temporary file
system may not capable of retaining metadata and data may
not undergo on system reboots while in persistent in-memory

file system we have insistent data that preserve on system
reboots. The novel blueprint of in-memory file system has
come up with Virtual file address for increasing performance
of in-memory file system. Each individual file has a virtual
address space which is controlled by a file page table [2].

Sustainable in-memory file system (SIMFS) is intended
and executed on same structure mentioned above. This
employs the memory mapping hardware while accessing files.
And the data are also managed by file page table. The
challenges in designing this framework is to create a persistent
metadata and then designing this file system by incorporating
file data to virtual address space. For persistent storage of
data, non-volatile memories are used that are directly
connected via the memory bus which reduces the latency and
they are byte addressable as well [3]. The file system which
builds on the virtual memory space exploits Memory
Management Unit (MMU) to map the address of the file with
virtual address. These features of non-volatile memory have
replaced DRAM – volatile memories. But still, non-volatile
memories are sheathed in performance, however, memory
devices such as STT-MRAM (Spin Transfer Torque Random
Access Memory) has overcome this problem as it has
comparable read/write access time. They are capable enough
to maintain the data of main memory into main memory still
after system gets turned off. STT-RAM pursues all the
characteristics of a universal memory.

Now a day, a wide gap between disk and main memory
has become a severe drawback in the computer system. To
overcome this, the operating system stores disk block which
requests for data into some part of main memory which is
called buffer cache. Buffer cache works even in conditions
when storage is working faster in main memory. Moreover,
Phase Change Memory (PCM) has appeared as new storage
medium and expected to be used as main memory in the near
future as well [4].

The reason for using PCM is because it’s a non-volatile
storage mechanism and has increased density and significant
power consumption. It also has amplified performance when
replacing DRAM with PCM. The Journling file system
provides high dependability at rational cost, however, existing
systems doesn’t support a PCM storage as they are hard disk
optimized. The new journaling file system is introduced for
PCM, named JFS that cut off write traffic to PCM as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

234 | P a g e

www.ijacsa.thesai.org

compared to the existing journaling file system. JFS uses less
data as compared to the existing journaling file system.

II. BACKGROUND STUDY

Increased timing in data processing increases the
performance gap between memory and storage. This probably
leads to disadvantage of computing system as compared to
modern systems [5]. Not only this, the existing file system is
complicated to apply directly on memory. Moreover, the disk
based file system uses volatile memories that are faster but
have slow secondary storage as per traditional architecture,
such as Linux. In addition, the I/O data request has to search
bottomless stack of software layers [6].

These problems lead to the solution for making up file
systems that are “in-memory” file systems. Some modern
system uses this framework, like, SPARK, which cluster
computing framework and uses in-memory file system to
some extent.

According to research experiments, there is a vast
performance difference between disk and main memory. File
access by the disk is 5000 to 8000 times slower than the file
access by in-memory file system.

Above framework can be described by using an example
of the file read. An in-memory file only takes a minute to read
a file, whereas, simple file using the existing system may take
4 days to read that file. The example, stated above clearly
explains the advantage of the in-memory file system. They
play a vital role to benefit applications involving in data
processing. Our main goal is to focus on designing an in-
memory file system that should be faster and persistent on file
reads / writes. No matter either it is sequential access or
random access.

Our main focus is on persistent in-memory file system. We
have two types of in-memory file system, i.e. persistent and
temporary. Temporary in-memory file system has no
sustainable metadata and data is lost on power disconnection
while persistent in-memory file system has sustainable
metadata and can survive on system reboot. So this makes
necessity to have persisted in-memory file system so that we
can have sustainable metadata and storage as well [7].

In the existing system we were taking some things for
granted and that leads to the huge performance gap between
memory and storage.

By launching new framework with modern techniques we
also come up with the term “File Virtual Address Space” [8].

Existing systems may not have file virtual address space
for an individual file. This new framework introduces file with
its own, virtual address space.

III. RESEARCH WORK

With the goal of designing new in-memory file system, we
came up with sustainable in-memory file system (SIMFS),
which is designed and implemented in the same framework
discussed above. Each opened file has its own, virtual address
space that is represented by a hierarchical page table. For
locating a physical location of the file system by the virtual

address space of a file, a file system may use memory
management unit (MMU). The above framework implements
bye addressable memory that is connected to a memory bus
[9].

The SIMFS architecture easily integrates virtual address
space of file into virtual address space of processes and uses
the same hardware MMU for this task. They are good and
better than all those in-memory file system mentioned as an
example in this paper.

When discussing about basic file systems and different
kinds of data, we came to know about metadata and physical
file data. The metadata store file attributes and they are
mapped by logical location to the physical location of each file
data page [10]. We termed this mapping as mapping structure
(Fig. 1).

Fig. 1 shows mapping of metadata into data sections which
is represented as pages or we can say block. The block
diagram clearly explains the mapping structure of metadata.
As far as existing systems are concerned, they may contain
many of the file system.

Starting from the typical disk-Based system that includes
EXT2 and EXT4 and both of them are inode structure. Ext4 is
much more improved version that EXT3 and so on. Ext4 has
the concept of in-memory file system. In the same way, we
have persistent and non-persistent in-memory file system.
Persistent file system may embrace Protected & Persistent
RAM based file systems (PRAMFS) that are 2-D structured
and are light weighted and also may have sufficient storage of
space with non-volatile file system. Second, persistent file
system includes Persistent Memory File System (PMFS),
which are also light weighted and have B-Tree structure and
are capable enough to provide access to persistent memory
with the CPU directly through load/write instruction [11].

Whereas, non-persistent in-memory file system may
consist of random Access Memory File System (RAMFS) and
Temporary File System (TMPFS). RAMFS works on the same
principle of in-memory file system with storage space. While,
TMPFS is a modern RAM file system which overcomes the
drawbacks of the RAMFS file system. It limits the size for
disk and show disk full error of that function. This is a better
way than RAMFS. Both the non-persistent memory described
above is Radix tree structured. In all the above stated file
system, there is no such essential change, all have to search
metadata through software routines for finding the physical
address of each data pages.

Fig. 1. A block diagram of metadata mapping in data section.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

235 | P a g e

www.ijacsa.thesai.org

Fig. 2. A hierarchical view of multiple types of file systems.

The framework we are discussing, i.e. SIMFS doesn’t
follow the existing systems architecture instead it avoids
software overheads which are used by existing file system. So
here we use Memory Management Unit (MMU) to access file
with virtual address space. This can help us to read any page
without metadata searching in software as we were doing in
existing systems. File virtual address space is represented by a
file page table and it has exact similar structure as of process
page table.

SIMFS perform the above task by placing pointers at the
top level of the file page table in user’s process.

Through this, an application is capable to directly access
file data by its own address space and no need to copy data in
the user’s buffer, as shown in Fig. 2

A new technique is proposed for application operation
named as in-file execution. Previously used systems originates
larger overhead in making data copies between files and
buffers, but, SIMFS work on the principle which is entirely
different from traditional methods and present new interface
for applications shown in Fig. 2. Using in-file execution
process, applications are independent enough to manage files
in the file system and no now no need of copying data into
buffers.

IV. ARCHITECTURE, DESIGN AND FRAMEWORK

The framework discussed above proposed the notion that
each file has its own virtual address space. When an opened
file is being processed, virtual address space of that file is
entrenched into process’s virtual address space. Therefore,
each opened file has its own, virtual address space. By the
help of “File page Table” physical space of the file is mapped
with a virtual file space. When the file is closed, the virtual
address space of the file is isolated from the virtual address
space of the process.

The architecture proposed an effective way to access file
via in-memory file system. To organize the virtual address
space of a file, more efficiently file page table is used, that
keeps the information about mapping address for each data
page file. File page table is same as of process page table.

(a) (b)

Fig. 3. An organizational view of Linux page table.

The detailed working of this framework is shown in Fig. 3.

Fig. 3 illustrates the example of a file page table in Linux
based operating system. Fig. 3(a) demonstrate Linux page
table that contains four entries, i.e. PGD, PUD, PMD, and
PTE. Each level in the page table stores the initial physical
address of the page appearing next in the page table. For e.g.
PUD level may store the pointer of a PMD physical page
appearing next in the page table.

Fig. 3(b) illustrates an example of file page table that is
already stored in the page table. They also contain three levels,
i.e. PUD, PMD and PTE. They are similar as a Linux page
table that each level in the page table stores the initial physical
address of the page appearing next in the page table. For e.g.
PMD level may store the pointer of a PTE physical page
appearing next in the page table. The top-level of the page file
table, i.e. PUD is accumulated in an inode structure of the
equivalent file. As stated in Fig. 3(b), all the file data pages
are arranged in an adjacent virtual address space, but actually
they are dispersed on physical memory. Every individual file
has a file page table within this framework.

When we open a file we simply insert file virtual address
space into process virtual address space and it takes only O (1)
time for inserting into virtual address space of the process.
And it can be easily done by copying few pointers into the file
page table at the highest level. After the insertion with an
adjacent virtual address space of file, any location can be
acquired easily in the file without searching of metadata
through software routines (Fig. 4).

Fig. 5 clearly explains the mapping of virtual address
space into physical pages of file via memory mapping
hardware (MMU).

For example, Offset address 8000 of the files has been just
equal to the beginning address + 8000. So this can foster the
performance and it is especially fastest for random read/write
access. This process quickly finds any location of the file.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

236 | P a g e

www.ijacsa.thesai.org

Fig. 4. An illustration of file virtual address space and physical pages of file.

Fig. 5. A table showing sequential read/write access of different in-memory

file systems.

A. Innovation in SIMFS Architecture

It anticipated the concept of File virtual address space
characterized by file page table build in the form of process
page table.

Each file has its own contiguous virtual address space and
no divergence among them. We can easily incorporate file
virtual address space into process virtual address space
swiftly, independent of file size. Moreover, file access takes
benefit of the hardware Memory Mapping Unit in CPU.

V. EXPERIMENT AND COMPARISON

SIMFS set an example of state of the art in-memory file
systems with better performance and benefits as compared to
traditional and existing file systems. SIMFS has also
implemented functions that EXT4 has applied and comparing
both of them SIMFS still have greater and better performance
than EXT4 (Fig. 5).

The above figure clearly shows the best results of SIMFS
than existing file systems. SIMFS directly move towards the
bandwidth of the memory bus hardware.

At sequential read, SIMFS is 66 and 120 times faster than
PRAMFS and EXT4 for the size of 256KB, respectively. On
sequential writes, SIMFS is 85 and 128 times faster than
PRAMFS and Ext4 for the size of 256KB, respectively.

Fig. 6. Graphical comparison of SIMFS with different in-memory file

system.

While comparing with other in-memory file system we
have again SIMFS showing the best results among all of them.
SIMFS is 4 times faster than EXT4 on ramdisk and on average
results 2.2 and 2.1 times faster than RAMFS and PMFS,
respectively. While the PMFS is the state of the art in-memory
file system but still it lags in performance as compared to
SIMFS framework (Fig. 6).

VI. RELATED WORK

The promising technologies with persistent memories,
including phase change memory (PCM), MRAM and many
more have non-volatile memories. Non-volatile memories are
used in almost every gadget including, laptops, mobile,
tablets, flash memories, etc. Most of the devices in the past
used only electrons that weren’t reliable enough. Here, in non-
volatile memories, we are using electronic conduction by
modulating it by ion motion, moving oxygen ion one side to
another or we can say to the upper level. From this technique
we create a cell that can best select without a transistor and by
doing this we can achieve 2D memory to 3D memory. These
memories give us four times higher performance on almost the
same cost with larger capacity, cheaper product and longer
battery life. Non-volatile memories are widely used in systems
as they have persistent data and survival of data on system
reboots but volatile memories are vice versa of non-volatile
memories. The data is lost when power is disconnected from
the device.

A. Integrating Memory Management

Nonvolatile Memory (NVM) technologies came up with
improved performance and capacity, faster access speed and
with cheaper cost.

According to recent research on the utilization of NVM for
storage devices or for main memory usage, they performed
better as compared to other memories. Storage devices and
main memory both of them can use non-volatile memory as
they maintain management and integration into the system.
Many researches on NVM states that these memories can be
used as main memory in the computing system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

237 | P a g e

www.ijacsa.thesai.org

Recent research has stated that non-volatile memory
(NVM) uses storage and main memory. Because of this
integration, the system performance is much enhanced than
that of volatile memory used by systems in earlier stages.

If this framework is implemented in recent systems, then
we can increase the performance of computer system much
higher and with lower cost.

B. Phase Change Memory

Researchers have predicted that Phase Change Memory
(PCM) will be used as main memory in future systems. It is
expected that this change can benefit in power consumption
and superior performance and swift progress in density of
phase change memory if we replace the hard disk or Dynamic
random access memory with phase change memory. PCM is
simply high speed non-volatile storage technology. Phase
change memory and Spin-transfer torque random access
memory both are widely used non-volatile memory.

Memories in the past were fast, byte addressable and
volatile – lost data on system reboots.

But Future memories are faster, byte addressable and are
persistent – it means data doesn’t lose on system reboots.

C. Journaling file System

Journaling file systems (JFS) are generally used in new
computer systems as they provide higher consistency at
reasonable cost. They are especially designed for PCM
devices.

Introducing a new file system to phase change memory
called Shortcut-JFS. It is very helpful to lesser the write traffic
to PCM. The aim of this journaling file system is to slighter
the extra writes and boost the I/O performance than present
journaling schemes without any failure of consistency.

VII. CONCLUSION

As far, we have discussed in this article about in-memory
file system with SIMFS architecture. We projected a File
Virtual Address Space framework.

We came to know that it has long lasting impact on future
design of any in-memory file system. The throughput of
SIMFS framework approaches the bandwidth of the memory
bus. In comparison with all the existing in-memory file
system, SIMFS outcomes were enhanced and better than other
file systems.

Based on this framework, we are now working on many
applications including, user-space file systems, hybrid file
systems, new swapping mechanism, distributed in-memory
file system, in memory database, etc.

REFERENCES

[1] M. Jung, J. Shalf, and M. Kandemir, “Design of a large-scale storage-
class RRAM system,” in Proc. Int. Conf. Supercomput., 2013, pp. 103–
114.

[2] C. Xu, P.-Y. Chen, D. Niu, Y. Zheng, S. Yu, and Y. Xie, “Architecting
3d vertical resistive memory for next-generation storage systems,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2014, pp. 55–62.

[3] S. Longerbeam, M. Locke, and K. Morgan. (2013). Protected ram
filesystem [Online]. Available: http://pramfs.sourceforge.net/

[4] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R.
Sankaran, and J. Jackson, “System software for persistent memory,” in
Proc. 9th ACM Euro. Conf. Comput. Syst., 2014, pp. 1–15.

[5] X. Wu and A. L. N. Reddy, “Scmfs: A file system for storage class
memory,” in Proc. Int. Conf. Supercomput., 2011, pp. 1–11.

[6] H. Kim, J. Ahn, S. Ryu, J. Choi, and H. Han, “In-memory file system
for non-volatile memory,” in Proc. Res. Adaptive Convergent Syst.,
2013, pp. 479–484.

[7] S. Oikawa, “Integrating memory management with a file system on a
non-volatile main memory system,” in Proc. 28th Annu. ACM Symp.
Appl. Comput., 2013, pp. 1589–1594.

[8] E. Lee, S. H. Yoo, and H. Bahn, “Design and implementation of a
journaling file system for phase-change memory,” IEEE Trans. Comput.,
vol. 64, no. 5, pp. 1349–1360, May 2015.

[9] Eunji Lee. “Is Buffer Cache Still Effective for High Speed PCM (Phase
Change Memory) Storage?”, 2011 IEEE 17th International Conference
on Parallel and Distributed Systems, 12/2011

[10] Edwin H.-M. Sha, Yang Jia, Xianzhang Chen, Qingfeng Zhuge, Weiwen
Jiang, Jiejie Qin. “The design and implementation of an efficient user-
space in-memory file system”, 2016 5th Non-Volatile Memory Systems
and Applications Symposium (NVMSA), 2016 Publication

[11] Wu, Xiaojian, Sheng Qiu, and A. L. Narasimha Reddy. “SCMFS : A
File System for Storage Class Memory and its Extensions”, ACM
Transaction.

http://pramfs.sourceforge.net/

