
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

Design Patterns and General Video Game Level
Generation

Mudassar Sharif, Adeel Zafar, Uzair Muhammad
Faculty of Computing

Riphah International University Islamabad, Pakistan

Abstract—Design patterns have become a vital solution for
a number of problems in software engineering. In this paper,
we have performed rhythmic analysis of General Video Game
Level Generation (GVG-LG) framework and have discerned 23
common design patterns. In addition, we have segregated the
identified patterns into four unique classes. The categorization
is based on the usage of identified patterns in game levels. Our
future aim is to employ these patterns as an input for a search
based level generator.

Keywords—General video game level generation; rhythmic anal-
ysis; procedural content generation; design pattern; search based
level generator

I. INTRODUCTION

With the passage of time, digital games have become
a large industry. In 2014, the gaming industry generated
more than 47 billion dollars worldwide [1]. However, with
expansion, this industry is also facing a number of problems.
The most important aspect in this regard is the total cost and
budget that is being utilized for game development. Game
content upholds a significant chunk of game development and
with technical improvement in devices like smartphones, the
content is becoming more complex and demanding. Therefore,
the rapid development of game content is vital [10]. Procedu-
ral Content Generation (PCG) is the algorithmic creation of
game content with less human intervention. Procedural content
generators capture game rules as an input and then generate
essential content for a game. PCG has been used frequently
by indie game developers to generate diverse content including
characters [3], terrains [3], [9], dungeons [4] and levels [5]–[8],
[11], [18].

Level Generation has been the most significant and old
problem in PCG domain. Yet, most of the level generation
work has been done for specific games [5]–[7], [18]. Gener-
ating content for a suitable single type of game is important
but it undermines the capability and reusability of a generator.
On the other hand, a level generator that can generate levels
for multiple games can possess considerable challenges. In
this regard, an important step has been made by introducing a
General Video Game Level Generation (GVG-LG) framework
[8]. This framework generates levels for multiple games, unlike
other level generators. The GVG-LG framework is comprised
of Random, Constructive and Search-Based Level Generator
(SB-LG). The initial effort was to identify design patterns from
the GVG-LG framework and to employ them as objectives for
SB-LG.

In this study, we have performed rhythmic group analysis
for the identification of design patterns. After the analysis of

each game presented in the GVG-LG framework, 23 unique
design patterns were identified. These patterns were further
classified into four different categories. The central aim of this
research was to utilize these design patterns as objectives for
the SB-LG in the GVG-LG framework. Our effort for pattern
identification is inspired by the work done for Super Mario
Bros (SMB) [6].

The paper is further divided into five sections. The second
section explains the existing knowledge about PCG, the impor-
tance of design patterns in level generation and level generation
for general video games. The third section of the paper presents
the GVG-LG competition and analysis for identification and
classification of design patterns. Lastly, we argue about the
application of design patterns and their usage as objectives for
SB-LG.

II. EXISTING WORK AND BACKGROUND

A. Procedural Content Generation

PCG is the algorithmic creation of game content with
limited or indirect user input [2]. Content includes assets of
a game, i.e. maps, quests, textures, characters, rules, terrains,
dungeons, levels, and sprites, etc. PCG is not a new domain
and had been used in 80’s for generating hundreds of stars in
Elite [17].

Most of the algorithms that are used for generation of
content are constructive and generate-and-test algorithms [17].
Constructive algorithms generate the content once and do not
iterate upon it for further content improvement. On the other
hand, generate-and-test algorithms first generate the content
and then iterate upon it to make it of sufficient quality. In
literature, these algorithms are referred to as search-based
algorithms.

Along with advantages, PCG also has some limitations,
for example creating a generator for each game may require
more time and cost as compared to the manual creation of
the content [11]. The main reason for creating a general level
generator is to overcome such disadvantages. In addition, if we
want to create content with ultimate control and with specific
details, the best choice is to create the content manually [12].
Therefore, the control and evaluation of content in PCG poses
challenges.

B. Level Generation

Level generation is the oldest and complex task in PCG
domain. It requires the understanding of all the elements of
a game and how to fit them into a level. The procedural

www.ijacsa.thesai.org 393 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

generation of levels has witnessed notable attention and various
studies have been conducted in this regard. Most of the work
has been focused on the generation of levels for specific games
[7], [11], [18].

C. Design Patterns and Game Levels

Alexander initially developed patterns for problem-solving.
It consists of two components: problems and their solution.
The problem refers to a common and recurring design element
in object-oriented development [13]. In a software application,
the design patterns give insight to designers about architectural
knowledge and provide a template for many situations [20].

In games, patterns are the problems created by designers
for players to solve [5]. There is a collection of possible design
choices in a game that can provide architectural knowledge to
a designer. In other words, these design choices are archi-
tectural chunks for a game design which can automate game
development.

Design patterns have been used previously for the gener-
ation of levels for specific games. Hullett et al. used design
patterns for generating levels in the first-person shooter game
[18]. Similarly, Dahlskog et al. [6] identified patterns of
enemies, gaps, valleys, multiple paths, and stairs to generate
levels for the game of SMB. Initially, the author proposed a
straightforward way of combining the discovered design pat-
terns into a game level [5]. In addition, the author used vertical
slices of existing levels as design patterns and generated levels
of sufficient quality [6].

In a recent study [7], a multi-level generator was also
proposed. In this approach, three layers of abstraction for
design patterns (meso, micro, and macro) were proposed and
game levels were generated by using SB-LG. The literature
review gives a clear indication of the usage of design patterns
for generating game levels.

D. General Video Games Level Generation

To the best of our knowledge, most of the level generation
work has been done for specific games like SMB [5]–[7], [14]
and Rogue [15]. These generators possessed sufficient advan-
tages. However, the problem is in the re-usability, development
time and cost of such generators.

Preferably, the grand goal of Artificial Intelligence is to
model general solutions that can be applied to a particular
set of problems. For video games, this can only be done
when we have a method to describe the games. Video Game
Description Language [9] was developed originally for the
Stanford General Video Game Playing. This language has
mostly been used to tackle the problem of general games.

For the general video game level generation problem, an
important step was identified in [11], where a video game
descriptive language was used to generate multiple levels for
general games (Sokoban, Lava, Block Faker, Gem and Destroy
Game). Though the generator possessed notable advantages,
it had no framework to compare other generators. Similarly,
Neufeld et al. [16] introduced a general video game level
generator by using Description Language and Answer Set
Programming. The generator was tested against three different

games and generated levels had a structure similar to many of
the existing levels.

In this regard, a significant step has been taken by intro-
ducing the GVG-LG framework. The framework is based on
GVG-AI framework and allows users to create and test their
own level generators against a variety of games [8]. Three
distinct generators: Random, Constructive and SB-LG were
introduced within this framework. After detailed experimenta-
tion, SB-LG proved to be the best out of three. The SB-LG is
based on an evolutionary algorithm, which takes an array of
tiles as input and generates a level for the game.

III. IDENTIFYING PATTERNS FOR GVG-LG FRAMEWORK

A. Rhythmic Groups

Rhythmic groups are short and non-overlapping sets of
components that unfold an area of challenge. This approach
assists to recognize challenging areas within a game level and
provides a way to discover the complication behind such areas
[19]. Rhythmic groups are quite modular, therefore provide
assistance in patterns identification and their re-usability in a
game level. In this research, rhythmic analysis was applied on
a set of games to investigate design patterns inside a level. For
this purpose, a game level is divided into cells. The cell is a
section of game-play that ends, where the player can choose
a new path. Cells inside a level design helps to analyze the
structure and to provide a catalog of several paths through a
level. The path may be of diverse difficulties, depending on
the structure and dimensions of the cell.

B. Search for Patterns

The GVG-LG framework is built upon the GVG-AI frame-
work. It consists of 92 different games with 5 levels of each
game. Level of each game is divided into small groups to
identify the challenging areas through rhythmic group analysis.
By analyzing the GVG-LG framework, it is founded that most
of the games had common design structure with most common
elements. Therefore, primarily focus is based on the underlying
structure of game levels for identification of design patterns.
Design patterns are categorized into four classes on the basis
of their rationale in the level:

• Solid Sprites: Blocks the movement of the player.

• Collectible Sprites: Can be destroyed by the player
on interaction.

• Harmful Sprites: Are harmful and can kill the player
on interaction.

• Enemies: Agents having ammunition and are harmful
to player.

1) Analysis of Existing Games for Solid Sprites: In this
section, rhythmic group analysis is applied on the GVG-LG
games to identify design patterns for solid sprites. In Fig. 1,
five cells are highlighted for the recognition of patterns. Cell
1 consists of a squared shaped solid block or sprite. Whenever
player meets a solid sprite in his way, he moves up or down
and provides a transition to a different path. Cells 2 and 3 are
in rectangular shape. These two cells have the same purpose
of creating a wall but, here player requires more effort to pass

www.ijacsa.thesai.org 394 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

through. The structure of cell 2 shows that it can be obtained by
connecting two or more solid sprites vertically, and similarly
cell 3 can be obtained by connecting them horizontally. In a
similar way, cell 4 represents the boundary of the level which
can be established by assembling solid sprites vertically and
horizontally without blocking any internal space of the level.
Boundary sprites make a dashboard and allow a player to play
inside a specified area.

Fig. 1. Analysis of an existing level for solid sprites.

To completely block an area or to form a room inside a
level, these sprites can be connected in a two-dimensional way.
Cell 5 consist of a movable sprite. The Player can use a key
to unlock such type of sprite to find a path. The analysis of
existing level shows some interesting aspects of level design
for games. The structure of existing cells can be obtained by
assembling solid sprite by using different patterns. Table 1
shows some common design patterns for placement of solid
sprites.

TABLE I. SOLID SPRITES FOR GVG-LG

Solid sprites
Single Single solid sprite at a free space.
Boundary Collection of solid sprites to form game dashboard.
Wall Two/multiple sprites connected vertically or hori-

zontally to block a path.
Room Vertically and horizontally connected sprites to sur-

round an area.
Movable Sprites that can move after unlocking it by key.

2) Analysis of Existing Games for Collectible Sprites:
Mostly all 2D platform games have collectible sprites in the
form of rewards. Collectible sprites are objects in a level that
can be destroyed by the player on interaction and provides a
reward, such as points, coins or weapons [19]. In Fig. 2, five
cells are identified for the collectible sprites. Cell 1 consist of
a single sprite at a free space, the player requires little effort
to deal with it. Cells 2 and 3 shows sprites in a group form,
where a player needs more effort for interaction. If the player
wants to acquire maximum points in less time, he may choose
the path where sprites are in grouped form. Similarly, cell 4
consist of a collectible sprite along with enemy and cell 5 has
a collectible sprite between harmful sprites in a hidden form,
which creates a challenging environment for the player.

Moreover, these sprites may move in a single or multiple
lines. Each line of sprites may move in same direction or in
opposite direction. Table 2 shows collectible sprites which can

Fig. 2. Analysis of an existing level for collectible sprites.

be destroyed on player interaction but, the player may require
different skills for each.

TABLE II. COLLECTIBLE SPRITES FOR GVG-LG

Collectible sprites
Single Single sprite at a free space.
Group Two or more sprites together.
Single line and moving Multiple sprites in a line and moving in same

direction.
Multi-line and moving Multiple lines of sprites and each line moves in

opposite direction to its nearer line.
Risk and reward Collectible sprite with an enemy together at a place.
Hidden Collectible sprites surrounded by other types of

sprites.

3) Analysis of Existing Games for Harmful Sprites: In Fig.
3 cell 1 presents single sprite at a place and cell 2 shows
multiple sprites together, while cell 3 consists of two different
types of harmful sprites. In addition, a hole presented in cell 4,
may also be harmful and if designed using multiple patterns;
will pose a challenge for the player.

Fig. 3. Analysis of an existing level for harmful sprites.

TABLE III. HARMFUL SPRITES FOR GVG-LG

Harmful sprites
Single Single sprite at a place.
Group Two or more harmful sprites at a place.
Multi-type Harmful sprites of multiple types together at a place.
Hole Single or multiple holes together.

Table 3 shows patterns of harmful sprites for the GVG-LG

www.ijacsa.thesai.org 395 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

framework. By increasing numbers and types of these sprites,
the player may face a difficult environment to play. Levels
where goals are surrounded by a group of harmful sprites like
in fire game, the player cannot reach his goal without defeating
these harmful sprites.

4) Analysis of Existing Games for Enemies: Enemies pat-
terns presentation in Table 4 may give a meaningful difference
in the game-play. For example, 2-enemies together at a place
can block the player path in an effective way.

TABLE IV. ENEMY SPRITES FOR GVG-LG

Enemies
Single Single enemy at a free space.
Two Two similar enemies together at a place.
Single line and moving More than two similar enemies moving in single line

and in same direction.
Multi-line and moving Multiple lines of similar enemies and each line

moves in opposite direction to its nearer line.
Randomly moving Enemy/group of similar enemies moving randomly

at an area inside a level.
Multi-type Enemies of multiple types together at a place.
Multi-type and moving
randomly

Enemies of multiple types moving randomly at an
area inside a level.

Hidden Enemy/enemies behind collectible sprite.

Similarly, enemies moving in multiple lines and in multiple
directions can give a hard-hitting to the player than enemies
moving in single line. Player requires different skills to defeat
enemies of each type, therefore if enemies of multi-types in
multiple lines are placed in a level than the game-play becomes
more enhanced to proceed in next level.

IV. APPLICATION OF IDENTIFIED PATTERNS

A. Design Pattern-Based Level Generator

The suggested 23 design patterns will give a new experi-
ence to players by providing a better and enhanced gameplay.
In the proposed technique, it is suggested that these identified
patterns would be provided as an input to SB-LG and then it
will generate a level of a game by using specified constraints
about any game. In PCG, Search-based content generation is
a special case of the generate-and-test approach [17]. In such
type of generation, an evaluation function is used to assign a
fitness value to the generated content. Similarly, assigning fit-
ness value to newly generated content depends upon previously
generated content. A defined population of content instances is
placed in system memory. For each generation, these contents
are evaluated and assigned a fitness value. In SMB, SB-LG
takes input slices from the first level and that first level is
generated by using constructive approach. Though in this case,
the SB-LG will take patterns from the available array and will
create levels by connecting and rearranging these patterns.

To construct a level generator effectively, a developer must
understand these two major ideas: firstly, selection of design
patterns that make up the level for a game, and secondly
the way they fit together to create an entire level that will
be playable and well-balanced. Here, it is suggested that a
probability value must be assigned to each design pattern
on the basis of occurrence in existing games. A comparison
between occurrence of design patterns and a set of GVG-
LG games is shown in Fig. 4. Similarly, there should be
a defined sequence for the selection of design patterns. For
example, boundary pattern will be selected first and after its

implementation other patterns from same class or distinct class
will be placed inside it. Because boundary provides a layout
for a level to encompass all other sprites.

Fig. 4 shows the occurrence of identified common design
patterns in the given set of games. Game play-ability can be
changed by increasing the quantity of these patterns inside a
level. For this purpose, SB-LG will assign a fitness value to
each design pattern. Games such as Aliens and Rogue have
a high probability for the presence of enemies. Therefore,
changing the fitness value of enemies pattern will enhance the
play-ability of the game level. Similarly from the Fig. 4, it is
found that to create a level layout boundary patterns must be
selected first such that, other sprites can be placed inside it.
This approach may give significantly better output by placing
the variations of patterns and increasing the length of the game
platform.

In this section, two patterns are discussed in detail to find
the impact of patterns on enhancement of level design.

TABLE V. DESCRIPTION OF MULTI-TYPE AND RANDOMLY MOVING
ENEMIES PATTERN

Multi-type and randomly moving
Problem The player can defeat or jumps over the single or

two enemies of same type.
Similarly, enemies of same type can be handled by
similar attacks.

Solution This new environment does not allow player to take
long jump.
By placing enemies of multiple type that moves
randomly, player needs different type of attacks to
deal with them.

Using the pattern Use this pattern several time in layout to give a hard-
hitting to player.

Comments Provide reward or coins to increase attacking power
and to balance the playability of that level.

Description of multi-type and randomly moving enemies
is given in Table 5. To make a level difficult for the player
enemies of multiple types are placed in such a way that they
move randomly across their position, which does not allow a
player to go through a long jump.

TABLE VI. DESCRIPTION OF GROUPED HARMFUL SPRITES

Harmful Sprites in grouped form
Problem The player can protect itself from a single harmful

sprite easily.
Solution By placing two or more harmful sprites in a grouped

shape player cannot pass through them easily.
Using the pattern Placing rewards and goals inside group creates a

great challenge for player.
Comments Use group patterns in a way that level remains

playable.

Similarly, description of grouped harmful sprites is given
in Table 6. By placing multi-type harmful sprites in different
places, the player needs good decision-making power to protect
himself from them. If a player successfully solves a pattern
then he may face next challenge from the same group. A group
of multiple harmful sprites can give difficult game-play to a
player for survival in a level as compared with single harmful
sprite. On the other hand, if the number of sprites in a group
are increased for each level then it may provide a sequential
play to proceed in next level.

www.ijacsa.thesai.org 396 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

Fig. 4. Comparison of design patterns and a set of GVG-LG games. (Presence of each design pattern in a game is shown by tick mark. Occurrence of Solid
sprites and Harmful sprites is high in first 7 games, where as Enemies have high occurrence in last 5 games.)

V. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the ongoing work on
design pattern-based level generator. This paper highlights
the importance of design patterns and how design patterns
can play a significant role in the level generation for general
video games. Rhythmic group analysis was applied on a given
framework to identify some common design patterns. The level
of each game was divided into small challenging areas called
cells. This approach assists to identify patterns within a level.
For the initial experimentation, 23 distinct design patterns were
proposed. Afterwards, these design patterns were divided into
four classes: solid sprites, collectible sprites, harmful sprites,
and enemies. Each game level has a design chunk composed
of above-mentioned sprites. We claim that by the arrangement
of these design patterns in a sequence of difficulties and
using as an objective for the SB-LG, it will give a new
experience to the player. In this proposed method, the SB-
LG will take these patterns from the available array and will
create levels for a game. It is suggested that selection of the
design pattern should be in a sequential way and on the basis
of its probability value in existing game level. This technique
may give significantly better output by placing the variations
of patterns and increasing the length of the game platform.
Finally, it is concluded that these design patterns provide a
useful and tangible way to generate levels for general video
games.

ACKNOWLEDGMENT

We acknowledge Riphah International University Islam-
abad for support of this research.

REFERENCES

[1] Statista, Global PC and console games revenue in 2014 and
2019, [www.statista.com/statistics/237187/global-videogames-revenue/],
December 2015.

[2] Togelius, J., Kastbjerg, E., Schedl, D., Yannakakis, G.N.: What is
procedural content generation?: Mario on the borderline. In: Proceedings
of the 2nd Workshop on Procedural Content Generation in Games (2011)

[3] RM Smelik, T Tutenel, KJ de Kraker, R Bidarra, A proposal for
a procedural terrain modelling framework. Euro graphics Association,
2008.

[4] Vander Linden, Roland, Ricardo Lopes, and Rafael Bidarra. Procedural
generation of dungeons. IEEE Transactions on Computational Intelli-
gence and AI in Games 6.1 (2014): 78-89.

[5] Steve, Dahlskog. Patterns And Procedural Content Generation. (2016).
[6] Dahlskog, Steve, and Julian Togelius. Patterns as objectives for level

generation. (2013).
[7] Dahlskog, Steve, and Julian Togelius. A multi-level level generator.2014

IEEE Conference on Computational Intelligence and Games. IEEE,2014.
[8] A Khalifa, D Perez-Liebana, SM Lucas, General video game level gener-

ation. Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference.ACM, 2016.

[9] Schaul, Tom. ”A video game description language for model-based or
interactive learning.” Computational Intelligence in Games (CIG), 2013
IEEE Conference on. IEEE, 2013.

[10] www:gamasutra:com=view=feature=174311=proceduralcontentgeneration:php
[11] Khalifa, Ahmed, and Magda Fayek. Automatic puzzle level generation:

A general approach using a description language. Computational Cre-
ativity and Games Workshop 2015.

[12] Yannakakis, Georgios N., and Julian Togelius. Experience-driven proce-
dural content generation. IEEE Transactions on Affective Computing2.3
(2011): 147-161.

[13] Alexander C, Ishikawa S, Silverstein M, i Rami JR, Jacobson M,
Fiksdahl-King I. A pattern language. Gustavo Gili; 1977.

[14] Shi, Peizhi, and Ke Chen. Learning Constructive Primitives for Online
Level Generation and Real-time Content Adaptation in Super Mario Bros.
arXiv preprint arXiv:1510.07889 (2015).

[15] Dormans, Joris. Adventures in level design: generating missions and
spaces for action adventure games. Proceedings of the 2010 workshopon
procedural content generation in games. ACM, 2010..

[16] Neufeld, Xenija, Sanaz Mostaghim, and Diego Perez-Liebana. Pro-
cedural level generation with answer set programming for general
videogame playing. Computer Science and Electronic Engineering Con-
ference(CEEC), 2015 7th. IEEE, 2015.

www.ijacsa.thesai.org 397 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

[17] Togelius, Julian, Georgios N. Yannakakis, Kenneth O. Stanley, and
Cameron Browne. ”Search-based procedural content generation: A tax-
onomy and survey.” IEEE Transactions on Computational Intelligence
and AI in Games 3, no. 3 (2011): 172-186.

[18] Hullett, Kenneth, and Jim Whitehead. Design patterns in FPS levels.
proceedings of the Fifth International Conference on the Foundations of
Digital Games. ACM, 2010.

[19] Smith, Gillian, Mee Cha, and Jim Whitehead. A framework for analysis
of 2D platformer levels. Proceedings of the 2008 ACM SIGGRAPH
symposium on Video games. ACM, 2008.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, Reading,
U.S.A., 1994.

www.ijacsa.thesai.org 398 | P a g e


