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Abstract—Estimation of human emotions from 

Electroencephalogram (EEG) signals plays a vital role in 

developing robust Brain-Computer Interface (BCI) systems. In 

our research, we used Deep Neural Network (DNN) to address 

EEG-based emotion recognition. This was motivated by the 

recent advances in accuracy and efficiency from applying deep 

learning techniques in pattern recognition and classification 

applications. We adapted DNN to identify human emotions of a 

given EEG signal (DEAP dataset) from power spectral density 

(PSD) and frontal asymmetry features. The proposed approach is 

compared to state-of-the-art emotion detection systems on the 

same dataset. Results show how EEG based emotion recognition 

can greatly benefit from using DNNs, especially when a large 

amount of training data is available. 
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I. INTRODUCTION 

Recent developments in BCI (Brain Computer Interface) 
technologies have facilitated emotion detection and 
classification. Many BCI studies have investigated, detected 
and recognized the user‘s affective state and applied the 
findings in varied contexts including, among other things, 
communication, education, entertainment, and medical 
applications. BCI researchers are considering different 
responses in various frequency bands, ways of eliciting 
emotions, and various models of affective states. Different 
techniques and approaches have been used in the processing 
steps to estimate the emotional state from the acquired signals.  

BCI systems based on emotion detection are considered as 
passive/involuntary control modality. For example, affective 
computing focuses on developing applications, which 
automatically adapts to changes in the user‘s states, thereby 
improving interaction that leads to more natural and effective 
usability (e.g. with games, adjusting to the interest of the user) 

[1]. Recognizing a user‘s affective state can be used to 
optimize training and enhancement of the BCI operations [2]. 

EEG is often used in BCI research experimentation because 
the process is non-invasive to the research subject and minimal 
risk is involved. The devices‘ usability, reliability, cost-
effectiveness, and the relative convenience of conducting 
studies and recruiting participants due to their portability have 
been cited as factors influencing the increased adoption of this 
method in applied research contexts [3], [4]. These advantages 
are often accompanied by challenges such as low spatial 
resolution and difficulty managing signal-to-noise ratios. 
Power-line noise and artifacts caused by muscle or eye-
movement may be permissible or even exploited as a control 
signal for certain EEG-based BCI applications. Therefore, 
signal-processing techniques can be used to eliminate or reduce 
such artifacts. 

This paper explains our research which involves 
implementing and examining the performance of the Deep 
Neural Network (DNN) to model a benchmark emotion dataset 
for classification. 

The remainder of this paper is organized as following: In 
Section 2, we start with background about the emotion models 
then we briefly review the EEG-based emotion detection 
systems in Section 3. In Section 4, we describe our proposed 
method and techniques. In  ection 5        , we discuss the results and 
we finally draw conclusions in Section 6. 

II. EMOTION MODEL 

      Emotions can be generally classified on the basis of two 
models: discrete and dimensional [2], [5]. Dimensional model 
of emotion proposes that emotional states can be accurately 
represented by a small number of underlying affective 
dimensions. It represents the continuous emotional state, 
represented as a vector in a multidimensional space. Most 
dimensional models incorporate valence and arousal. Valence 
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refers to the degree of ‗pleasantness‘ associated with an 
emotion. It ranges from unpleasant (e.g. sad, stressed) to 
pleasant (e.g. happy, elated). Whereas, arousal refers to the 
strength of experienced emotion. This arousal occurs along a 
continuum and may range from inactive (e.g. uninterested, 
bored) to active (e.g. alert, excited) [5]. 

Discrete theories of emotion propose an existence of small 
numbers of separate emotions. These are characterized by 
coordinated response patterns in physiology, neural anatomy, 
and morphological expressions. Six basic emotions frequently 
advanced in research papers include happiness, sadness, anger, 
disgust, fear, and surprise [6], [7]. 

Emotion measurement and assessment methods can be 
subjective and/or objective affective measures. Subjective 
measures use different self-report instruments, such as 
questionnaires, adjective checklists, and pictorial tools to 
represent any set of emotions, and can be used to measure 
mixed emotions. Self-reporting techniques, however, do not 
provide objective measurements, but they do measure 
conscious emotions and they cannot capture the real-time 
dynamics of the experience. 

Objective measures can be obtained without the user‘s 
assistance. They use physiological cues derived from the 
physiology theories of emotion. Instruments that measure 
blood pressure responses, skin responses, pupillary responses, 
brain waves, and heart responses are all used as objective 
measures methods. Moreover, hybrid methods combining both 
subjective and objective methods have been used to increase 
accuracy and reliability of affective emotional states [2], [6]. 

III. EEG-BASED EMOTION DETECTION SYSTEMS 

The volumes of studies and publications on EEG based 
emotion recognition have surged in recent years. Different 
models and techniques yield a wide range of systems. 
However, these systems can be easily differentiated owing to 
the differences in stimulus, features of detection, temporal 
window, classifiers, number of participants and emotion 
model, respectively. 

Although the number of research studies conducted on 
EEG-based emotion recognition in recent years has been 
increasing, EEG-based emotion recognition is still a relatively 
new area of research. The effectiveness and the efficiency of 
these algorithms are somewhat limited. Some unsolved issues 
in current algorithms and approaches include the following: 
time constraints, accuracy, number of electrodes, number of 
recognized emotions, and benchmark EEG affective databases 
[6], [8]. 

Accuracy and reliability of sensory interfacing and 
translation algorithms in BCI systems are major challenges, 
which limit usage of these technologies in clinical settings. 
Also, engineering challenges have been focused to process the 
low signal to noise ratio embedded in noninvasive 
electroencephalography (EEG) signals. Moreover, 
computational challenges include optimal placement of a 
reduced number of electrodes and robustness of BCI 
algorithms to the smaller set of recording sites. 

IV. PROPOSED SYSTEM 

The performance of EEG recognition systems is based on 
the method of feature extraction algorithm and classification 
process. Hence, the aim of our study is to research the 
possibility of using EEG for the detection of four affective 
states, namely excitement, meditation, boredom, and 
frustration using classification and pattern recognition 
techniques. For this purpose, we conducted rigorous offline 
analysis for investigating computational intelligence for 
emotion detection and classification. We used deep learning 
classification on the DEAP dataset to explore how to employ 
intelligent computational methods in the form of classification 
algorithm. This could effectively mirror emotional affective 
states of subjects. We also compared our classification 
performance with a Random Forest classifier. 

We built our system in an open source programming 
language, Python, and used Scikit-Learn toolbox for machine 
learning, along with Scipy for EEG filtering and preprocessing, 
MNE for EEG-specific signal processing and Keras library for 
deep learning. 

In this section, we illustrate our methodology along with 
some implementation details of our proposed system. We start 
with describing the benchmark dataset. Then, describe our 
extracted features. Finally, we discuss the classification process 
and model evaluation method. 

A. DEAP Dataset 

DEAP is a benchmark affective EEG database for the 
analysis of spontaneous emotions. DEAP database was 
prepared by Queen Mary University of London and published 
in [9]. The database contains physiological signals of 32 
participants. It was created with the goal of creating an 
adaptive music video recommendation system based on user 
current emotion. DEAP has been used for conducting a number 
of studies and it has been proved that it is well-suited for 
testing new algorithms [9], [10]. 

To evaluate our proposed classification method, we used 
the preprocessed EEG dataset from DEAP database, where the 
sampling rate of the original recorded data of 5   Hz was 
 down-sampled to a sampling  rate of 128 Hz, with a bandpass 
frequency filter ranging from 4.0-45.0 Hz, and the EOG 
artifacts are eliminated from the signals.            

B. Feature Extraction 

Feature extraction plays a critical role in designing an EEG-
based BCI system. Different features have been used in 
literature, including Common Spatial pattern, Higher Order 
Crossings, Hjorth parameters, time-domain statistics, EEG 
spectral power, wavelet entropy, and coherence analysis. These 
EEG features can be extracted by applying signal processing 
methods; time domain signal analysis, frequency domain signal 
analysis, and/or time-frequency signal domain analysis [6], 
[11]. 

1) Power Spectral Density (PSD) 
In this work, we have decided to use frequency domain 

analysis to extract EEG features. Power Spectral Density 
(PSD) is one of the most popular features in the frequency 
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domain in the context of emotion recognition using EEG 
signals [6], [8]. This method is based on Fast Fourier 
Transform (FFT), which is an algorithm to compute the 
Discrete Fourier Transform and its inverse. This transformation 
converts data in the time domain to the frequency domain and 
vice versa. Besides EEG applications, it has been widely used 
for numerous applications in engineering, science, and 
mathematics. In this study, each EEG signal is decomposed 
using PSD approach into four distinct frequency ranges: theta 
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–
40 Hz). The PSDs were computed using Python Signal 
Processing Toolbox (mne), and the average of power over a 
specific frequency range was calculated to construct a feature 
using the avgpower function in the toolbox. Fig. 1 shows the 
extracted PSD. 

 
Fig. 1. Feature extraction (a)  preprocessed EEG signals in time domain 

(b) extracted PSD. 

2) Frontal EEG Asymmetry 
There has been a lot of research that investigated neural 

correlates of emotion in humans  [6], [9], [12], [13]. Frontal 
activity, which is characterized in terms of decreased power in 
the alpha band, has been consistently found to be associated 
with emotional states [11]. Indeed, numerous studies agree on 
the fact that relatively greater trait left frontal activity is 
associated with trait tendencies toward a general appetitive 
approach, or behavioral activation motivational system, and 
that relatively greater trait right frontal activity is associated 
with trait tendencies toward a general avoidance or withdrawal 
system [14]. 

Therefore, many affective researches proposed that there 
was a link between asymmetry of frontal alpha activation and 
the valence of a subject‘s emotional state. It is widely accepted 
that the left hemisphere presents higher activation on states of 
positive valence, whereas the right hemisphere presents higher 
activation on states of negative valence. There have been 
numerous studies which support the hypothesis that frontal 
EEG asymmetry is an indicator of arousal and valence of 

emotion. At the same time, different frontal asymmetry 
equations are used to calculate the valence and arousal [12]. 

In Vamvakousis et al. [13], the Amyotrophic Lateral 
Sclerosis (ALS) patients were expressing their emotions 
through music in real time. They used (1) and (2) for detecting 
valence and arousal, respectively. They have estimated the 
emotional state of the performer in a gaze-controlled musical 
interface system, where a positive valence value triggers major 
chords progressions, while a negative valence triggers minor 
chord progressions. 

Valence=(left_beta /left_alpha) – (right_beta /right_alpha )     (1) 

Arousal =                                                       (2) 

In Kirke and Eduardo [14],  the researchers developed a 
tool for unskilled composers, or subjects with problems in 
emotional expression, in order to better express themselves 
through music. They built a combined EEG system that takes 
as input raw EEG data and attempts to output a piano 
composition and performance, which expresses the estimated 
emotional content of the EEG data. The subject‘s emotion was 
estimated based on EEG Frontal Asymmetry where they used 
(3) and (4) below: 

Valence = ln (frontal alpha power(left) – ln (frontal alpha    

power(right))                            (3) 

Arousal = - (ln (frontal alpha power(right)) + ln (frontal alpha 

power(left)))                                             (4) 

Hayfa et al. [15] and Ramirez et al. [16]  used frontal EEG 
asymmetry to specify the valence and arousal of emotions by 
using (5) and (6) below. A fuzzy logic classification method 
was implemented that was fed with the valence and arousal 
features. The average classification rate for the seven different 
emotions was 64.79%. 

Ramirez et al. classified emotional states by computing 
arousal levels as the prefrontal cortex and valence levels using 
(5) and (6). They applied machine learning techniques (support 
vector machines with different kernels) to classify the user 
emotion into high/low arousal and positive/negative valence 
emotional states, with average accuracies of 77.82, and 
80.11%, respectively. 

Valence = 
         

         
  

          

         
    (5) 

Arousal = 
                     

                    
   (6) 

In Ramirez et al. [17], researchers introduced a novel 
neuro-feedback approach. They presented the results of a pilot 
clinical experiment applying the approach to alleviate 
depression in elderly people. They used (7) and (8), where the 
arousal was computed as beta to alpha activity ratio in the 
frontal cortex, and valence was computed as relative frontal 
alpha activity in the right lobe compared to the left lobe. 

    Valence =                                           (7) 

Arousal = 
                    

                     
     (8) 
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In order to find which equation for valence and arousal to 
use, we extracted alpha and beta band powers from the DEAP 
EEG signals and used those powers to compute valence and 
arousal scores of all above equations. We applied the different 
frontal EEG asymmetry equations as moderator and explored 
the correlation to the DEAP self-assessment measurement. 
Consequently, we keep only the channels we are interested in 
(Fz, AF3, F3, AF4, and F4). Afterwards, we performed a time-
frequency transform to extract (spectral features) alpha: 8–11 
Hz, beta: 12–29 Hz according to Table 1. Finally, we computed 
the values of Arousal and Valence using four different methods 
namely, Vamvakousis2012, Kirke2011, Hayfa2013, and 
Ramirez2015. 

TABLE. I. INPUT PARAMETERS FOR COMPUTE VALENCE AROUSAL 

Input 

Parameter 
Channel 

Frequency 

(Hz) 

Input 

Parameter 
Channel 

Frequency 

(Hz) 

Left_alpha AF3 & F3 7 – 15 Alpha_F4 F4 7 – 15 

Left_beta AF3 & F3 16 – 31 Alpha_F3 F3 7 – 15 

Right_alpha AF4 & F4 7 – 15 Alpha_all 
AF3, F3, 

AF4, F4 
7 – 15 

Right_beta AF4 & F4 16 – 31 Beta_F4 F4 16 – 31 

Front_alpha Fz 7 - 15 Hz Beta_F3 F3 16 – 31 

Front_beta Fz 16 – 31 Beta_all  
AF3, F3, 

AF4, F4 
7 - 15 

Finally, to compare their result we applied statistics 
calculation; Mean Absolute Error (MAE), Mean Squared Error 
(MSE), and Pearson Correlation (Corr) as the following: 

3) MAE is the mean  
 

 
 ∑   

    of the absolute errors 

|  |  |     | where   is the prediction and   the true value 

MAE= 
 

 
 ∑ |  |

 
       (9) 

- MSE is the mean  
 

 
 ∑   

    of the square of the errors 

(( ̂     
   

MSE= 
 

 
 ∑    ̂     

   
       (10) 

4) Corr is a measure of the strength of the linear 

relationship between two variables 

TABLE. II. FRONTAL ASYMMETRY EQUATIONS RESULT (NUMBERS IN THE 

BRACKETS ARE STANDARD DEVIATIONS) 

Statistic Method MSE MAE Corr 

Valence Vamvakousis2012 
10.611  
(+/- 4.348) 

2.689  
(+/- 0.637) 

-0.028  
(+/- 0.224) 

Valence Kirke2011 
9.098  

(+/- 3.363) 

2.448  

(+/- 0.478) 

0.022  

(+/- 0.221) 

Valence Hayfa2013 
8.490  

(+/- 2.770) 

2.361  

(+/- 0.440) 

0.039  

(+/- 0.239) 

Valence Ramirez2015 
9.633  

(+/- 4.505) 

2.531  

(+/- 0.675) 

0.088  

(+/- 0.249) 

Arousal Vamvakousis2012 
7.513  

(+/- 2.716) 

2.220  

(+/- 0.415) 

0.054  

(+/- 0.210) 

Arousal Kirke2011 
7.987  

(+/- 3.129) 

2.249  

(+/- 0.469) 

0.007  

(+/- 0.179) 

Arousal Hayfa2013 
9.092  
(+/- 3.200) 

2.493  
(+/- 0.503) 

-0.037  
(+/- 0.217) 

Arousal Ramirez2015 
9.969  

(+/- 3.648) 

2.655  

(+/- 0.529) 

0.024  

(+/- 0.210) 

Table 2 shows the result after we ran all four different 
equations on the whole DEAP dataset and observed which 
equation will produce lower MSE. According to these results, 
for valence, it is best to use Hayfa2013 equation, and for 
arousal, Vamvakousis2012 outperforms the other ones. 

C. Classification 

Deep Learning (also known as deep machine learning, deep 
structured learning, or hierarchical learning) is a recent 
machine learning technique that models high-level abstractions 
in data by using multiple processing layers with complex 
structures [18]. Deep Learning and Neural Networks have 
remarkable ability to solve problems in image recognition, 
speech recognition, and natural language processing [18], [19]. 
In our work, we investigate the possibility of using EEG for the 
detection of four affective states (Excitement, Meditation, 
Boredom, and Frustration) using DNN classification. 
Therefore, we explore how to employ intelligent computational 
methods in the form of classification algorithm, which could 
effectively mirror emotional affective states of subjects. We 
also compare our classification performance with a Random 
forest classifier. 

1) Data Representation 
We used the two-dimensional emotion model approach 

proposed in Russell‘s (1980) and shown in Fig. 2. 

In this model, very high or very low values on one-
dimension (Arousal) are associated with middle values on the 
second dimension (Valence). The arousal represents the high 
and low intensity, whereas the valence represents the emotion 
type if it is positive or negative. 

In DEAP subjective emotion, the subjects selected the 
numbers 1–9 to indicate their emotion states in each category. 
In our study, as shown in Fig. 3, we mapped the scales (1–9) 
into two levels of each valence and arousal states (high and 
low) as following: excitement is a feeling of high arousal in a 
high valence whereas frustration is a feeling of high arousal in 
a low valence.  Meditation is a feeling of low arousal in a high 
valence whereas boredom is a feeling of low arousal in a low 
valence. 

 
Fig. 2. Russell's circumplex model of affect. 
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Fig. 3. Proposed emotion model and the classification labels. 

2) Neural Network Model 
The extracted features are further fed to DNN classifier. 

The block diagram of our DNN classifier is shown in Fig. 4. In 
our work, the DNN architecture is a fully connected feed-
forward neural network with three hidden layers. The hidden 
layers contain units with rectified linear activation functions 
(ReLu) [20], [21]. 

The output is configured as a soft-max layer with a cross-
entropy cost function. The input layer consists of (2184) units. 
Each hidden layer contains 60% units from its ―predecessor‖ 
previous layer; the first hidden layer consists of (1310) units. 

The second hidden layer consists of (786) units, and the third 
hidden layer consists of (472) units. Whereas the output layer 
dimension(s) corresponds to the number of target emotions 
states (4) units. 

For training DNN classifier, we used Adam gradient 
descent with a logarithmic loss function, which is called 
categorical cross-entropy as the objective loss function. For all 
random weight initialization, we have chosen He-initialization, 
as described in [21]. For transfer learning, we start with 
reasonable defaults and follow best practices: 0.02 is chosen as 
the start learning rate. Then, we linearly reduce it with each 
epoch, so that the learning rate for the last epoch is 0.001. 

Training is evaluated using a validation set, which is 
roughly 10% of the size of the total dataset (train set + valid set 
+ test set). We set dropout to 0.2 for the input layer and 0.5 for 
the hidden layers. Stopping criterion of the network training is 
based on the model‘s performance on a validation set [22]. If 
the network starts to over-fit, the network training is then 
stopped. This stopping criterion is helpful in reducing over-
fitting on the validation data. The network is tested on a test set 
which also contains about 10% of the data samples in the 
dataset. 

Fig. 5 shows a plot of loss per epoch on the training and 
validation data over training epochs. From the plot of loss, we 
conclude that we have over-fit our training set to at most a 
small extent. When we train for longer than 800 epochs, the 
training loss does not become significantly less than the 
validation loss until after roughly 200-800 epochs, and after 
this point, training loss continues to decrease but validation 
loss begins to increase. Performance of the test data calculated 
using confusion matrix and result with Accuracy: 0.825, 
Recall: 0.825, Precision: 0.68, Misclassification rate = 0.175. 

 

Fig. 4. Block diagram of DNN classifier.
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Fig. 5. Loss per epoch on training and validation set. 

Our research can be compared with one of the traditional 
EEG signal classification methods, Random Forest (RF) 
classification. RF constructs a combination of many unpruned 
decision trees (Breiman, 2001). The output class is the mode of 
the classes output by individual trees. We achieved 48.5% 
classification accuracy. 

V. RESULTS AND DISCUSSIONS 

In addition to the confusion matrix results which show that 
DNN classification accuracy outperforms the RF method, the 
classification accuracy of our model was also compared to 
other previous studies that use similar approaches, where they 
used the same dataset and the same extracted features but 
different classification techniques as shown in Table 3. 

Chung and Yoon [23] proposed the weighted-log-posterior 
function based Bayes classifier as an affective recognition 
method. The affective states are divided into two and three 
classes in valence dimension and arousal dimension. The 
accuracies for two classes are 66.6 % for valence, 66.4 % for 
arousal classification, 53.4 % and 51.0 % for three classes, 
respectively. Moreover, they compared their proposed method 
with the method used in [9] and reported that they got better 
performance than the ordinary Bayes classifier. 

Zhang et al. [24] proposed an ontological model for 
representation and integration of EEG data. The idea was the 
use of an ontology for modeling low-level biometric features 
and mapping them to high-level human emotions. Similarity, to 
evaluate the effectiveness of their model, they used DEAP 
dataset. Their model achieved an average recognition ratio of 
75.19% on valence and 81.74% on arousal for eight selected 
participants. 

Suwicha et al. in [19] proposed an algorithm for 
classification of EEG signals in human emotion. They used 
deep learning network (DLN) classifiers to distinguish between 
feelings of happiness, pleasure, relaxation, excitement, neutral, 
calm, distressed, miserable and depressed. Power Spectral 
Density (SPD) was calculated using FFT and principal 
component analysis PCA and covariate shift adaptation of the 
PCA implemented to minimize features. Their experimental 
results showed that DLN is capable of classifying three 
different levels of valences and arousals with accuracy of 
49.52% and 46.03%, respectively. They have reported that 
DLN provides better performance compared to SVM (Support 
Vector Machine) and Naïve Bayes classifiers. 

TABLE. III. COMPARISON OF VARIOUS STUDIES USING EEG-DEAP 

DATASET 

PSD (Power Spectral Density), PCA (Principal Component Analysis), DNN 
(Deep Learning Neural Network) 

In one of the recent studies [25], the authors developed an 
emotion detection system. They explored a wider set of 
features by extracting statistical features, band power for 
different frequencies, Hjorth parameters (HP) and fractal 
dimension (FD) for each channel. Then, in order to select a 
relevant set of features from the extracted features so that 
further classification can be more accurate, the Minimum-
Redundancy-Maximum-Relevance (mRMR) method was used. 
The researchers categorized 2, 3, and 5 classes per valence and 
arousal dimensions. This model was capable of recognizing 
arousal (valence) with rates of 73.06% (73.14%), 60.7% 
(62.33%), and 46.69% (45.32%) for 2, 3, and 5 classes, 
respectively. They reported that kernel-based classifier 
acquired higher accuracy when compared with other 
computational methods such as SVM and Naïve Bayes. 

The comparison shows that our model exhibits very 
promising results when dealing with varying sizes of datasets 
and different classes of emotions. For example, Zhang et al. 
[24] achieved high accuracy by applied their method on only 
eight selected participants. Additionally, for the same number 
of classes per dimension, an improvement of 28.6% and 12% 
was achieved with our proposed method when compared to 
[23] and [25], respectively. 

Research  Features Classifier Result 

Chung and 
Yoon, 2012 

[23] 

PSD and 

power 

asymmetry 
 

Bayes  

Detect: 
Two\ three classes per 

dimension valence and arousal 

Result: 
53.4 % for two classes  

51.0 % for three classes 

Koelstra et 
al., 2012 [9] 

PSD and 
power 

asymmetry 
 

 

 

Naïve Bayes 
(NB)  

Detect: 
Two different levels of valence, 

arousal, and liking 
Result: 

57.0% for valence  

62.0% for arousal 

Zhang et al., 

2013 [24] 
PSD 

ontological 

model 

Detect: 

Two classes per dimension 
valence and arousal 

Result: 

75.19% for valence 
81.74% for arousal 

Suwicha et 

al., 2014 
[19] 

- PSD  
- Covariate 

shift adaptation 
of PCA  

DLN with a 
stacked 

auto-encoder 
(SAE) 

Detect: 

Three different levels of valence 
and arousal 

Result: 
49.52% for valence 

46.03% for arousal  

Atkinsona 

and 
Camposb. 

2016 [25]  

 

Statistical 
features, band 

power, Hjorth 

parameters and 
fractal 

dimension  

Kernel  

 

Detect: 
Three classes per dimension 

(valence and arousal) 

Result: 
60.7% for valence 

62.33% for arousal. 

Proposed 

method 

PSD 

Frontal 
asymmetry 

DNN  

Detect: 
Two classes per dimension 

(valence and arousal) 
Result: 

82.0% for two classes  
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VI. CONCLUSION 

In this paper, we described our proposed method to detect 
emotions from EEG signals, where we used the pre-processed 
DEAP dataset. Two different types of features were extracted 
from the EEG; PSD features and pre-frontal asymmetry 
features. This resulted in a set of 2184 unique features 
describing the EEG activity during each trial. These extracted 
features were used to train a DNN classifier and  Random 
Forest classifier. We found that the DNN classifier 
outperformed the Random Forest classifier. Moreover, we 
compared our result with previous researches. Our results show 
that the DNN method provides better classification 
performance compared to other state-of-the-art approaches and 
suggest that this method can be applied successfully to EEG 
based   I systems where the amount of data is large.                  
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