
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

278 | P a g e

www.ijacsa.thesai.org

Clustering based Max-Min Scheduling in Cloud

Environment

Zonayed Ahmed

Department of CSE

Stamford University Bangladesh

Dhaka, Bangladesh

Adnan Ferdous Ashrafi

Department of CSE

Stamford University Bangladesh

Dhaka, Bangladesh

Maliha Mahbub

Department of CSE

Stamford University Bangladesh

Dhaka, Bangladesh

Abstract—Cloud Computing ensures Service Level

Agreement (SLA) by provisioning of resources to cloudlets. This

provisioning can be achieved through scheduling algorithms that

properly maps given tasks considering different heuristics such

as execution time and completion time. This paper is built on the

concept of max-min algorithm with and unique proposed

modification. A novel idea of clustering based max-min

scheduling algorithm is introduced to decrease overall make-

span and better VM utilization for variable length of the tasks.

Experimental analysis shows that due to clustering, it provides

better result than the different variations of max-min as well as

other heuristics algorithm in terms of effective utilization of

faster VMs and proper scheduling of tasks considering all

possible scheduling scenarios and picking up the best solution.

Keywords—Cloud computation; cluster; heuristics; batch-mode

heuristics; cluster based max-min scheduling

I. INTRODUCTION

Task scheduling is a mapping mechanism from user’s tasks
to the appropriate selection of resources and its execution.
Compared with grid computing, cloud computing has many
unique features including virtualization and flexibility. By
using the technology of virtualization, all physical resources
are virtualized and transparent for users. All users have their
own virtual device, these devices do not interact with each
other and they are created based on users’ requirements. In
addition, one or more virtual machines can run on a single host
computer so that the utilization rate of resources has been
effectively improved. The independence of users’ application
ensures the system’s security of information and enhances the
availability of service [1]. Supplying resources under the cloud
computing environment is flexible, we increase or reduce the
supplying of resources depends on users’ demand. Because of
these new features, grid computing, the original task
scheduling mechanism, can’t work effectively in cloud
computing environments [2].

The task scheduling goals of Cloud computing is providing
optimal tasks scheduling for users, and provide the entire cloud
system throughput and QoS at the same time. Specific goals
are load balance, quality of service (QoS), economic principle,
optimal operation time and system throughput [3], [4].

Task scheduling algorithm is responsible for mapping jobs
submitted to cloud environment onto available resources in
such a way that the total response time, the make-span, is
minimized [5]. Many task scheduling algorithms are applied by

resources manager in distributed computing to optimally
allocate resources to tasks [6]. While some of these algorithms
try to minimize the total completion time. Where the
minimization is not necessarily related to the execution time of
each single task, but the aim is to minimize overall the
completion time of all tasks [7].

Now, for flexible resource allocation, there must be a
provisioning that all resources are made available to the tasks
and this is done according to SLA (Service Level Agreement)
with help of parallel processing. Due to different combinations
of theses SLA objectives, optimal mapping of workload to
resources is found to be NP-hard [8].

The paper focuses on provisioning of a full batch of
cloudlets. While other researches focus on only achieving
minimal make-span, this novel idea also introduces better VM
utilization through clustering the cloudlets before allocating.
The novel idea of dividing and existing batch of tasks into
smaller clusters is introduced in this paper. This idea along
with more effective scheduling algorithm provisioned for each
of the clusters helps enormously in proper scheduling of tasks
to VMs which are proved spontaneously in Section 3 and
Section 4 titled Proposed Methodology and Experimental
Result section of this paper. The effectiveness of the newly
proposed algorithm is established in the Section 5 of result
comparison with the existing algorithms as described in
Section 2 titled Related Works.

II. RELATED WORKS

Many heuristics have been proposed to obtain semi-optimal
match. Existing scheduling heuristics can be divided into two
categories: on-line mode and batch-mode.

A. On-line mode heuristics

A task is mapped to a machine as soon as it arrives at the
scheduler. Some heuristic instances of this category follow:

1) Minimum Execution Time
Each task is assigned to the resource that performs it in the

least amount of execution time, no matter whether this resource
is available or not at that time [9].

2) Opportunistic Load Balancing
Each task is assigned to the resource that becomes ready

after the current task being executed, without any consideration
of the execution time of the task on the particular resource. If

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

279 | P a g e

www.ijacsa.thesai.org

more than one resource becomes ready at the particular time,
one resource is chosen randomly [7].

B. Batch-mode heuristics

The tasks are collected into a set called meta-task (MT).
These sets are mapped at prescheduled times called mapping
events. Some instances of this category are as follows:

1) Suffrage
Suffrage [7] is based on the idea that a task should be

assigned to a certain resource and if it does not go to that
resource, the most it will suffer.

2) Max-Min
Max-Min assigns task with maximum expected completion

time to the corresponding resource [9].

The Max-Min algorithm is given below.

Algorithm 1: Max-Min Algorithm

The algorithm takes m Resources Rj (R1, R2, ..., Rm) and
maps n tasks Ti (T1, T2, ..., Tn) on these resources. Expected
execution time Eij of task Ti on resource Rj is defined as
required time of resource Rj to finish task Ti provided that Rj
has no load when assignment occurs.

On the other side, expected completion time Cij of task Ti
on resource Rj is defined as the overall time consumption till
finishing any assigned task previously assigned. Assume rj
denote the beginning of execution task Ti. From previous
mentions, it can be concluded that Cij = Eij + rj.

The make-span of complete schedule is defined as Max (Ci)
where Ci is the completion time for a task Ti [5].

Here task Tm has maximum expected completion time and
it is chosen to be assigned for corresponding resource Rj that
provides minimum execution time.

Make-span is defined as a measure of the throughput of the
heterogeneous computing system; like the Cloud Computing
environment [9], [10].

3) Min-Min
Min-Min assigns task with minimum expected completion

time to the corresponding resource [9].

4) QoS Guided Min-Min
QoS Guided Min-Min [11] adds a QoS constraint (QoS for

a network by its bandwidth) to basic Min-Min heuristic. The
basic idea of this procedure is that some tasks may require high

network bandwidth but others can be satisfied with low
network bandwidth. Thus, it assigns tasks with high QoS
request first according to Min-Min heuristic.

5) QoS priority grouping scheduling
QoS priority grouping scheduling is similar to QoS guided

Min-min. It is proposed by F. Dong et al. [12]. The algorithm
considers two major factors: a) deadline and acceptation rate of
the tasks; and b) makespan of the whole system for task
scheduling. Compared to Min-min and QoS guided Min-min, it
achieves better acceptance rate and completion time.

6) Segmented Min-Min
In Segmented Min-Min heuristic described in [13] tasks are

first ordered by their expected completion times. Then the
ordered sequence is segmented and finally it applies Min-Min
to these segments. This heuristic works better than Min-Min
when length of tasks are dramatically different by giving a
chance to longer tasks to be executed earlier than where the
original Min-Min is adopted.

7) Improved Max-Min
In Improved Max-min algorithm largest job is selected and

assigned to the resource which gives minimum completion
time [14].

8) Enhanced Max-Min
Here, a task just greater than average execution time is

selected and assigned to the resource which gives minimum
completion time [15].

9) Resource Aware Scheduling Algorithm
The algorithm presented in [16] is a combination of max-

min and min-min. The algorithm covers the disadvantages of
both algorithms and uses the advantages.

10) Reliable Scheduling Distributed in Cloud
RSDC [17] is another batch-mode scheduling process that

uses processing time as scheduling factor. It subtracts the
request and acknowledges time from the ultimate time in each
processor.

The organization of this paper is as follows. In Section 3
(Batch-mode Algorithm), detailed explanation of any
modifications of max-min will be provided. In Section 4
(Implementation and Experiments), we will present the
implementation of our algorithm through CloudSim and
analysis of our findings. Discussed in Section 4 (Conclusion)
is a summary of our full work as well as concerns to address
for the future.

III. PROPOSED METHODOLOGY

Reviewing max-min and other batch-mode heuristics
algorithm, it can be seen, the tasks are always allocated
according to their respective lengths or task sizes. Now max-
min works best, but there are few long tasks and many short
tasks. Because, the long task can be executed in one resource
while the short tasks can concurrently run on other resources.
But the max-min algorithm doesn’t work well in case of
variable length cloudlets. To overcome this problem, we use
the idea of clustering in our proposed method. If we can create
some groups of cloudlets based on their characteristics, then
we can try to allocate those groups according to different

Step 1: For all submitted tasks in meta-task Ti

Step 2: For all resource Rj

Step 3: Compute Cij = Eij + rj

Step 4: While meta-task is not empty

Step 5: Find the task Tm consumes maximum

completion time.

Step 6: Assign task Tm to the resource Rj with

minimum execution time.

Step 7: Remove the task Tm from meta-tasks set

Step 8: Update rj for selected Rj

Step 9: Update Cij for all Ti

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

280 | P a g e

www.ijacsa.thesai.org

SLAs. In this paper, cloudlet length has been used to create
clusters. The number of clusters can be the number of
resources. Clusters can be created in different approaches such
as K-means clustering algorithm [18], CURE [19], FCM [20].
Here we use standard deviation of the cloudlet lengths to create
the clusters.

Next each cluster is processed separately to simulate which
cluster takes the highest time of operation. This process gives a
cluster enough priority to be completed first given that there
are different lengths of cloudlets in the whole batch.

After simulation of each cluster the cluster consuming
highest time is scheduled to the VMs using the improved max-
min algorithm. Subsequently the cluster with the next highest
time consuming is scheduled on the VMs. This process goes on
until there are no clusters left to be scheduled.

The proposed algorithm is as follows:

Algorithm 2: Proposed Algorithm for Cluster based Max-
Min Scheduling algorithm

1. Populate list of tasks T
2. Find average length of Tasks
3. Find Standard Deviation of Tasks
4. Find number of clusters in standard deviation by

dividing the standard deviation in VM number of
parts

5. Place each Task in the list T to specific cluster by
finding minimum distance of cluster standard
deviation and task length

6. Simulate each Task Cluster to find out highest
make-span cluster.

7. Choose the cluster with highest make-span among
the batch of the clusters

a. For all submitted tasks in meta-task Ti
b. For all resource Rj
c. Compute Eij based on cloudlet lengths and

VMs
d. Compute Cij = Eij + rj
e. While meta-task is not empty
f. Find the task Tm consumes maximum

execution time.
g. Assign task Tm to the resource Rj with

minimum completion time.
h. Remove the task Tm from meta-tasks set
i. Update rj for selected Rj
j. Update Cij for all Ti

8. If there are unprocessed clusters in the batch go to
step 7.

9. End Algorithm.

C. Flowchart of the Proposed Algorithm

The above flowchart in Fig. 1 shows the stepwise process
of the algorithm. A simulation of the given algorithm is shown
below with a given scenario.

D. Scenario for Simulation

Suppose we have 12 cloudlets to be scheduled to the VMs.
The respective lengths of the cloudlets are as follows:

{1100,100,110,120,130,140,150,160,170,180,200,800}

Fig. 1. Flowchart of proposed algorithm.

And the three VMs in our scenario have highest allocable
MIPS as follows:

{300,100,50}

All of the VMs in the scenario have 1 core processor, 1000
Mb bandwidth, 512 Mb of RAM.

Now the total process of allocation of the tasks to the VMs
is simulated in the experimental results section.

IV. EXPERIMENTAL RESULTS

A. Calculation of Average and Standard Deviation of Tasks

The average length of the tasks is calculated using the
simple formula:

∑

  

Thus the average in our scenario is: 280

Standard deviation can be calculated using the following
formula:

 √
∑

 (2)

Where s = number of cloudlets and Lengthi is the specific
length of the cloudlet, i.e. the number of instructions for that
specific cloudlet.

Thus the standard deviation of the given scenario would be:
307.083051.

B. Creating Clusters on the Basis of Standard Deviation

Now we need to divide our sample tasks to create clusters
that would be scheduled to the VMs. According to our given
scenario we are creating three clusters because we have three

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

281 | P a g e

www.ijacsa.thesai.org

VMs. If the number of VMs increases, so does our number of
clusters. Thus we divide our SD in three equal parts.

1
st
 Cluster Standard Deviation: 102.361017

2
nd

 Cluster Standard Deviation: 204.722034

3
rd

 Cluster Standard Deviation: 307.083051

So we determine from the task sizes which tasks have the
least distance from the standard deviations. According to the
given scenario, the clusters are:

Cluster 1: Task no. 2,3,4,5,6,7

Cluster 2: Task no. 8,9,10,11

Cluster 3: Task no. 1,12

We now have three clusters those have similar sized tasks
within themselves. We are ready to simulate how much time
the three clusters need to finish by calculating their estimated
execution time, completion time and waiting times.

C. Calculation of Estimated Makespan for Each Cluster

Now we simulate each cluster to see which one gives us the
maximum time make-span. We will schedule the clusters that
have the highest make-span and remove all tasks of that cluster
from our set of cloudlets.

For our given scenario the time make-span for each cluster
along with the definitive start time, time of execution, finish
time along with the VM id at which the task was executed
which was determined with the help of CloudSim are followed
in Table 1.

TABLE I. SIMULATION OF EACH OF THE CLUSTERS

Cluster
Cloudlet

ID
VM ID

Start

Time
Time

Finish

Time

1

4 0 0.1 0.4 0.5

5 0 0.5 0.43 0.93

3 1 0.1 1.09 1.19

6 0 0.93 0.47 1.4

7 0 1.4 0.5 1.9

2 2 0.1 2 2.01

2

8 0 0.1 0.53 0.63

10 0 0.63 0.6 1.23

9 1 0.1 1.69 1.79

11 0 1.23 0.67 1.9

3
1 0 0.1 3.67 3.77

12 0 3.77 2.67 6.43

Now we would choose the cluster for scheduling which has
the highest make-span among all three clusters. We will go on
selecting the highest cluster until all clusters are scheduled.

Thus we would process cluster 3(highest make-span 6.43
seconds) first, cluster 1(highest make-span 2.01 seconds)
second and lastly cluster 2(highest make-span 1.9 seconds).

D. Scheduling of tasks of a cluster

Algorithm 3: Cluster Based Max-Min Scheduling
Algorithm for each cluster

Next the tasks within a cluster are scheduled according to
the Algorithm 3.

This algorithm ensures that a task Ti will be assigned to a
new VM such that the overall make-span of all of the VMs
remains to a minimum. That means the new task will be
assigned to a new VM only if the make-span of the newly
assigned task to the new VM is lesser than the make-span if the
task was assigned rather to the previous VM.

As per the given scenario we see that cluster 3 having the
highest make-span should be executed first to ensure that the
fastest VM gets free faster than the other VMs. The specific
reason behind this operation is because while processing each
cluster the task that has the highest execution time is set to be
completed as fast as it could be. Thus we are utilizing the
fastest resources on the highest length cloudlets which will
help immensely on properly executing larger tasks at hand
rather than clogging the fastest resource with faster smaller
tasks.

According to our given scenario the start time, finish time
and total operation time are followed in Table 2.

TABLE II. OPERATION TIME OF NEW PROPOSED ALGORITHM

Cluster
Cloudlet

ID
VM ID

Start

Time
Time

Finish

Time

3
1 0 0.1 3.67 3.77

12 0 3.77 2.67 6.43

1

2 1 0.1 1 1.1

3 2 0.1 2.2 2.3

5 1 1.1 1.31 2.41

6 1 2.41 1.4 3.81

4 2 2.3 2.39 4.69

7 1 3.81 1.5 5.31

2

9 1 5.31 1.7 7.01

10 0 6.43 0.69 7.12

11 0 7.12 0.67 7.79

8 2 4.69 3.2 7.89

Step 1: For all submitted tasks in meta-task Ti

Step 2: For all resource Rj

Step 3: Compute Eij based on cloudlet lengths and VMs

Step 4: Compute Cij = Eij + rj

Step 5: While meta-task is not empty

Step 6: Find the task Tm consumes maximum execution time.

Step 7: Assign task Tm to the resource Rj with minimum
completion time.

Step 8: Remove the task Tm from meta-tasks set

Step 9: Update rj for selected Rj

Step 10: Update Cij for all Ti

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

282 | P a g e

www.ijacsa.thesai.org

As we see above the cluster 3 is executed first which ends
in VM 0(fastest resource) with the finish time of 6.43 seconds.
This means the next task scheduled on VM 0 can start on 6.43
seconds. The other two VMs can now easily compute all of
cluster 2 tasks within 5.31 seconds. As seen from the results we
see that we have used the comparatively slower resources to
execute faster smaller tasks which result in proper utilization of
the VMs. Finally, the task scheduling ends with VM 0 having
finish time 7.79 seconds, VM 1 with 7.01 seconds and VM 2
with 7.89 seconds.

V. RESULT COMPARISON

In our evaluation of the result with existing systems we
would compare our results with several algorithms like Max-
Min, Min-Min, Improved Max-Min and Enhanced Max-Min.

A. Result of Improved Max-Min on Given Scenario

We applied the improved max-min algorithm on the given
scenario. The results from the simulation are followed in
Table 3.

TABLE III. OPERATION TIME OF IMPROVED MAX-MIN ALGORITHM

Cloudlet ID VM ID Start Time Time Finish Time

3 1 0.1 1.2 1.3

1 2 0.1 2 2.1

6 1 1.3 1.5 2.8

0 0 0.1 3.67 3.77

5 0 3.77 0.47 4.23

2 2 2.1 2.24 4.34

7 1 2.8 1.65 4.45

9 0 4.23 0.6 4.83

10 0 4.83 0.67 5.5

8 1 4.45 1.7 6.15

4 2 4.34 2.59 6.93

11 0 5.5 2.67 8.17

Comparing with this algorithm alone shows that the make-
span of the new algorithm is better than the improved max-min
algorithm.

A mere (8.17-7.79) = 0.38 seconds at VM 0 might not seem
that good a result. But given the fact that this VM is the fastest
VM in the given scenario proves that a fraction of a seconds in
the most powerful VM can outperform several slower VMs in
the scenario. Thus getting the most powerful VM free faster
means the next batch of tasks can be scheduled to the VMs
faster than any other traditional algorithms.

B. Comparison with Improved and Enhanced Max-Min

Given the same scenario the make-span for each of the
algorithms are followed in Table 4.

TABLE IV. COMPARISON CHART OF IMPROVED, ENHANCED AND

PROPOSED ALGORITHM

Algorithm No. of Tasks No. of VMs
Highest Make-

Span

Enhanced Max-

Min
12 3 10.63

Improved Max-

Min
12 3 8.17

Cluster Based 12 3 7.89

Fig. 2. Comparison Chart between traditional algorithms and proposed

Cluster based max-min scheduling algorithm.

The comparison chart between the traditional algorithms
(Enhanced Max-Min, Improved Max-Min) and proposed
Cluster based Max-Min scheduling in shown in Fig. 2.

VI. CONCLUSION AND FUTURE WORK

This paper concentrates on the problem of effectively
scheduling tasks to VMs on a dynamic manner. The main
problem of scheduling tasks in a VM is the diversity of the size
of tasks that arrive for scheduling. The proposed algorithm
proves to be effectively clustering the same sized cloudlets
together and eventually scheduling them together. As a result,
the tasks that will have the highest make-span is gotten rid of
as quickly as possible ensuring that the highest VMs are freed
up as soon as possible. This action results in execution of
higher number of tasks in rather shorter span of time. Even if
the tasks are way too much in diversity, even then this
algorithm will never perform lesser than improved max-min
algorithm in any situation.

On comparative analysis this algorithm can outperform any
traditional algorithm on average case scenarios and no
algorithm can perform better than this proposed algorithm in
any worst case scenarios.

In the future other techniques (K-means clustering, Fuzzy
C-means clustering) will be used for clustering and the
proposed algorithm will be compared against Metaheuristic
and Evolutionary algorithms to show its effectiveness. Larger
dataset of cloudlets and VMs will also be used to elaborate the
findings of the ongoing research.

7.89

0

2

4

6

8

10

12

Scenario

Ti
m

e
in

 S
ec

o
n

d
s

Comparison Chart

Enhanced Max-
Min

Improved Max-
Min

Cluster based Max-
Min

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

283 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Zhexi, Y.A.N.G. and Huacheng, X.U.E. 2012. Informatization
Expectation with Cloud Computing in China. Indonesian Journal of
Electrical Engineering and Computer Science, 10(4), pp.876-882.

[2] Liu, J., Luo, X.G., Li, B.N., Zhang, X.M. and Zhang, F., 2013. An
intelligent job scheduling system for web service in cloud computing.
Indonesian Journal of Electrical Engineering and Computer Science,
11(6), pp.2956-2961.

[3] You, X., Chang, G. and Deng, X., 2006. et. Grid Task Scheduling
Algorithm Based on Merit Function. Computer Science, 33(6).

[4] Yao, W., Li, B. and You, J., 2002. Genetic scheduling on minimal
processing elements in the grid. AI 2002: Advances in Artificial
Intelligence, pp.465-476.

[5] Parsa, S. and Entezari-Maleki, R., 2009. RASA: A new task scheduling
algorithm in grid environment. World Applied sciences journal,
7(Special issue of Computer & IT), pp.152-160.

[6] Chunlin, L. and Layuan, L., 2006. QoS based resource scheduling by
computational economy in computational grid. Information Processing
Letters, 98(3), pp.119-126.

[7] Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D. and Freund, R.F.,
1999. Dynamic mapping of a class of independent tasks onto
heterogeneous computing systems. Journal of parallel and distributed
computing, 59(2), pp.107-131.

[8] J. M. Wilson, “An algorithm for the generalized assignment problem
with special ordered sets,” Journal of Heuristics, 11(4):337–350, 2005.

[9] Freund, R.F., Gherrity, M., Ambrosius, S., Campbell, M., Halderman,
M., Hensgen, D., Keith, E., Kidd, T., Kussow, M., Lima, J.D. and
Mirabile, F., 1998, March. Scheduling resources in multi-user,
heterogeneous, computing environments with SmartNet. In
Heterogeneous Computing Workshop, 1998.(HCW 98) Proceedings.
1998 Seventh (pp. 184-199). IEEE.

[10] Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M.,
Reuther, A.I., Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D. and
Freund, R.F., 2001. A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed

computing systems. Journal of Parallel and Distributed computing,
61(6), pp.810-837.

[11] He, X., Sun, X. and Von Laszewski, G., 2003. QoS guided min-min
heuristic for grid task scheduling. Journal of Computer Science and
Technology, 18(4), pp.442-451.

[12] Dong, F., Luo, J., Gao, L. and Ge, L., 2006, October. A grid task
scheduling algorithm based on QoS priority grouping. In Grid and
Cooperative Computing, 2006. GCC 2006. Fifth International
Conference (pp. 58-61). IEEE.

[13] Wu, M.Y., Shu, W. and Zhang, H., 2000. Segmented min-min: A static
mapping algorithm for meta-tasks on heterogeneous computing systems.
In Heterogeneous Computing Workshop, 2000.(HCW 2000)
Proceedings. 9th (pp. 375-385). IEEE.

[14] Elzeki, O.M., Reshad, M.Z. and Elsoud, M.A., 2012. Improved max-min
algorithm in cloud computing. International Journal of Computer
Applications, 50(12).

[15] Bhoi, U. and Ramanuj, P.N., 2013. Enhanced max-min task scheduling
algorithm in cloud computing. International Journal of Application or
Innovation in Engineering and Management (IJAIEM), 2(4), pp.259-
264.

[16] Parsa, Saeed, and Reza Entezari-Maleki. "RASA: A new task scheduling
algorithm in grid environment." World Applied sciences journal
7.Special issue of Computer & IT (2009): 152-160.

[17] Delavar, Arash Ghorbannia, et al. "RSDC (reliable scheduling
distributed in cloud computing)." International Journal of Computer
Science, Engineering and Applications 2.3 (2012): 1.

[18] Hartigan, John A., and Manchek A. Wong. "Algorithm AS 136: A k-
means clustering algorithm." Journal of the Royal Statistical Society.
Series C (Applied Statistics) 28.1 (1979): 100-108.

[19] Guha, Sudipto, Rajeev Rastogi, and Kyuseok Shim. "CURE: an efficient
clustering algorithm for large databases." ACM Sigmod Record. Vol.
27. No. 2. ACM, 1998.

[20] Bezdek, James C., Robert Ehrlich, and William Full. "FCM: The fuzzy
c-means clustering algorithm." Computers & Geosciences 10.2-3
(1984): 191-203.

