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Abstract—Image classification, a complex perceptual task 

with many real life important applications, faces a major 

challenge in presence of noise. Noise degrades the performance of 

the classifiers and makes them less suitable in real life scenarios. 

To solve this issue, several researches have been conducted 

utilizing denoising autoencoder (DAE) to restore original images 

from noisy images and then Convolutional Neural Network 

(CNN) is used for classification. The existing models perform well 

only when the noise level present in the training set and test set 

are same or differs only a little. To fit a model in real life 

applications, it should be independent to level of noise. The aim 

of this study is to develop a robust image classification system 

which performs well at regular to massive noise levels. The 

proposed method first trains a DAE with low-level noise-injected 

images and a CNN with noiseless native images independently. 

Then it arranges these two trained models in three different 

combinational structures: CNN, DAE-CNN, and DAE-DAE-

CNN to classify images corrupted with zero, regular and massive 

noises, accordingly. Final system outcome is chosen by applying 

the winner-takes-all combination on individual outcomes of the 

three structures. Although proposed system consists of three 

DAEs and three CNNs in different structure layers, the DAEs 

and CNNs are the copy of same DAE and CNN trained initially 

which makes it computationally efficient as well. In DAE-DAE-

CNN, two identical DAEs are arranged in a cascaded structure to 

make the structure well suited for classifying massive noisy data 

while the DAE is trained with low noisy image data. The 

proposed method is tested with MNIST handwritten numeral 

dataset with different noise levels. Experimental results revealed 

the effectiveness of the proposed method showing better results 

than individual structures as well as the other related methods. 

Keywords—Image denoising; denoising autoencoder; cascaded 

denoising autoencoder; convolutional neural network 

I. INTRODUCTION 

Categorization of objects from images is a complex 
perceptual task and is termed as image classification. 
Classification of images utilizes multispectral data. The 
underlying multispectral pattern of the data of each individual 
pixel is utilized as the quantitative basis for classification [1]. 
In the past decade, image classification has shown major 
advances in terms of classification accuracy. In recent times, 

image classification models are rapidly being used in various 
application fields, such as handwritten numeral recognition [2], 
recognition of traffic signs from roadside boards [3]-[5], 
segmentation of Magnetic Resonance Image (MRI) [6], 
identification of chest pathology [7], face detection from 
images [8] and so on. Existing models are categorized into 
unsupervised and supervised modes. 

Unsupervised classification based models try to find out the 
underlying representation in the input images without 
considering whether the images are labeled or not. One 
conventional model of this genre is stacked autoencoders 
(SAE) [9]-[11]. With an intention to learn features, SAE stacks 
shallow autoencoders which at first encodes the original input 
image to a vector of lower dimension and then decodes this 
vector to the original representation of the image. Shin et al. 
[12] showed the application of stacked sparse autoencoders 
(SSAEs) to classify medical images which made a noteworthy 
promotion in terms of classification accuracy. Norouzi et al. 
[13] inaugurated stacked convolutional restricted Boltzmann 
machine (SCRBM) where they applied a modified training 
process rather than the conventional one for individual 
restricted Boltzmann machine (RBM) and finally combined 
them in a stacked manner to implement the deep architecture. 
Later, Lee et al. [14] instigated another variant of deep belief 
network (DBN) called convolutional DBN (CDBN) by placing 
convolutional RBMs (CRBM) instead of traditional RBMs at 
each layer and then joined the layers in a convolutional 
structure to ensure the construction of a hierarchical model and 
it produced better feature representation [15]. With the 
practically identical considerations, Zeiler et al. [16], [17] 
modified traditional sparse coding technique [18] to build 
deconvolutional model that decomposes the input data in a 
convolutional way, at the same time, maintains a sparsity 
constraint. In contrast to conventional sparse coding technique, 
this approach produces mid-level delineations of data with 
more affluent learned features. 

Unlike unsupervised classifiers, supervised classification 
based models require labeled data to complete their training 
process. In this category, deep neural network (DNN) does the 
task efficiently implementing the idea of human visual system. 
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Layer-wise pre-training and fine-tuning makes DNN successful 
in image processing tasks such as classification, feature 
extraction etc. Convolutional neural network (CNN) [19]-[22] 
is the most successful hierarchical deep neural network 
structure. Shared weights, three-dimensionally arranged and 
locally connected neurons make the architecture of CNN 
distinctive to ordinary neural networks and contribute to its 
superior performance to most of the image classification 
algorithms [23]. The unique characteristics of CNN such as 
weight sharing and preservation of the corresponding locality, 
which make the deep architecture the most suitable for 2D 
images to conserve a better epitome, are the outcome of using 
convolution and following subsampling layer. Right now, 
CNN based models are being used vastly in 2D material 
identification and various cases [3]-[8]. 

One major challenge in image classification tasks is the 
presence of noise that corrupts the original shape of the objects 
in the image and makes it difficult for the classifiers to be used 
in real life scenarios. Unlike human visual system, which is 
capable of classifying objects ignoring a certain amount of 
perturbation present in the image, these classifiers suffer in 
quality if the test image contains noise. Although DNN based 
methods outperformed others in image classification, their 
performances are deteriorated during classification of noisy 
images. However, it is quite impossible to work with noiseless 
images in practical cases. During acquisition and transition 
phases, corruption of digital images due to noise is common. 
As DNN based models are trained to work with noiseless 
images, their accuracy noticeably drops when they are applied 
in real life applications. The main reason that works behind the 
occurrence of this incident is the affection of the DNN based 
models to the training data. Because of this sensitive behavior 
towards the training data, often these models perform 
misclassification if the test data is subject to a significant 
amount of noise and distortion [24]. 

It is an open challenge to develop image classification 
systems for the real-life noisy environment. Lu and Weng [25] 
investigated different image classification models and finally 
came to a conclusion that denoising images prior classification 
is the best possible way to make the DNN based models more 
compatible with practical cases. Their survey gives the 
evidence of the fact that training classifiers with noisy images 
may enhance the precision a tad; however, it is not satisfiable. 
So, applying image denoising techniques before feeding the 
image to the classifier has become a compulsory to fit the DNN 
based classifiers in real life scenario. 

A number of researches have been conducted to recover the 
true image from the noisy form by applying both spatial and 
transform domain [26]. Several pioneer image denoising 
researches used wavelet transformation techniques [27], partial 
differential equation based approaches [28]-[30], and conveyed 
scant coding approaches [18], [31], [32]. Singh et al. [33] 
introduced a multi-class classifier for images which are 
adulterated with Gaussian noise. To accomplish image 
denoising they utilized NeighShrink thresholding over the 
wavelet coefficients to wipe out wavelet coefficients which are 
responsible for the noise present in the image and find out just 
the useful ones. However, these denoising approaches face 
problems in case of heavily noised image and are 

computationally complex. In the process of image denoising 
using spatial filtering techniques images gets blurred, where 
transfer domain filtering models are time-consuming as well as 
computationally complex. 

Recently, artificial neural network (ANN) based models are 
being adopted in image denoising tasks. A variant of 
autoencoder (AE) named denoising autoencoder (DAE) [34], 
[35] has been introduced to serve the purpose of image 
denoising and shows a better performance compared to the 
traditional ones. In DAE the initial input gets corrupted by 
arbitrary noise then it is trained to restore the original image 
from its‟ corrupted version. In [36] Vincent et al. stacked a 
number of denoising autoencoders and established a deep 
network named stacked denoising autoencoder (SDAE) which 
is widely implemented for unsupervised learning. Agostinelli 
et al. [37] developed an adaptive multi-column DNN 
combining multiple stacked sparse DAEs (SSDAE), where the 
multi-column architecture empowers the model to deal with 
images corrupted by not one type but three different types of 
noises. Utilizing non-linear optimization technique, they 
figured out the most favorable column weights at first and then 
individual models were trained to make them anticipate those 
optimal weights. Incorporating the idea of AEs and 
convolutional operation Masci et al. [38] introduced 
convolutional autoencoder (CAE) which can preserve better 
spatial locality. CAE is based on CNN and it learns to 
reconstruct the images at the output end from the input image 
set applying convolutional approach so that the kernels 
convolve over the 2D images and at each layer generates more 
abstract feature maps. In order to use this convolutional 
structure of AEs for image denoising task, Gondara [39] 
deployed DAEs along with CAEs. She utilized the DAE, at 
first, to denoise medical images and then CAEs to generate a 
better representation of the images. Xu et al. [40] implemented 
a deep CNN architecture that can find out the features of blur 
degradation present in an image. 

Du et al. [41] introduced stacked convolutional denoising 
autoencoder (SCDAE). To maintain a hierarchical structure, 
they arranged a stack of DAEs in a convolutional manner. 
Additionally, they embedded a whitening layer in front of each 
and every convolutional layer to enclose the input feature 
maps. Most recently, Roy et al. [42] applied convolutional 
denoising autoencoder (CDAE) followed by a DAE and 
arranged them in a cascaded manner, rather than in a stacked 
way to deal with data subject to massive noise. They showed 
that if two AE based models are individually trained to denoise 
images subject to regular level of noise, the cascaded 
architecture of them can show a great performance in case of 
denoising massive noisy images. Still, these models suffer 
from one limitation: their performances require the presence of 
a quite same proportion of noise in both training and testing 
dataset. To fit the DNN based image classifiers in real life 
scenario, models should be able to work with variable level of 
noise i.e., regular to massive level of noise. 

The aim of this study is to develop a robust image 
classification system which performs well in any noise level 
with a minimized computational cost, at the same time, omits 
the requirement of arranging multiple training of the system 
with images containing variable proportion of noise separately 
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to deal with images subject to variable level of noise. The 
proposed method first trains a DAE with low-level noise 
injected images and a CNN with noiseless native images 
independently. Then it arranges the two trained models in three 
different combinational ways: CNN, DAE-CNN, and DAE-
DAE-CNN. Finally, it combines the outcomes of these three 
combinations for system outcome. The motivation of such 
arrangement is the adaptation of noise in DAE and image 
classification ability of CNN. Since CNN is trained with native 
images without noise it is well for noiseless image 
classification. On the other hand, DAE-CNN and DAE-DAE-
CNN structures perform well for low-level and high-level 
noisy cases, respectively [42]. In DAE-CNN, DAE first 
removes noises from noisy input images and then CNN is fed 
with these restored images for classification purpose. In DAE-
DAE-CNN, two pre-trained DAEs are cascaded together and 
followed by a CNN.  First DAE denoises the input images 
which are further filtered by the next DAE and therefore CNN 
gets the restored images, which is better suited to classify the 
test images in case they are adulterated with massive noise 
even though both DAEs are same and trained with the low 
noise level. The winner-take-all combination gives system 
output emphasizing confidence of individual structure and thus 
the proposed model performs well to classify images for 
noiseless to high-level noise cases. In this study, the proposed 
method is tested with MNIST handwritten numeral dataset and 
its performances are compared with other related methods. 

The rest of the paper is designed as follows. Section II 
describes the proposed robust system for noisy image 
classification along with some preliminaries for better 
understanding. Section III shows the result of the proposed 
method as well as performance comparison with some other 
existing related research works. Finally, a brief conclusion of 
this work is presented in Section IV. 

II. ROBUST SYSTEM FOR NOISY IMAGE CLASSIFICATION 

In practical life, image classification models suffer from 
noise, injected in the image while acquiring and transmitting, 
as well as other imperfections existing in the image. Exiting 
systems are found to be effective for a fixed level of noise on 
which they are trained. On the other hand, this study 
investigated a robust system which performs well in 
classification of images in spite of the varying level of noise 
present in the image. The proposed method first trains a DAE 
with low noise level and a CNN independently. The main 
novelty of the proposed system is the innovative combinational 
arrangements of the trained DAE and CNN for three different 
structures. This section first describes the training of individual 
DAE and CNN briefly; and then explains the proposed system. 

A. Review of DAE and CNN 

The main computational components of the proposed 
system are DAE and CNN. Well studied standard DAE and 
CNN architectures are considered in this study. For a better 
understanding as well as to make the paper self-contained, 
DAE and CNN are presented briefly. 

1) Denoising Autoencoder (DAE): Autoencoder (AE) is a 

three-layered neural network, which is unsupervised and 

deterministic in nature. It maps the input into a hidden 

representation through encoder and then decoder maps it back 

to a reconstruction, which is of the same shape of the input. 

DAE, unlike basic AE, forces the hidden layer to capture the 

information about how the inputs are statistically dependent on 

each other instead of learning trivial features [14]. This is done 

by the corruption of input dataset x into    stochastically 

(qD   ׀x)) which is mapped into a hidden representation y. 

y=µ(W (qD   ׀x)+b)) ,             (1) 

where W is the weight of the input-hidden layer and qD 
represents the type of distribution with a certain probability  . 
qD depends on two parameters: one, the distribution of the 
original input   and two, the type of noise corrupting the 
images. Clinched alongside practical scenarios, binomial noise 
is utilized while working with black and white pictures 
whereas, to color pictures uncorrelated Gaussian noise is 
superior suiting. At that point,    is mapped to a low 
dimensional hidden depiction y using nonlinear deterministic 
function µ. Finally, this hidden representation gets mapped into 
a reconstruction z which has as close as possible resemblance 
to input x. This process also passes through another nonlinear 
deterministic function  . 

z= (W´y+b´)              (2) 

where W’ is the weight of the hidden-output layer. Thus, 
DAE is capable to generate representations of features, which 
is suitable for the classification task. The architecture of DAE 
is shown in Fig. 1. The training of DAE requires it to be fed 
with noisy images putting the corresponding native images at 
the output layer. During backpropagation, this model learns to 
filter out the underlying noise from the input image and 
reconstruct a noiseless one. The detailed description, as well as 
training of DAE, is available in the previous studies [42]. 

 

Fig. 1. Denoising Autoencoder (DAE) architecture. 

2) Convolutional Neural Network (CNN): CNN [19] is a 

variant of neural network popular for object detection and 

segmentation task. Regular neural network or multi-layer 

perceptron has some limitations: it suffers from overfitting; it 

ignores the fact that there is a strong correlation among 

neighborhood pixels and it is sensitive to any kind of 

transformation of the image. CNN overcomes these problems 

by ensuring spatial local connection, weight sharing, and 

subsampling. The operation of a CNN is done on the premises 

of two basic operations: convolution and subsequent 

subsampling. Convolution operation forces a kernel, which is 

an organization of weights and bias, to convolve over input 
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feature map (IFM) which in the end results in a convolved 

feature map (CFM). Throughout the convolution operation, the 

same kernel is applied to each and every small segment of each 

IFM, which is called the local receptive field (LRF), to acquire 

every specific point of the CFM. Throughout this process, both 

weights sharing among each and every position as well as the 

preservation of special locality are done simultaneously. From 

an IFM the CFM can be calculated by. 

            ∑ ∑                    
  
   

  
              (3) 

where   and * symbolize the activation function and the 2-
D convolution operation accordingly. The bias of the applied 

kernel       is symbolized by   . To conduct the 
experiment here, relu is used as the activation function, 
whereas for every latent map single bias is used. 

The feature map, obtained from convolution operation, is 
processed by applying the following subsampling layer in 
order to gain a simplified form. This procedure of 
simplification is accomplished by choosing important features 
from a locale and discarding whatever is left of the ones [41]. 
Having different sub-sampling methods available, throughout 

the experiments here, max-pooling [21] has been utilized. 
Max-pooling operation picks the most important feature over 
non-covering sub-regions and this process can be defined as: 

           (∑ ∑                   
   
   

   
   )            (4) 

where   symbolizes the max-pooling operation over the 
pooling locale and the size of the pooling area is represented as 
    matrix. 

Fig. 2 shows the most studied CNN architecture which is 
considered in this study. The CNN has two convolutional 
layers of filter size of 5×5 and the subsampling layer with a 
pool size of 2×2. A subsampling layer follows each 
convolutional layer. The convolutional and pooling layers 
together extract the features of the image. There is a fully 
connected layer and the input of which is the output of the 
second subsampling layer. This layer uses the extracted feature 
to classify the image depending upon the training dataset. The 
parameters of the network, as well as the kernel, get updated 
during the training process until the desired accuracy is 
achieved. The detail description of CNN training is also 
available in the previous studies [2], [42]. 

 
Fig. 2. CNN architecture for classification. 

 

Fig. 3. Proposed robust system for noisy image classification combining three different structures with DAE and CNN. 
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B. Proposed Robust System Combining Different Structures 

with DAE and CNN 

Fig. 3 is the topological structure of the proposed Robust 
System based on DAE and CNN (RSDAECNN). Proposed 
RSDAECNN has three different functional phases. It trains a 
single DAE and a single CNN in Phase 1. In Phase 2, three 
different structures are arranged by copying the same DAE and 
CNN from Phase 1. In Phase 3, system outcome is prepared by 
combining outcomes of individual structures. Although 
proposed system consists of three DAEs and three CNNs in 
different structure layers, the DAEs and CNNs are the copy of 
same DAE and CNN trained in Phase 1. Thus, trainings of the 
DAE and the CNN in Phase 1 are the main computational 
elements in the proposed system. 

Training of a single DAE and a single CNN only in Phase 1 
makes the proposed system computationally efficient. The 
CNN is trained with native images and is used for 
classification purpose. The DAE is trained to restore the native 
image from the noisy image. In this study, the DAE is trained 
for regular level noise. Classification with CNN after restoring 
images through DAE might be helpful for noisy image 
classification. Since DAE is trained with regular level noise, 
different structures with different organizations of this DAE are 
managed to make the system adaptable to real-life environment 
where the noise level is not defined. 

The main novelty of the proposed model is the innovative 
arrangements of pre-trained DAE and CNN to produce three 
different structures where each of the structures is responsible 
for dealing with images corrupted by a specific noise level. 
Each individual structure shown in Phase 2 has significant 
motivation to use in the proposed system. The CNN, common 
in all three structures, is used for classification purpose as CNN 
outperforms all other models in case of image classification 
[23]. To classify noiseless images CNN alone is good enough 
as CNN is trained with native images. This is the motivation of 
first structure with a CNN only in the system as seen in Phase 2 
of Fig. 3. However, images corrupted by noise require a prior 
denoising step to improve the classification accuracy of the 
image classifier. For this purpose in the proposed system, DAE 
is used as the image denoiser. This DAE is trained only once 
with images corrupted by regular level noise (such as 20%).  
So, only a single DAE is sufficient enough to reconstruct the 
corresponding noiseless native form by filtering the images 
subject to regular level of noise. From this point of view, a 
DAE-CNN is placed as the second structure to emphasize the 
classification of images which are corrupted by regular level of 
noise. As the DAE and CNN are already trained separately, the 
DAE-CNN needs no further training. In DAE-CNN, DAE 
filters images subject to noise and then CNN classify the 
restored images. 

A different structure DAE-DAE-CNN is developed to 
emphasize classification of images with massive noise because 
DAE-CNN structure is not sufficient enough to classify images 
in case of massive noise present in them. The DAE is trained 
with regular noise only and can‟t reconstruct native images 
which are corrupted with massive level of noises, such as if the 
percentage of noise in the images are around 50%. Roy et al. 
[42] showed that cascaded architectures of DAEs, where each 

of the DAEs is trained with 20% noisy images, can reconstruct 
images of good quality even if the noise level present in the 
images is 50%. Following this idea, a cascaded DAE-DAE is 
arranged as the image denoiser in the third structure DAE-
DAE-CNN. In DAE-DAE-CNN, both the DAEs are the same 
in terms of architecture as well as all the corresponding 
parameters as they are copies of trained DAE in Phase 1. CNN 
is also the duplicate of the trained CNN in Phase 1 as like other 
two structures. Therefore, no additional training is required for 
this structure. In DAE-DAE-CNN operation, at first the image 
is filtered by the first DAE, then the intermediate image is 
further filtered by the following DAE. So, the pre-trained CNN 
is sufficient enough to classify the reconstructed image from 
massive noisy images after they are filtered by DAE-DAE. 
However, this model doesn‟t suit in case the level of noise in 
the image is not that much because restoration through DAE-
DAE might overshoot to different images. 

The proposed robust system combines the outcomes of the 
three structures, which are specialized to different noise levels 
while classifying an image subject to unknown level of noise. 
Among the three structures, structure with CNN alone is best 
suited for noiseless image classification. With DAE, DAE-
CNN and DAE-DAE-CNN structures are suitable for images 
with comparatively less and heavier noise levels, respectively. 
An image with unknown level of noise is fed to all three 
structures at the same time and generates different outcomes. In 
Phase 3, winner-take-all combination is employed to generate 
outcome of proposed RSDAECNN system. Combination of 
outcomes from several individual systems is generally used in 
ensemble of classifiers and winner-take-all combination 
emphasizes the individual best confident system [43]-[44]. 
Therefore, the outcome of the proposed system will be correct 
classification selecting the outcome of the most confident 
structure.  As an example, if the input image is noiseless, 
system outcome might come from the structure with CNN 
alone. On the other hand, system outcome might come from 
DAE-CNN and DAE-DAE-CNN for input image with less and 
heavier noise levels, respectively. As an example, if an image 
of „3‟ with massive noise is placed to the system, DAE-DAE 
will restore the original image as shown in Fig. 3 and CNN will 
classify it correctly. 

C. Significance of the Proposed Model 

There are several notable differences between the existing 
models and the proposed one on the premises of noisy image 
classification. Existing noisy image classification methods are 
found suitable for defined noise level. To work with less noisy 
data these models need to be trained with less noisy data 
whereas to classify massive noisy data the training data set 
should be corrupted by similar proportionate of noise. 
However, the proposed model can work with zero to massive 
level of noise due to the innovative arrangement of trained 
DAE and CNN for three different structures. 

This model also omits the necessity of the system to be 
trained for images with different noise levels. It requires a 
single DAE to be trained with images containing regular level 
of noise and a CNN with noiseless images. Instead of using 
multiple training it places different arrangements of this trained 
DAE and CNN to deal with images carrying different 
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proportion of noise. Thus, it reduces the pre-processing time 
for preparing the training dataset. 

One more significant contribution of this work is the 
computational efficiency. To develop the proposed model with 
three DAEs and three CNNs, only one DAE and one CNN are 
trained independently. The cascaded DAEs in DAE-DAE-
CNN also contains same trained DAE. Innovative 
arrangements of a trained DAE and a trained CNN makes the 
system computationally efficient. 

III. PERFORMANCE EVALUATION 

This section investigates the performances of proposed 
RSDAECNN on the benchmark image dataset MNIST numeral 
images [19]. This section first gives the description of the 
dataset and the experimental setup used to work over this 
dataset and afterward the results of the experiments conducted 
on images of different noise levels and lastly looks at the 
capability of the proposed model against existing ones. This 
model is implemented in Matlab R2017a. The performance 
analysis has been conducted on MacBook Pro Laptop (CPU: 
Intel Core i5 @ 2.70 GHz and RAM: 8.00 GB) in OS-X 
Yosemite environment. 

A. Dataset Description and Experimental Setup 

MNIST database [19] consists of 70000 sample gray-scaled 
images of handwritten digits collected from individuals having 
different writing styles. There are two sets of data: training set, 
which consists of 60000 images, and testing set of 10000 
images. For each of 10 digits there are 6000 training samples 
and 1000 testing samples. Images in this dataset are of size 
28×28. 

In order to conduct a fair analysis of the proposed model‟s 
performance against the existing ones, a uniform experimental 
environment is required. The DAE used here has 784 input 
nodes as the images in the MNIST dataset are of 28×28 size 
and DAE can be fed with linearized data only. DAE includes 
784 input neurons, 500 hidden neurons and 784 output 
neurons. The input of DAE is a linearly oriented noisy image 
of size of 28×28 whereas the output is the linearly oriented raw 
image of size 28×28. 

CNN, the only classifier used here, is trained with clean 
images of 28×28 size. The CNN used here is two layered 
where each layer contains a convolution layer and a following 
subsampling layer. The kernels and other parameters are 
initialized randomly. The filter used for the convolution task in 
both layer is a 5×5 matrix. This filter slides over the original 
image and for every position the dot product is calculated 
which results in the feature map. The size of the feature map is 
24×24 and the depth is 6 as the number of filters used is 6. 
Afterwards, max pooling is applied separately on each feature 
map with a spatial neighborhood of 2×2 window and the size 
of the feature map becomes 12×12. It is followed by another 
convolution and pooling operation with the same sized kernels 
and pooling region as before, which further reduces the size of 
the feature map to 192 as the depth of convolution layer used 
here is 12. The output of the second pooling layer acts as the 
input of the fully connected layer, which calculates the output 
probabilities for each class. So, there would be 192 nodes in 
the hidden layer. The data in this benchmark dataset is 

distributed among 10 classes. That‟s why the CNN used here 
contains 10 nodes in the output layer. 

In order to deal with noises in the images, all the images in 
the training set are corrupted with 20% random noise. For, the 
testing purpose, the test dataset is used once as it is, then 
corrupted with 10% noise, afterward, they are adulterated with 
20% noise and finally to check the performance of our model 
with massive noisy images, we increased the level of noise 
included in the images to 50%. To add noise in the training and 
testing image samples zero masking noise has been used where 
a random matrix is initialized with the same size of training 
data with some of the pixels within the data being randomly 
OFF having probability of 20%. For testing purpose, another 
three random matrices of same size are initialized where 10%, 
20% and 50% data are randomly turned OFF. These matrices 
are multiplied with the raw images to generate the noisy 
images. 

B. Experimental Result and Analysis 

This section evaluates the classification performance of the 
proposed system against MNIST dataset on the premises of 
various proportionate of noise present in the image to validate 
its performance in case of  dealing with variable level of noise. 
To simulate the performance of the proposed system for real 
world scenario where images can be noisy but prior knowledge 
about the level of noises is not possible, different level of 
noises has been added to the dataset because MNIST does not 
carry noises. 

In this study, we implemented masking noise where 
fraction of the pixels of input image is forced to be zero having 
probability of 0%, 10%, 20% and 50%. At first a detailed 
presentation has been given for a sample image containing 
different noise levels as well as the reconstructed ones from 
DAE and DAE-DAE and finally the classification results.  
Experimental results for the dataset are collected for individual 
structures as well as proposed RSDAECNN system and are 
compared with other prominent methods. The performance of 
the system is analyzed on the basis of image reconstruction as 
well as classification accuracies represented by both confusion 
matrices and accuracy graphs. 

Table I delicates the outputs of image denoising step 
applying DAE and DAE-DAE architectures as well as the 
obtained classification results from three different structures 
(i.e., CNN, DAE-CNN, DAE-DAE-CNN) as well as the 
classification result of the proposed PSDAECNN. Images of 
„3‟ with different noise levels are considered as inputs of the 
proposed system those are classified with individual structures 
and generate system outcome. In case of noiseless image, it is 
seen that first structure (i.e., only CNN) correctly classified the 
image as “3”. However, the reconstructed image obtained from 
a DAE seems more like numeral “8” and whenever it is filtered 
by DAE-DAE the image turned into the image of numeral “8”. 
There remain two reasons behind the occurrence. Firstly, the 
DAEs being used here is the pre-trained DAE which is learned 
to reconstruct noiseless image from a noisy version of it. In 
case it is fed with a noiseless image it is not possible for it to 
know whether the image contains no noise and tries to 
reconstruct an image taking the input image as a noisy image. 
Secondly, the structures of numeral “3” and “8” are quite same. 
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So, DAE takes the input image and reconstruct an image like 
the numeral “8”. The DAE-DAE architecture is a two-layered 
cascaded form of the same DAE. The same scenario happens 
with it also. So, both the DAE-CNN and DAE-DAE-CNN 
misclassify the image as numeral “8”. Still, the proposed model 
classifies this image accurately as “3” because single CNN 
classified it correctly with more confident level. In case of both 
10% and 20% noisy form of the very same image, only DAE-
DAE-CNN misclassifies it as numeral “8”. In case of DAE-
DAE-CNN structure, the image is first filtered by the frontier 
DAE. As the proportion of noise present in the image is less, 
this frontier DAE is sufficient enough to output the noiseless 
and good quality image. This reconstructed image is then again 
fed to the following DAE which also takes it as noisy image 
and tries to denoise it which in the end outputs a disordered 
image which looks like numeral “8”. The scenario is different 
in case of 50% noisy images. This time without any additional 
denoising technique CNN classifies it as numeral “5” whereas, 
both the DAE-CNN and the DAE-DAE-CNN classify it 
correctly. Though DAE-CNN classifies it correctly, from the 
figure it is clearly observable that the quality of the image 
reconstructed by DAE-DAE is far better and more like the 
original one as it is in case of the reconstructed one from the 
single DAE. Finally, the proposed RSDAECNN classified 
correctly all four cases although individual structures generate 
different outcomes. 

Fig. 4 shows test set image classification accuracy of the 
proposed RSDAECNN system along with individual structures 
(i.e., CNN, DAE-CNN and DAE-DAE-CNN) for 0%, 10%, 
20% and 50% noisy images up to 400 epochs. For 0% noise 
(Fig. 4(a)), structure with CNN alone achieved the highest 

classification accuracy among three individual structures and 
showed classification accuracy of 99.31%. On the other hand, 
classification accuracies of DAE-CNN and DAE-DAE-CNN 
are 97.83% and 95.99% accordingly. The reason behind these 
two models poor performance compared to single CNN is that 
CNN is trained with noiseless native images. Whenever any 
noiseless image is fed to a DAE trained with 20% noisy 
images, the DAE tries to convert the shape of the image to 
some other form assuming that the image is corrupted by 20% 
noise and results in producing a deformed image. The scenario 
is worse in case cascaded DAE is used. So, logically DAE-
CNN and DAE-DAE-CNN perform worse compared to single 
CNN. However, because of using winner-takes-all model for 
final class label selection, the proposed model shows a better 
classification accuracy than these two models and same as the 
single CNN.  For 10% noise (Fig. 4(b)) DAE-CNN is shown 
best suited individual structure because DAE is trained with 
20% noise level. For this case performance of the proposed 
method is same as DAE-CNN. DAE-CNN is showed as best 
individual structure for 20% noise (Fig. 4(c)), but interestingly 
proposed model performed better than DAE-CNN for this case.  
On the other hand, for 50% noise case, DAE-DAE-CNN 
outperformed CNN and DAE-CNN. The reason behind is 
already explained that cascaded DAEs perform well than single 
DAE in case of image with massive noise as they are both 
trained at 20% noise level; after the first DAE works on a noisy 
image the second one gets an image with relatively less noise 
which gets further denoised. In such heavy noise case, 
proposed method showed the similar performance of DAE-
DAE-CNN. Finally, considering all the scenarios the proposed 
model performs the best for noiseless to heavy noise cases. 

TABLE I. SAMPLE OF ORIGINAL IMAGES WITH AND WITHOUT NOISE AND THEIR RECONSTRUCTION USING DAE, DAE-DAE 

AS WELL AS THE CLASSIFICATION RESULT OF CNN, DAE-CNN, DAE-DAE-CNN AND THE PROPOSED MODEL 

Noise  

Level 
Input Image 

Reconstructed Image Classification through Individual Structure Classification of 

Proposed RSDAECNN 

Combining Individual 

Structures 

DAE DAE-DAE CNN DAE-CNN 
DAE-DAE-

CNN 

0% 

   

3 8 8 3 

10% 

   

3 3 8 3 

20% 

   

3 3 8 3 

50% 

   

5 3 3 3 
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(a) 0% Noise 

 
(b) 10% Noise 

 
(c) 20% Noise 

 
(d) 50% Noise 

Fig. 4. Test set recognition accuracy with different noise levels. 

 
(a) Proposed RSDAECNN 

 
(b) CNN 

 
(c) DAE-CNN 

 
(d) DAE-DAE-CNN 

Fig. 5. Confusion matrices of test set with 0% noise for proposed 

RSDAECNN and individual structures (CNN, DAE-CNN and DAE-DAE-

CNN). 
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Fig. 5 shows the confusion matrixes of test set with 0% 
noise for the proposed RSDAECNN system along with 
individual structures after 400 epochs. It clearly observed from 
the figure for the noiseless case that single CNN (Fig. 5(b)) and 
proposed model (Fig. 5(a)) performs batter than DAE-CNN 
and DAE-DAE-CNN achieving a fair accuracy. It is also 
visible from the figure that all the individual structures (i.e., 
CNN, DAE-CNN and DAE-DAE-CNN) and the proposed 
system performed worst for the numeral “5”. Among them 
DAE-DAE-CNN performs worst misclassifying this numeral 
57 times out of 1000 samples. Single CNN, DAE-CNN and the 
proposed model classifies it correctly for 987, 963 and 987 
times accordingly. In case of DAE-DAE-CNN it is noticeable 
that most of the digits are misclassified as numeral “8”; 179 
samples out of 1000 samples are misclassified as numeral “8”. 
This incident is more frequent for numeral “9”, “6”, “5”, “3” 
and “2”. The reason behind this incident is that the two layered 
cascaded DAE is fed with the noiseless images this time, where 
both the DAEs are trained with 20% noisy data. So, this 
denoiser deforms the shape of the images even if the images 
contain no noise which in the end misled the CNN classifier. 
The scenario is almost same for the DAE-CNN also. Still, 
proposed model performs well because of using winner-takes-
all in the end for final selection process. As this method 
chooses the one, based on maximum node value, 
misclassification by two models doesn‟t affect the overall 
performance of the proposed model. The best classification 
accuracy is found for numeral “0”. The proposed model, CNN, 
DAE-CNN, DAE-DAE-CNN classify it 998, 998, 988, 970 
times accordingly. 

Fig. 6 shows the confusion matrixes of test set with 20% 
noise for the proposed RSDAECNN system along with 
individual structures (i.e., CNN, DAE-CNN, DAE-DAE-CNN) 
after 400 epochs. In such noisy case, all four models performed 
best for digit „0‟ and worst for digit „5‟. The proposed model, 
CNN, DAE-CNN, and DAE-DAE-CNN classify numeral „0‟ 
correctly in 995, 988, 990 and 986 cases out of 1000 cases, 
respectively. On the other hand, for „5‟ the true classifications 
by the methods are 970, 963, 966 and 959 for proposed model, 
CNN, DAE-CNN, and DAE-DAE-CNN, respectively. On the 
basis of overall performance, DAE-CNN is the best and DAE-
DAE-CNN is the worst among individual structures. In this 
case CNN performs better than the DAE-DAE-CNN but 
performance degraded with respect 0% noise case (Fig. 5) 
architecture which is logical as explained earlier. On the other 
hand, proposed RSDAECNN is better than best individual 
structure (i.e., DAE-CNN). 

 
(a) Proposed RSDAECNN 

 
(b) CNN 

 
(c) DAE-CNN 

 
(d) DAE-DAE-CNN 

Fig. 6. Confusion matrices of test set with 20% noise for proposed 

RSDAECNN and individual structures (CNN, DAE-CNN and DAE-DAE-

CNN). 

Fig. 7 shows the confusion matrixes of test set with 50% 
noise for the proposed RSDAECNN system along with 
individual structures (i.e., CNN, DAE-CNN, and DAE-DAE-
CNN) after 400 epochs. This confusion matrix gives the 
evidence of the fact that proposed model is best suited even if 
the image is distorted by massive proportion of noise. This 
time CNN performs the worst; it classifies numerals “1” to “9” 
correctly only on 864, 860, 830, 839, 799, 857, 851, 861, 849 
cases out of 1000 samples for each of them. Apart from 
classifying numeral “0”, in each and every time its 
classification accuracy is below 90% and for the numeral “5” 
its accuracy is even below 80%. In such huge noise, DAE-
DAE-CNN is the best among individual structures. On the 
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other hand proposed model classifies the numerals “0” to “9” 
on 988, 981, 974, 948, 934, 920, 978, 971, 976 and 972 cases 
accordingly. The performance of the proposed model is 
comparably better than the DAE-DAE-CNN structure in case 
of classifying such massive noisy image data. The confusion 
matrixes presented in Fig. 5 to 7 clearly revealed the 
effectiveness of the proposed system to work well to classify 
images with noise free to heavy noise scenario. 

 
(a) Proposed RSDAECNN 

 
(b) CNN 

 
(c) DAE-CNN 

 
(d) DAE-DAE-CNN 

Fig. 7. Confusion matrices of test set with 50% noise for proposed 

RSDAECNN and individual structures (CNN, DAE-CNN and DAE-DAE-

CNN). 

TABLE II. A COMPARATIVE DESCRIPTION OF PROPOSED RSDAECNN NOISY 

IMAGE CLASSIFIER WITH SOME CONTEMPORARY METHODS 

The Work Reference Classification 
Noise 

Level 

Recognition 

Accuracy 

Bengio et al. [19] 

DBN 0% 98.50% 

Deep net 0% 98.40% 

Shallow net 0% 95.00% 

Glorot [45] 
Sparse rectifier 

neural network 
25% 98.43% 

Vincent et al. [35]  DAE 10% 97.20% 

Vincent  et al. [36] 
SVM 25% 98.37% 

SDAE-3 25% 98.50% 

S
el

f-
Im

p
le

m
en

te
d

 

CNN CNN 

0% 99.31% 

10% 97.88% 

20% 97.76% 

50% 85.15% 

DAE-CNN [42] CNN 

0% 97.83% 

10% 97.95% 

20% 98.01% 

50% 95.01% 

DAE-DAE-

CNN [42] 
CNN 

0% 95.99% 

10% 97.31% 

20% 97.47% 

50% 96.32% 

Proposed 

RSDAECNN 
CNN 

0% 99.31% 

10% 97.98% 

20% 98.56% 

50% 96.41% 
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Table II shows the comparative result analysis of the 
proposed RSDAECNN model with some other prominent 
noisy image classifiers. In extent, it describes the particular 
feature(s) of particular models while classifying noisy images. 
It is a highly mentionable issue that most of the existing 
models employ additional feature extraction techniques, 
whereas, proposed model overcomes the necessity of applying 
additional feature extraction techniques. The results presented 
in the table for CNN, DAE-CNN, DAE-DAE-CNN and 
proposed RSDAECNN are the tabular forms which have 
already been explained in the previous section. Results of other 
existing methods are collected from corresponding papers. It is 
notable that existing methods are tested for different individual 
noise levels. However, the proposed RSDAECNN has 
outperformed other models for any noise level. For noise-free 
case, as an example, Bengio et al. showed accuracy 98.50% 
and proposed method showed 99.31% accuracy. For 10% noise 
case, Vincent et al. [35] showed 97.20% accuracy and 
proposed method showed 97.98%. On the other hand, no 
existing method presented accuracy for heavy noise (i.e., 50%) 
and their outcome might be dramatically worse. However, for 
50% noise, the performance of proposed method degraded little 
but outperformed other individual structures CNN, DAE-CNN, 
and DAE-DAE-CNN. The achieved accuracy for such heavy 
noisy case is 96.41%. Finally, the results presented in the table 
clearly revealed the effectiveness of the proposed system for 
classifying noisy images adulterated with variable level of 
noise. 

IV. CONCLUSIONS 

Considering real life scenario, it is usual for an image data 
to be noisy. Pre-processed noiseless images can be classified at 
ease with the help of existing classification methods. However, 
for a supervised classifier, it is difficult to deal with the noisy 
data directly fed to it and failure to classify is quite certain. In 
this paper, autoencoders are implemented to restore the image 
from its noisy version and then the reconstructed image is 
forwarded to a classifier. Another important consideration is 
that having prior knowledge about the proportion of noise 
carried by image data is not possible. Keeping all these facts in 
mind, an innovative model is investigated which includes 
CNN, DAE-CNN, and DAE-DAE-CNN. This model excludes 
the necessity to train it for different levels of noise. Being noise 
independent, the proposed model showed better performance 
on MNIST dataset compared to other models in terms of 
classifying images with noises ranging from zero to massive 
which also ensures its capability of learning hierarchical 
representations. 

Several future research directions are opened from this 
study. The three-layered architecture investigated in this study 
is found efficient. Future researches can be conducted by 
stacking layers with some optimization algorithms to get better 
performance. Various AEs rather than DAE can also be 
employed to check whether the image reconstruction process 
improves or not. Furthermore, proposed model is noise level 
independent but not noise type independent. The method is 
tested with images corrupted by only random noise and might 
perform well for only one type of noise by which it is trained 
with. To make the system more robust and more applicable in 
real life scenarios it should be further upgraded so that it would 

be both noise level independent as well as noise type 
independent. 

REFERENCES 

[1] T. M. Lillesand and R. W. Kiefer, “Remote Sensing and Image 
Interpretation,” Geological Magazine, vol. 132, issue 2, pp. 248-249, 
1995. 

[2] M. A. H. Akhand, M. Ahmed, M. H. Rahman and M. M. Islam, 
“Convolutional Neural Network Training incorporating Rotation based 
Generated Patterns and Handwritten Numeral Recognition of Major 
Indian Scripts,” IETE Journal of Research (TIJR), Taylor & Francis, vol. 
63, pp. 1-19, 2017.   

[3] F. J. Huang, and Y. LeCun, “Large-scale learning with svm and 
convolutional nets for generic object recognition” Proceedings of the 
2006 IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, pp.1-8, 2006. 

[4] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. 
Schmidhuber, “High-performance neural networks for visual object 
classification”, arXiv Preprint arXiv:1102.0183, 2011. 

[5] D. C. Cireşan, U. Meier, J. Masci, and J. Schmidhuber , “A committee 
of neural networks for traffic sign classification,” Proceedings of the 
2011 International Joint Conference on Neural Networks (IJCNN), pp. 
1918-1921, 2011. 

[6] J. C. Bezdek, L. O. Hall, and L. Clarke, “Review of MR image 
segmentation techniques using pattern recognition,” Medical Physics, 
vol. 20, issue. 4, pp. 1033-1048, 1993. 

[7] Y. Bar, I. Diamant, L. Wolf and H. Greenspan, “Deep learning with 
non-medical training used for chest pathology identification,” 
Proceedings of Society for Optics and Photonics, pp. 94140V-94140V. 
doi: 10.1117/12.2083124, 2015. 

[8] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda, “Subject independent 
facial expression recognition with robust face detection using a 
convolutional neural network,” Neural Networks, vol. 16, issue 5, pp. 
555-559, 2003. 

[9] H. Bourlard, and Y. Kamp, “Auto-association by multilayer perceptrons 
and singular value decomposition,” Biological Cybernetics, vol. 59, 
issue 4, pp. 291-294, 1988. 

[10] Y. Bengio, “Learning deep architectures for AI. Foundations and 
trends® in Machine Learning,” vol. 2, issue 1, pp. 1-127, 2009. 

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal 
representations by error propagation,” Parallel distributed processing: 
explorations in the microstructure of cognition, vol. 1, pp. 318-362, 
1986. 

[12] H. C. Shin, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach, 
“Stacked autoencoders for unsupervised feature learning and multiple 
organ detection in a pilot study using 4D patient data.” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 35, 
issue 8, pp. 1930-1943, 2013. 

[13] M. Norouzi, M. Ranjbar, and G. Mori, “Stacks of convolutional 
restricted boltzmann machines for shift-invariant feature learning,” 
Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (CVRP), pp. 2735-2742, 2009. 

[14] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep 
belief networks for scalable unsupervised learning of hierarchical 
representations,” Proceedings of the 26th Annual International 
Conference on Machine Learning, pp. 609-616, 2009. 

[15] G. E. Hinton, S. Osindero, and Y. W.  Teh, “A fast learning algorithm 
for deep belief nets,” Neural Computation, vol. 18, issue 7, pp. 1527-
1554, 2006. 

[16] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, 
“Deconvolutional networks,” Proceedings of the 2010 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), pp. 2528-2535, 
2010. 

[17] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional 
networks for mid and high-level feature learning,” Proceedings of the 
2011 IEEE International Conference on Computer Vision (ICCV), pp. 
2018-2025, 2011. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 1, 2018 

235 | P a g e  

www.ijacsa.thesai.org 

[18] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete 
basis set: A strategy employed by V1?,” Vision Research, vol. 37 issue 
23, pp. 3311-3325, 1997. 

[19] Y. Bengio, P. Lamblin, D. Popovici and H. Larochelle, “Greedy layer-
wise training of deep networks” , In Proc of Advances in 19 th neural 
information processing systems, pp. 153-160, Dec 2007. 

[20] S. Behnke, “Hierarchical Neural Networks for Image Interpretation”, 
volume 2766 of Lecture Notes in Computer Science. Sprnger, 2003. 

[21] D. Scherer, A. Müller, S. Behnke, “Evaluation of Pooling Operations in 
Convolutional Architectures for Object Recognition,” 20th International 
Conference on  Artificial Neural Networks (ICANN), Thessaloniki, 
Greece, Springer. pp. 92–101, 2010. 

[22] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification 
with deep convolutional neural networks”, in Proc. Neural Information 
Processing Systems, pp. 1097–1105, 2012. 

[23] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN 
features off-the-shelf: an astounding baseline for recognition,” 
Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition Workshops, pp. 806-813, 2014. 

[24] C. Szegedy, W. Zaremba, I.  Sutskever, J. Bruna, D. Erhan, I. 
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” 
arXiv Preprint arXiv:1312.6199, 2013. 

[25] D. Lu, and Q. Weng, “A survey of image classification methods and 
techniques for improving classification performance.” International 
Journal of Remote Sensing, vol. 28, issue 5, 823-870, 2007. 

[26] M.C. Motwani, M.C. Gadiya, R.C. Motwani, F.C. Harris, “Survey of 
Image Denoising Techniques”, Proc. of GSP 2004, Santa Clara, CA, pp. 
27-30, 2004. 

[27] R. R. Coifman, and D. L. Donoho, “Translation-invariant de-noising,” 
Wavelets and Statistics, vol. 103, pp. 125-150, 1995. 

[28] P. Perona, and J. Malik, “Scale-space and edge detection using 
anisotropic diffusion,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 12, issue7, pp. 629-639, 1990. 

[29] L. I. Rudin, and S. Osher, “Total variation based image restoration with 
free local constraints,” Proceedings of the IEEE International 
Conference on Image Processing, vol. 1, pp. 31-35, 1994. 

[30] O. Subakan, B. Jian, B. C., Vemuri and C. E. Vallejos, “Feature 
preserving image smoothing using a continuous mixture of tensors,” 
Proceedings of the 11th International Conference on Computer Vision 
(ICCV), pp. 1-6, 2007. 

[31] M. Elad and M. Aharon, “Image denoising via sparse and redundant 
representations over learned dictionaries,” IEEE Transactions on Image 
Processing, vol. 15, issue 12, 3736-3745, 2006. 

[32] J. Mairal, F., Bach, J. Ponce, and G. Sapiro, “Online dictionary learning 
for sparse coding”, Proceedings of the 26th Annual International 
Conference on Machine Learning, pp. 689-696, 2009. 

[33] A. K. Singh, V. P. Shukla, S. R Biradar., and S. Tiwari, “Multiclass 
Noisy Image Classification Based on Optimal Threshold and 
Neighboring Window Denoising.” International Journal of Computer 
Engineering Science (IJCES), vol. 4, issue 3, pp. 1-11, 2014. 

[34] Cheema, T.A., I. Qureshi and M. Naveed A., “Blur and Image 
Restoration of Nonlinearly Degraded Images Using Neural Networks 
Based on Nonlinear ARMA Model”, Proc. INMIC, pp. 102-107.  

[35] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, “Extracting 
and composing robust features with denoising autoencoders,” 
Proceedings of the 25th International Conference on Machine Learning, 
1096-1103, 2008. 

[36] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.A. Manzagol, 
“Stacked denoising autoencoders: Learning useful representations in a 
deep network with a local denoising criterion,” The Journal of Machine 
Learning Research, vol. 11, issue 3371–3408, 2010. 

[37] F. Agostinelli,M. R. Anderson, and H. Lee,  “Adaptive multi-column 
deep neural networks with    application to robust image denoising,” 
Proceedings of the Advances in Neural Information Processing Systems, 
pp. 1493-1501, 2013. 

[38] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, , ”Stacked 
convolutional auto-encoders for hierarchical feature extraction.” , In 
Proc. International Conference on Artificial Neural Networks. Springer 
Berlin Heidelberg, pp. 52-59, 2011. 

[39] L. Gondara, “Medical image denoising using convolutional denoising 
autoencoders,” Proceedings of the 2016 IEEE 16th International 
Conference on Data Mining Workshops (ICDMW), pp. 241-246, 2016. 

[40] L. Xu, J. S. Ren, C. Liu, and J. Jia,  “Deep convolutional neural network 
for image deconvolution,” Proceedings of the Advances in Neural 
Information Processing Systems, pp. 1790-1798, 2014. 

[41] B. Du, W. Xiong, J. Wu, L. Zhang, L. Zhang, and D. Tao, “Stacked 
convolutional denoising auto-encoders for feature representation,” IEEE 
Transactions on Cybernetics, vol. 47, issue 4, pp. 1017-1027, 2017. 

[42] S. S. Roy, M. Ahmed and M. A. H. Akhand, “Classsification of massive 
noisy image using auto-encoders and convolutional neural network,” 
2017 8th International Conference on Information Technology (ICIT), 
pp. 971-979, 2017.  

[43] M. A. H. Akhand, and K. Murase, “Ensembles of Neural Networks 
based on the Alteration of Input Feature Values,” International Journal 
of Neural Systems, vol. 22, issue 1, pp. 77-87, 2012. 

[44] M. A. H. Akhand, Md. Monirul Islam, and K. Murase, “A Comparative 
Study of  Data Sampling Techniques for Constructing Neural Network 
Ensembles,” International Journal of Neural Systems, vol. 19, issue 2, 
pp. 67-89, 2009. 

[45] X. Glorot, A. Bordes, and Y. Bengio. ”Deep Sparse Rectifier Neural 
Networks.” , In Proc of the Fourteenth International Conference on 
Artificial Intelligence and Statistics (AISTATS-11). Vol. 15. pp. 315-
323, 2011. 


