
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

A P System for Solving All-Solutions of TSP

Ping Guo, Junqi Xiang, Jingya Xie, Jinhang Zheng
College of Computer Science

Chongqing University
Chongqing, China

Abstract—P system is a parallel computing system based on
a membrane computing model. Since the calculation process of
the P system has the characteristics of maximum parallelism
and Non-determinism, it has been used to solve the NP-hard
problem in polynomial time. This paper designs a P system for
TSP problem solving. This P system can not only determine
whether the TSP problem has solution, but also give the all-
solution when the TSP problem is solved. Finally, an example is
given to illustrate the feasibility and effectiveness of the P system
designed in this paper.

Keywords—P system, TSP, membrane computing, natural com-
puting

I. INTRODUCTION

Membrane computing is a kind of biological calculation
model which is inspired by living cell functions and tissues.
Its information processing process adopts the parallelism and
non-determinism of biochemical reaction in biological cells.
The information processing system based on the membrane
computing model is called the P system, which has the charac-
teristics of computational parallelism and non-determinism. P
systems have been studied can be divided into three categories:
cell-like P system [1], [2], tissue-like P system [3], [4] and
like-neural P system [5], [6].

Researchers have designed several P systems to solve NP-
hard problems, such as SAT [7], [8], HPP [9], [10], TSP [11]-
[15] and so on. The TSP (namely, travelling salesman problem)
is a typical representative of the NP hard problem. To solve the
TSP, researchers have proposed many algorithms for decades.
According to whether the algorithm is to find the global
optimal solution, these algorithms can be divided into two
categories: exact algorithms and approximate algorithms. In
[11], authors solves the symmetric TSP by using an improved
branch and bound algorithm with a new lower bounds. In
[12], authors proposes a novel ant colony optimisation (ACO)
algorithm Moderate Ant System to solve TSP, this algorithm
is experimentally turned out to be effective and competitive.
In P system, some kinds of P system also have been proposed
to solve the TSP. In [13], authors proposes a heuristic scheme
with distributed asynchronous parallel computation for solving
TSP problems, and the genetic algorithms are used to select
the appropriate Hamiltonian path in each membrane. However,
membranes used in this paper only are structures that hold
programs and data, which don’t conform to Gheorghe Pǎun’s
model of membrane computing. In [14], authors proposes a
new type of approximate algorithms called membrane algo-
rithms for solving TSP, a membrane algorithm borrows nested
membrane structures and a number of sub-algorithms which
can be any approximate algorithm for optimization problems

1

2

3 4

5

6

7

8 9

Fig. 1. The structure of cell-like P system.

are stored in membrane separated regions. Obviously, mem-
brane algorithms don’t conform to Gheorghe Pǎun’s model of
membrane computing too.

As a continuation of the research in [15], we have designed
a P system to solve the TSP problem in this paper. The P
system includes path construction, path detection, path com-
parison and path clipping, and its computational complexity
is O(n2). The rest part of this paper is as follows: section II
briefly introduces cell-like P system. In Section III, we design
a parallel computing method which is suitable for P system to
solve TSP problem. Section IV proposes a P system to solve
TSP. The P system’s structure and evolution rules are given,
and the computational complexity of the P system is analyzed.
In Section V, we give an example to show the process of
solving the TSP using the P system designed in this paper.
The conclusion is drawn in the last section.

II. FOUNDATIONS

This paper is based on the cell-like P system. The cell-like
P system is a class of the most basic P system, which consists
of a series of membrane nesting, its structure shown in Fig.
1 [8]. A P system consists of a membrane structure, objects
and evolutionary rules. The membrane structure consists of a
skin, multiple membranes and multiple elementary membranes
(in the absence of confusion, said the membrane). The region
outside the skin is called the environment, which provides
computing objects for the P system. The calculation objects
(typically represented by the multiset of objects) and the
object evolution rules are stored in the inner region of each
membrane. The evolutionary rules within the membrane follow
the maximum parallelism and non-determinism to make the
object multisets evolve. When there is no any object multiset
in the P system can be evolved, we call the calculation of
the P system is over, and the results (expressed as object
multisets) of the calculation are stored in a specific membrane
or environment. If the evolution of the P system never stops,
we call the calculation failed and no calculation results.

www.ijacsa.thesai.org 357 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

6

8

4 4

5

5

5

V1

V2 V5

V3 V4

5

Fig. 2. Graph G.

According to [16], [17], the cell-like P system can be
formally described as (1).

Π = (O,µ, ω1, · · · , ωm, R1, · · · , Rm, io) (1)

Where,

1) O is the non-empty alphabet.∀o∈O is an object in Π.
O∗ is the Kleene closure over O, ∀ω∈O∗ called an multiset
in Π. Let λ is empty multiset, O+ = O∗ − {λ};

2) µ is the membrane structure of Π. µ has m membrane,
and each membrane is marked with a unique label i (1 ≤ i ≤
m).

3) ωi (1 ≤ i ≤ m) is a multiset of objects placed in
membrane i.

4) Ri (1 ≤ i ≤ m) is the finite set of the evolution rules
in membrane i of Π.

5) io is the label of a membrane to store the calculation
results. Especially, io = 0 indicates that the output is stored in
the environment of Π.

In Π, the maximal parallelism and Non-determinism of the
rule execution mean:

1) Maximal parallelism: At any time, all rules can be
executed must be performed at the same time.

2) Non-determinism: Suppose n rules are competing for
execution, but P system can only support m (m < n) rule
execution, then m rules are randomly selected from n rules to
execute.

III. TSP AND THE PARALLEL ALGORITHM

TSP is a NP-hard problem in combinatorial optimization,
which can be described as: Given an undirected weighted graph
G = (V,E), where V is the vertex set and E is the edge set.
For a given vertex v, find a path P that passes through all
the other vertices once and only once and finally returns to
the vertex v, and the sum of the weights on P (called the
cost of P) is the smallest. In other words, the TSP is to find
the Hamiltonian cycles with the least cost in all Hamiltonian
circles of G.

Fig. 2 shows an example of an undirected weighted graph
G. With V1 as the starting and ending vertex, then the
Hamiltonian cycles of G includes {V1 → V2 → V3 → V4 →
V5 → V1}, {V1 → V2 → V3 → V5 → V4 → V1}, {V1 →
V2 → V5 → V3 → V4 → V1} and so on. As we can see
from Fig. 2, the minimum cost cycle is the second Hamiltonian
cycle, so the solution of travelling salesman problem for Fig.
2 is {V1 → V2 → V3 → V5 → V4 → V1}.

TABLE I. ALGORITHM: PATSP

Input: undirected weighted graph G=(V, E)and starting vertex v0;

Output: the minimum cost cycle path or No;

(1) Path construction: Construct all legal paths in parallel, all paths make up a multi-tree,
the steps of constructing one legal path P as follows:

1) Add v0 to the path P as the common root node;
2) If there is edge e =< vi, vj >, vi is the last vertex of path P and vj 6∈ P ,
then add e and vj to path P so that vj becomes the last vertex of P ;
3) Repeat step 2) until no vertex could be added to path P ;
4) If all the vertices in graph G have been added to path P and there is an
edge connecting the last vertex of path P to v0,then add v0 to path P as the
last vertex;

(2) Path detection: Delete illegal Hamiltonian cycle paths while constructing the paths:
1) If there is any vertex that cannot be added to path P, delete path P ;
2) If the last vertex of path P is not v0, delete path P ;

(3) Path comparison: Find a Hamiltonian cycle with minimum cost among all Hamiltonian
cycles of G:

1) Starting from every leaf node to find the cost of every Hamiltonian cycle path;
2) If several paths share the common parent node, compare the cost of each path,
find the path with minimum cost among them;
3) repeat 2) until the root node has been visited;

(4) Path cutting: Delete paths that don’t have the minimum weight;
(5) Output: Output travelling salesman path or No.

End

In [15], a parallel algorithm PAHCP (Parallel algorithm for
Hamiltonian cycle problem) is given to solve the all solution
of the Hamiltonian problem. Based on the idea of PAHCP, a
parallel algorithm PATSP (Parallel algorithm for TSP) for all
solutions of TSP can be described as Table 1.

IV. DESIGN OF P SYSTEMS ΠTSP

In this section, we have designed a P system ΠTSP for
solving TSP based on the algorithm which discussed in Section
III.

A. The Definition of ΠTSP

As the cell-like P system just normally defined by (1), we
defined this cell-like P system ΠTSP as follows:

ΠTSP = (O,µ, ω,R, ρ, io) (2)

where,

1) O is a finite and non-empty alphabet of objects, which
includes:

• Some normal objects:

which indicate vertices in the undirected weighted graph:
{ai, ei, ui, pi, qi, fi | 1 ≤i≤n}

• Some special objects:

-y, w, z: y indicates that all vertices have been visited; w,
z means that Hamiltonian path has been found.

-λ: represents an empty multiset.
-δ: is an operation that means dissolving the current

membrane to release the object to the outside of the
membrane.

In addition, other objects in the system will be described
when they are used.

www.ijacsa.thesai.org 358 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

2
1

Fig. 3. The initial structure of the P system ΠTSP.

2) µ is the initial membrane structure of the system as
shown in Fig. 3, which will change with the use of evolutionary
rules.

3) ω={ω1,ω2} is the multiset in the initial membrane
structure of ΠTSP. ω1={sj | j = n-2}∪{pio, b, m, , fio}∪{ai |
1≤i≤n, i 6= io}, where n is the number of nodes in the graph,
pio means the output path will start from the node io (1≤io≤n),
ai represent the vertices of graph, m and ζ are used to control
the execution of the rules. ω2=λ.

4) R is the set of rules for system evolution, and
R = RC ∪ RD ∪ RF ∪ RT , where, RC is used for path
construction, RD is used for path detection, RF if used for
path comparison and RT is used for path cutting. Based on
the Parallel algorithm PATSP, the procedure of applying the
rules in ΠTSP is:

- path construction(see subsection B 1)).
- path detection (see subsection B 2)).
- path comparison (see subsection B 3)).
- path cutting (see subsection B 4)).

In ΠTSP, ∀ r ∈ Ri has the following two forms:

•(u→ v, k)
•(u→ v|a, k)

Where, u ∈ O+,v = v
′

or v = v
′
δ, v

′ ∈ (O × Tar)∗,
Tar = {here; out; inj |1 ≤ j ≤ m} and k ≥ 1.

(a) k indicates the priority, the smaller value k is set, the
higher the priority of the corresponding rule is. High-priority
rules will be executed before the lower-level rules.

(b) Tar identifies the location where the evolutionary
results are stored. Here means v is remained in membrane
i, out means v goes out of membrane i, and inj means v goes
to inner membrane j. To simplify the representation, here will
be omitted.

(c) Object a is a promoter, it means the rule can only be
applied in the presence of object a.

5) When the system halts, we will find the final result in
membrane 1(i0 corresponds to membrane 1 in ΠTSP).

B. The rules in ΠTSP

1) Path construction:
When ΠTSP starts, objects in skin membrane represent

the undirected weighted graph: 1) ai represents the vertices
of graph G; 2) e represents the end of inputting vertices; 3)
in a Hamiltonian cycle, fi represents the starting vertex and
the end one.

a) Visit vertex
To solve TSP, we firstly need to find all Hamiltonian

cycle paths. That means we should visit from the starting
vertex to all other vertices exactly once, then back to the

starting vertex at last. In the beginning, the length of current
path P is 0 because there is no vertex visited, then the
length will increase by 1 if a vertex has been visited. The
process are defined by rules in RC (1≤i≤n, 1≤j≤n, 1≤k≤n):

r1: ([bai]k → [eic[tpi]k+1]k, 1) r8: (ζ → ζ(ζ, in)|c, 2)
r2: (ui → ui(ai, in)|c, 2) r9: (cpi → pib(qiτ ,in), 3)
r3: (ai → ai(ai, in)|c, 2) r10: (ei → ui |c, 2)
r4: (s→ s(s, in)|c, 2) r11: (ts→ λ, 2)
r5: (fi → fi(fi, in)|c, 2) r12: (qipj → pjbr

n, 1)
r6: (m→ m(m, in)|c, 2) r13: (qipj → d, 1)
r7: (r → r(r, in)|c, 2)

We use rule r1 to create sub-membrane which can
determine whether there is an edge between two vertices,
r2∼r8 are used to copy objects and transfer them to new
membrane, r2∼r8 are executed for the determination whether
add the new vertex to current path P . if there exist an edge
between the last vertex of current path P to the new vertex,
r12 is executed,and n is the weight of the edge, otherwise, r13
is applied, which means there is no edge from those two vertex.

If Vi is the last vertex of current path P , and Vj is
the vertex being visiting. Firstly, r1∼r8 is used to create
sub-membrane, copy and transfer objects to the new sub-
membrane. If there exists an edge from Vi to Vj , the rule
r12 will be executed to create object b and r(the number
of object r represents the weight of corresponding edge),
and this means that Vj will be added to the current path. If
there is no edge from Vi to Vj , r13 will be executed and
object d will be created to dissolve the sub-membrane and
objects in it, which means that is not a Hamiltonian cycle path.

b) Back to the starting vertex fi
When all the vertices have been added to the path P , if

Vj is the last vertex of path P , and there exist an edge from
Vj to fi, the path P is a Hamiltonian cycle path. And if there
is no edge from Vj to fi, the path P is not a Hamiltonian
cycle path. The process are defined by rules in RC (1≤i≤n):

r14: (bfi → y[pi], 3) r17: (piy → pi(yqi, in), 1)
r15: (yb→ (o;w, out), 1) r18: (rpi → pi(ri, out)|o, 1)
r16: (yd→ dδ, 1)

After the execution of r14, a new sub-membrane and object
pi (represent the starting vertex) will be created, object qi
(represent the last vertex of path P) will be created and sent
into the sub-membrane with the execution of r17. At this time,
r12 will be executed to create object b and object r if there is an
edge from the last vertex to the starting one. Then r15 will be
executed to create object object o and send objectw (indicate
that there is a Hamiltonian cycle path) to outer membrane,and
because of the existence of object o, all object r will be
converted to ri to outer membrane. r13 will be executed to
create object d if there is no edge from the last vertex to the
starting vertex. The object d will cause the execution of the
r16, which dissolve the sub-membrane and shows that path P
cannot be a Hamiltonian cycle path.

2) Path detection:
By detecting, it is judged whether the newly generated

membrane is a valid membrane on the Hamiltonian path, and

www.ijacsa.thesai.org 359 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

if it is not then pruning it.

a) Judgment
When rule r15 in RC is applied, object w will be created

to send to outer membrane, and it shows that a Hamiltonian
cycle path has been found. Rules in RD associated with the
process are:

r19: (w → zδ, 1) r23: (vzh→ v(t,out), 4)
r20: (tz → v(t, out), 3) r24: (szh→ z, 2)
r21: (szt→ vz, 1) r25: (zh→ k, 5)
r22: (k → hδ, 1)

Rule r19 is used to reduce the thickness of membrane
and it can covert object w to object z. The existence of
object s means that there are some sub-membrane not
disposed in current membrane. r20 is used to create object
v and send object t to outside when there is no object s.
the number of vertices in current path is represented by
the depth of membrane. object pi represents vertex Vi is
on the current path, and the number of v represents the
number of Hamiltonian cycle paths. If there is object s in
current membrane, r21 will be executed to create object v only.

If there is no Hamiltonian cycle path found, rule r22 will
be executed to send object h(shows that no Hamiltonian
cycle path was found) to outside. r24 will be executed if
object s exists in outer membrane; if there is only object
v exist in outer membrane, it shows that all sub-membrane
have been disposed and there is Hamiltonian cycle path exist,
and r23 will be executed to delete object h and to send t to
outside; if there is no object s and object v, it means that all
sub-membrane have been disposed and no Hamiltonian cycle
path was found, then r25 will be executed to create object k
for the next step.

b) Pruning
After path detection, we need to remain the meaningful

membranes and objects which shows the found Hamiltonian
cycle path and to abandon the useless membranes and objects
In the following cases, pruning is required in ΠTSP:

i) Visiting each vertex. Let Vi be the next vertex to be
visited, and we need to find out whether there is an edge from
the last vertex in current path to Vi, we just create a new
sub-membrane for this process by rule r1 in RC. If there is no
edge the sub-membrane and the objects in it will be dissolved
by those delete rules in RD. The rules in RD associated with
the process are:

r26: (s→ λ |d, 1) r31: (d→ kδ, 2)
r27: (t→ λ |d, 1) r32: (pi → λ |k, 1)
r28: (ai → λ |d, 1) r33: (ζ → λ |k, 1)
r29: (ui → λ |d, 1) r34: (m→ λ |k, 1)
r30: (fi → λ |d, 1) r35: (r → λ |d, 1)

ii) All sub-membrane have been created. If all sub-
membrane have been created in current membrane, we need
to delete objects in current membrane except s, pi and
reduce the thickness of current membrane. The rules in RD

associated with the process are (1≤i≤n):

r36: (bui → g, 2) r39: (fi → λ |g , 1)
r37: (ai → λ |g , 1) r40: (g → zδ, 2)
r38: (ui → λ |g , 1)

r36 is used to create new membrane with ui representing
vertex vi has been added to current path. When there is
no object ai (1≤i≤n) in current membrane, it means all
vertices have been visited, and r36 with a lower priority will
be executed to create object g. Then the delete rules will be
executed to delete relative objects and membranes.

iii) All vertices have been added to current path. The next
step is to determine if there is an edge from the last vertex
to the starting one. if not, object d will be created by r13 in
RC. Then r31 and r22 in RD will be executed to dissolve
the sub-membrane and objects, and the current path is not a
Hamiltonian cycle path. The rules in RD associated with the
process are (1≤i≤n):

r31: (d→ kδ, 2) r22: (k → hδ, 1)
r32: (pi → λ |k, 1)

iv) No Hamiltonian cycle path found after all sub-
membranes were detected. In this case, we just dissolve the
current membrane by the following rules in RD (1≤i≤n):

r32: (pi → λ |k, 1) r22: (k → hδ, 1)
r25: (zh→ k, 5)

3) Path comparison:
When all Hamiltonian cycle paths have been constructed,

we need to find a path with a minimum cost among
all Hamiltonian cycle paths. Starting from the innermost
membrane to skin membrane, we move object ri(1≤i≤n)
whose number represent the cost of one Hamiltonian cycle
path to outer membranes and compare different paths to find
a path with a minimum cost. Rules in RF associated with this
process (1≤i≤n, 1≤j≤n):

r41: (rim→ ciriαi, 1) r46: (βi → λ |yi, 1)
r42: (ri → βi|ci, 1) r47: (αi → λ |yi, 1)
r43: (civ → m|βi, 1) r48: (γ → λ|yi, 1)
r44: (βiβj → βγ, 2) r49: (βζαi → βζi, 2)
r45: (βiγ → yi, 1) r50: (β → βi |ζi, 1)

The strategy of our comparison is pairwise comparison,
rule of type r41 and r42 is used to control that only two
Hamiltonian cycle paths are compared every time. Because
of the uniqueness of object m in a membrane, object ri will
be converted to object βi sequentially. The number of object ri
and rj represents the cost of two different Hamiltonian cycle
paths (path i and path j), the subscript of object r is decided by
the subscript of object p in the corresponding sub-membrane.
When object ri and rj has been converted to βi and βj by
applying rule r42, rule of type r44 will be used to convert βi
and βj to β. Assume that the number of βi is less than βj ,
which means that the cost of path i is smaller than path j. So
after rule r44 is applied, βj will be left. Then rule of type r45,
r46 and r47 will be applied to delete αj and all of object βj .
What’s more, rule of type r48 will be applied to delete object
γ.

www.ijacsa.thesai.org 360 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

After all object rj has been deleted, we need to convert
β to βi for letting the process of comparison continue. When
rule of type r49 is applied, αi will be dissolved and ζ will
be converted to ζi. And because the existence of object ζi, β
will be converted to object βi under the application of rule
r50. By now, a pairwise comparison has completed, object rj
which represent the larger cost of a Hamiltonian cycle path
has been all deleted. Rules in RP will applied until all object
rk (1≤k≤n) which don’t represent the Hamiltonian cycle path
a minimum cost in the membrane are deleted.

4) Path cutting:
When a Hamiltonian cycle path has been detected that

doesn’t have a minimum cost, we need to delete corresponding
membranes that represent this Hamiltonian cycle path. Rules
in RT associated with the process are (1≤i≤n, 1≤j≤n):

r51: (yi → (yi, in)|¬αi, 1) r54: (xpi → d(x, in), 1)
r52: (yipi → pix, 1) r55: (βi→ni |¬v , 1)
r53: (yipj → (yi, out), 1) r56: (ni→(rj , out)|pj , 1)

Object y is used to start delete rules, the subscript of object
y is decided by the subscript of object p in the corresponding
sub-membrane. When object yi exists and αi is dissolved, a
Hamiltonian cycle path has been detected that doesn’t have a
minimum cost. Then under the application of rule r51, r52 and
r53, object yi will get in and out sub-membranes continuously
until the subscript of object p in a membrane is the same as
yi. After rule r52 in sub-membrane is applied, object x will
be created. When object x exists, rule r54 will be applied
to create object d and send object x into sub-membrane.
Because of the existence of d, the membrane and objects in
it will be dissolved. With the implementation of rule r54, all
corresponding sub-membranes will be dissolved. Once object v
doesn’t exist in membrane, path comparison in this membrane
has completed, we need to move object ri to outer membrane.
Rule r55 will convert βi to ni when object v doesn’t exist in
membrane, then all object ni will be convert into rj and be
sent out because of the existence of object pj .

C. Parallelism Analysis of ΠTSP

1) Analysis of ΠTSP: For a complete undirected weighted
graph with n vertices, we can see that the number of all
possible Hamiltonian cycle path is at most n! by using the
exhaustive method. So as long as taking n! case into account
and judging that whether each case can constitute a ring, we
can find all the Hamilton loop. As is shown in Fig. 4, this
process could be described as construct a multi-tree where each
possible Hamiltonian cycle path could be found. When the P
system starts, let the starting vertex be V1, in the outermost
membrane is the objects represent the rest vertices V2 ∼ Vn.
For every Vi (2≤i≤n) hasn’t been visited, we create a new
membrane to judge whether there is an edge from V1 to Vi
(corresponding rule is r1). If the two vertices are connected,
the new sub-membranes will be remained (corresponding rules
are r2 ∼r8). Then for the n-2 vertices that haven’t been visited,
n-2 new membranes will be created continuously in just sub-
membranes. The process will be repeated until each vertex is
on the path. What can be summarized by the above process
is n! case could all be taken into consideration. For each of
the generated path, we judge whether there is an edge between
the two vertices in the new sub-membrane (corresponding rules

V2 Vn-1 Vn

V1

V2 V4 Vn-1 Vn

V3

V1

Vi

Vj

The depth of tree

is n

Fig. 4. The process of constructing a multi-tree.

are r12 and r13). If there is an edge connected between two
vertices, then the sub- membrane will be remained; otherwise,
we need to dissolve surplus membranes and pruning is needed
in four situations in ΠTSP (crucial corresponding rules are
r13, r22, r31 and r40). So when the process of path detection is
completed, only membranes that represents Hamiltonian cycle
paths will be remained.

Hamiltonian cycle paths are represented by a series of
membranes that are nested one by one in our P system. As
described in algorithm PATSP, all Hamiltonian cycle paths con-
stitutes a multi-tree together. Because each leaf node represents
a Hamiltonian cycle paths, so to find the solution of travelling
salesman problem, we only need start from the leave nodes
of the multi-tree to compare the weight of each Hamiltonian
cycle path until we find the Hamiltonian cycle path with
minimum weight. In our P system, starting from the innermost
membranes, then compare the weight of each Hamiltonian
cycle path (corresponding rules are r41 ∼r44) and delete the
the corresponding membrane structures (corresponding rules
are r45 ∼r48 and r51 ∼r54) represents Hamiltonian cycle
paths without a minimum weight. What’s more, transfer the
weight of the path has a bigger weight to outer membrane
(corresponding rules are r55 ∼r56) and continue the process
of comparison until we find the path with a global minimum
weight. What can be summarized by the above process is the
right result will be generated when the whole system halts.

2) Analysis of time complexity: According to the maximum
parallelism of P systems, the rules that meet their requirements
will be executed at the same time. As shown in Fig. 5, it is
the process of the execution of rules in ΠTSP. We assume
that the time cost for executing a rule is a slice. What’s
more, rules like [ri] means ri could be executed or not in Fig. 5.

a) Cost of path construction
The process of path construction is to use the parallel

computing methods to construct every possible Hamiltonian
cycle path. For a complete undirected weighted graph with n
vertices, the number of vertex on a Hamiltonian cycle path
is n too. For the ith vertex on the path, there are n-i vertices
that should be taken into consideration (n − i + 4 slices). So
the whole process will take

∑n
i=1(n− i+ 4) slices.

www.ijacsa.thesai.org 361 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

b) Cost of path detection
The process of path detection and path construction

happens at the same time. Dissolving membranes that
represent one illegal Hamiltonian cycle path cost constant
time (up to 3 slices). Because path construction and path
detection happens parallel, so it cost about 3×n slices in total.

c) Cost of path comparison
One comparison costs 8 slices. Because the process of

path comparison is parallel and starts from the innermost
membranes. For an undirected weighted graph with n vertices,
the depth of membranes is n. So it cost 8n slices in total.

d) Cost of path cutting
The process of path cutting happens at the same time with

path comparison. One path cutting costs 3 slices. When the
depth of membranes is n, the total cost of path cutting is 3n
slices. In summary, the total cost of ΠTSP can be computed
as follows: TTSP=

∑n
i=1(n− i+ 4) + 3×n+ 8×n+ 3×n =

1
2n(n− 1) + 18n = O(n2).

In [17], author uses RanGen (Randomly Generating)
MCGA (Membrane-Computing-Genetic-Algorithm) to solve
travelling salesman problem, the time complexity of the al-
gorithm is O(n3) time. This computation is much faster than
that of brute force complete enumeration method in serial,
but is still slower than PATSP algorithm. Compared with the
traditional ant colony algorithm and genetic algorithm, our
algorithm is not only better in time complexity, but also can
solve the exact solution of the problem.

V. CALCULATE INSTANCE

In this section, An example is given to show the whole
process to solve TSP in ΠTSP.

The undirected weighted graph G=(V , E) is shown in Fig.
2, let V1 be the starting vertex (also the last vertex). The
process in ΠTSP are as followed:

A. Path Construction

Objects represent the undirected weighted graph which
should be input to the skin membrane. Firstly, input multiset
p1a2a3a4a5, then input f1, last input mbs3ζ. We will construct
legal paths by membrane creation. The available rules in RC

are applied in the order of {r1}→{r2∼r8}→{r9∼r11}→{r12}.
There is multiset s3p1ba2a3a4a5f1mζ in membrane 2, rule
r1 is used to create sub-membrane and r2∼r8 are used to
copy objects and transfer them to new sub-membrane. At first,
the length of current path is 1, and object p1 shows that
the vertex V1 has been added to current path. Then r1∼r8
will be executed to create a new sub-membrane with multiset
s3tq1p2a3a4a5f1mτζ to determine if there are edges from V1

to V2, V3, V4, V5. As shown in Fig. 2, there exist an edge from
V1 to V2. So rule r12 in RC will be executed, multiset q1p2
are converted to p2br5 and the new sub-membrane will not be
dissolved, which means that V2 has been added to current path.
There are same process when disposing V4 and V5, because
there are edges from V1 to them. And the sub-membrane will
be dissolved when disposing V3 because there is no edge from
V3 to V1. Objects in sub-membrane continue to evolve, and
there is multiset s2p2ba3a4a5f1τ in the new sub-membrane

Fig. 5. the process of execution of the rules in ΠTSP.

when disposing V2, which shows that V2 is the last vertex in
current path and V3, V4 and V5 have not been visited. So the
next step is continue to create new sub-membranes to visit V3,
V4 and V5.

If all vertices have been visited and added to current path
P , the next step is to determine whether there is an edge from
the last added vertex to the first one of path P . After we have
added V3,V4 and V5 to current path P (because there are
edges connecting them), we consider the edge from V5 to V1,
so the rule r14 and r17 in RC is applied. V1 will be added
to current path P with the execution of r12 and path P is a
Hamiltonian cycle path.

B. Path Detection

1) Judgment: As shown in Fig. 6, after r15 in RC are
applied, object w will be created and sent to membrane 5
which means there is a Hamiltonian cycle path found. And
now there is a multiset wtp5mτζr27 in membrane 5, after r19
in RD is executed the multiset in membrane 5 will change to
mtp5zζr

27. Then r20 in RD will be applied to create object v
and send object t to membrane 4. The rule r21 will be executed
to evolve multiset szt to vz.

As shown in Fig. 7, when object d is created in membrane
6, which means there is no Hamiltonian cycle path. After that,
membrane 6 will be dissolved by r16 and object d will be sent
to membrane 5. Then object d will be converted to object k and
the thickness of membrane 5 will be reduced by the execution

www.ijacsa.thesai.org 362 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

s
2
p1z

sp3zτ
p4zτ
wtp5τ

op1

5

234

1

...

sp2zτ

6

mζ
mζ mζ mζ

mζr
27

Fig. 6. Exist a Hamiltonian cycle path.

s2p1z

sp5z p4z
tp3τ

ydr21

5

234

1

...

sp2z

6

mζ
mζ mζ mζ

mζ

Fig. 7. No Hamiltonian cycle path.

s
3
tq1p3a2a4a5f1

2
3

1

s3p1u2u3ba4a5f1

s2p2e3ca4a5f1τ

4

tp3
5

Fig. 8. Visit vertex of graph G.

2

s3p1u2u3u4u5bf1 �

.........

Fig. 9. All object ai has evolved to ui in membrane 2.

of r31 in RD. Because of the existence of object k, rule r32 in
RD will be applied to dissolve object p3 in membrane 5.

2) Pruning: The process of pruning is to dissolve the
surplus membranes and objects and remain the meaningful
membranes and objects which indicate the Hamiltonian cycle
path. The associated execution of rules in this example are as
followed:

a) As shown in Fig. 8, because there is no edge from V1

to V3, rule r13 is applied to create object d. Then membrane
3 and all objects in it will be dissolved by the execution of
rules in RD.

b) As shown in Fig. 9, all objects ai has evolved to ui
which means that all vertices have been visited. Then rules in
RD are applied in the order of {r36}→{r37, r38, r39}→{r40}.
With the execution of those rules, objects in membrane 2 will
be dissolved except s, pi.

c) As shown in Fig. 10, all vertices have been added to
current path P . However, there is no edge from V3 to V1, so
r13 in RC is applied to dissolve membrane 6 and object d will
be sent into membrane 5, then object d will evolve to object
k due to the execution of rule r31 in RD.

d) As shown in Fig. 11, there is no Hamiltonian cycle
path found and all sub-membranes of membrane 4 have been
disposed. With the execution of rule r25 and r32 in RD,
membrane 4 and objects p2 in it will be dissolved.

s
2
p1z

sp5z p4z
tp3τ

yq3p1r
23

5

234

1

...

sp2z

6

ζm
ζm ζm

ζm

ζm

Fig. 10. Each vertex has been added to current path.

sp4z sp5z

p2zh

23
4

... ...

s2p1z

�m

�m
�m

�m

1

Fig. 11. All sub membranes of membrane 4 have been disposed.

sp3z p4z tp5τ
or23p1

5

2
3

4

1

...

sp2z

ζm

6

s
2
p1z

ζm
ζm ζm ζm

p5z tp4τ
xq4r

27p1
9

ζm ζm

8 7

...

τ

Fig. 12. Two Hamiltonian cycle paths.

p3α4 p4 p5
op1

5

2
3

4

1

...

sp2z

ζm

6

s
2
p1z

ζm
ζm ζm ζm

p5 p4

9

ζm ζm

8 7

...
r5
23

op1
r1
27

Fig. 13. The membrane structure in path comparison.

C. Path Comparison

As shown in Fig. 12, two Hamiltonian cycle paths has been
found in membrane with the cost of 23 and 27. We need to
find the smaller one between the cost of two Hamiltonian cycle
paths. Because of using of rule r18 in RC, all object r will
be sent out from the innermost membrane. After rule r19 and
r20 in RD is applied in membrane, the number of object v
in membrane 5 is 1, after rule of type r41 and r42 in RF is
applied, all object r1 has been converted to object β1. Then
rule of type r55 and r56 will be applied to convert object β1
to object r5 and send all object r5 to membrane 4. Similar to
the application of rules in membrane 5, all object r5 will be
converted to object r4 and will be sent into membrane 3. By
now, the membrane structure is shown in Fig. 13.

Rule of type r41 in RF is used to create object c4 which is
used to convert all object r4 to β4 and because of the existence
of object β4, object c4 will be converted to object m. As is
shown in Fig. 14, all object r4 in membrane 7 will also be sent
into membrane 3 and will be converted to object r5. After rule
of type r41∼r43 in RF is used, object r5 will be converted to
object β5, then the comparison of the cost of two Hamiltonian
cycle path will start. After rule of type rule r44 in RF is applied,
object β4 and object β5 are converted to β. And three object
are left in membrane 3. So rule of type r45 will be used next
to create object y5 which is used to delete object β5, αi, and
γ. By now, objects r5 which represents the larger cost of two

www.ijacsa.thesai.org 363 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

p3α4 p4 p5
op1

5

2
3

4

1

...

sp2z

ζm

6

s
2
p1z

ζm
ζm ζm ζm

p5 p4

9

ζm ζm

8 7

...
β4
23

op1
β5
27

Fig. 14. The membrane structure in path comparison.

ζmp1

p3ζm
p5ζm

ζmp4

op1
5

234

1

...

p2ζm

6

β4
23

Fig. 15. The membrane structure after path comparison.

ζmp1

p3ζm
p5ζm

ζmp4

op1
5

234

1

p2ζm

6

r2
23

Fig. 16. The final membrane structure.

Hamiltonian cycle paths has been all deleted. Rule of type r49
in RF is used to create object ζ4 which is used to convert β
to β4. By now, a path comparison has been completed which
is shown in Fig. 15.

D. Path Cutting

After a path comparison, we have known membranes and
objects which represent a Hamiltonian cycle path with a larger
cost. As shown in Fig. 15, membrane 7 and its sub-membranes
should be dissolved. Object α5 has been deleted because it
represent the path with a larger cost. By applying the rule
of type r51∼r53 in RT, object y5 will be sent into a sub-
membrane which has object p5. Then by applying rule of type
r54 in RT continuously, object d will be created to start delete
rules. As a result, corresponding membranes and objects will
be dissolved. What’s more, β4 will be converted to n4 by
applying rule of type r55 in RT because object v has been
all dissolved which means that a path comparison has been
completed. Then n4 will be converted to object r3 and will
be sent to outer membrane to start a new path comparison
because of the existence of object p3. By now, a path cutting
has been completed.

E. Final Result

When the whole system halts, the final membrane structure
is shown in Fig. 16. As we can see in Fig. 16, only mem-
branes and objects that represent the Hamiltonian path with a
minimum cost are remained. Object pi represents vertex vi in
graph. By detect object pi in each membranes, we knows the
path is: {V1 → V2 → V3 → V5 → V4 → V1}.

VI. CONCLUSIONS

The cell-like P system is a new computational system
inspired by biological cell behavior. This paper presents a

cell-like P system ΠTSP to solve travelling salesman problem
with O(n2) complexity. In ΠTSP, we firstly construct all
Hamiltonian cycle paths by membrane creation, then find the
Hamiltonian cycle path with a minimum cost, lastly remove all
membranes and objects that do not contain the TSP solution.
Finally, an example is given to illustrate the feasibility and
effectiveness of our P system.

REFERENCES

[1] A.Vitale, G.Mauri, C.Zandron. Simulation of a bounded sym-
port/antiport P system with Brane calculi[J]. Biosystems, 2008, 91(3):
558-571.

[2] C.Martin-Vide, Gh. Pǎun, A. Rodrı́guez-Patón. On P systems with
membrane creation[J]. Computer Science Journal of Moldova, 2001,
9(2): 134-145.

[3] C.Mart, Gh. Pǎun, J.Pazos. Tissue P systems[J]. Theoretical Computer
Science, 2003, 296(2): 295-326.

[4] R. Freund, Gh. Pǎun, M. J. Pérez-Jiménez. Tissue P systems with
channel states[J]. Theoretical Computer Science, 2005, 330(1): 101-
116.

[5] X. Y. Zhang, X. X. Zeng, B. Luo, and J. B. Xu, Several Applications
of Spiking Neural P Systems with Weights, Journal of Computational
and Theoretical Nanoscience, 2012, 9(6): 769-777.

[6] T. Song, Y. Jiang, X. L. Shi, and X. X. Zeng, Small Universal Spiking
Neural P Systems with Anti-Spikes, Journal of Computational and
Theoretical Nanoscience, 2013, 10(4): 999-1006.

[7] P. Guo, J.-F. Ji, H.-Z. Chen, R. Liu, Solving All-SAT Problems by P
Systems, Chinese Journal of Electronics, 2015, 24(4): 744-749.

[8] P. Guo, J. Zhu, M. Q. Zhou, A family of uniform P systems for All-
SAT problem, Journal of Computational and Theoretical Nanoscience,
2016, 13(1): 319-326.

[9] L. Pan, A. Alhazov. Solving HPP and SAT by P systems with active
membranes and separation rules[J]. Acta Informatica, 2006, 43(2):13
l-145.

[10] K Ishii, A. Fujiwara, Asynchronous P systems for SAT and Hamilto-
nian Cycle Problem, in: 2010 Second World Congress on Nature &
Biologically Inspired Computing, IEEE, 2010: 513-519.

[11] M. Padberm, G. Rinaldi. A Branch-And-Cut Algorithm For The Resolu-
tion Of Large-Scale Symmetric Traveling Salesman Problems. Society
for Industrial and Applied Mathematics, 1991, 33(1): 60-100.

[12] P. Guo, Z. J. Liu. Moderate ant system: An improved algorithm for
solving TSP[C]. 7th International Conference on Natural Computation,
pp. 1190-1196, 2011.

[13] P. Manalastas. Membrane Computing with Genetic Algorithm for the
Travelling Salesman Problem. In: Nishizaki S., Numao M., Caro J.,
Suarez M.T. (eds) Theory and Practice of Computation. Proceedings in
Information and Communications Technology, vol 7: 116-123. Springer,
Tokyo. 2013.

[14] T. Y. Nishida, Membrane Algorithms: Approximate Algorithms for NP-
Complete Optimization Problems. Springer Berlin Heidelberg, 2006:
303-314.

[15] P. Guo, Y. L. Dai, H. Z. Chen, A P system for Hamiltonian cycle
problem, Optik, 2016, 127(20): 8461-8468.

[16] Gh. Pǎun, Computing with membranes. Journal of Computer and
System Sciences, 2000, 60(1): 108-143.

[17] Gh. Pǎun, Membrane Computing. An Introduction, Springer-Verlag,
Berlłn, 2002.

www.ijacsa.thesai.org 364 | P a g e

