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Abstract—Mining social networks has become an important 

task in data mining field, which describes users and their roles 

and relationships in social networks. Processing social networks 

with graph algorithms is the source for discovering many 

features. The most important algorithms applied to social 

networks are community detection algorithms. Communities of 

social networks are groups of people sharing common interests 

or activities. DenGraph is one of the density-based algorithms 

that used to find clusters of arbitrary shapes based on users’ 

interactions in social networks. However, because of the rapidly 

growing size of social networks, it is impossible to process a huge 

graph on a single machine in an acceptable level of execution. In 

this article, DenGraph algorithm has been redesigned to work in 

distributed computing environment. We proposed ParaDengraph 

Algorithm based on Pregel parallel model for large graph 

processing. 
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I. INTRODUCTION 

Social networks have become extremely popular in the last 
years, and they have important roles in the dissemination of 
information and innovation. The analysis of such networks 
attracted more attention in the research area. Social networks 
are modeled as graphs, also called social graphs. An important 
property of social networks is that they have communities of 
entities with strong connections. Communities of social 
networks are groups of people sharing common interests or 
activities [1]. The typical way to identify communities is graph 
clustering. 

The main techniques of graph clustering are hierarchical 
clustering, partitioning and density-based clustering. 
Hierarchical clustering algorithms, such as Newman-Girvan 
algorithm [2], detect several levels of clusters, where small 
clusters are included within the large ones. Partitioning 
algorithms, such as K-mean [3], divide the graph into k 
clusters, where k is predefined to the algorithm. Density-based 
algorithms consider a graph as areas of high density (clusters), 
surrounded by some areas of low density (noise). Not only 
clusters of arbitrary shape can be discovered, but also outliers 
and noise [4]. This capability makes density-based clustering 
more appropriate for social networks analysis, since usually 
there are a very high number of active users, but there is also a 

high number of users that do not contribute and can result in 
noise. 

DenGraph [5] is a density-based clustering algorithm for 
community detection in social networks, inspired by the well-
known clustering algorithm for spatial data, DBSCAN [6]. The 
main idea of DenGraph is to find clusters and outliers of 
weighted social networks, based on the interaction. It requires 
two parameters:  epsilon ε, which is the maximum distance 
threshold; and η, the minimum number of nodes in the ε-
neighborhood. 

However, processing big data such as social networks with 
millions of vertices and edges by using conventional 
computation is infeasible, since it is impossible to process a 
huge graph on a single machine in an acceptable time. 
Therefore, adapting parallel computing for mining social 
networks has become an urgent need to address processing 
massive data. 

In this research article, we perform DenGraph algorithm for 
mining implicit social graphs in distributed environment. 
Therefore, we propose a parallel density based clustering 
algorithm for social networks (ParaDengraph) in Pregel [7] 
model as follows. First, compute the ε-neighborhood to 
determine core and non-core nodes. Then, generate a new 
graph of the core nodes. Then, clusters are identified by finding 
connected components in the core graph. Finally, expand 
clusters with the non-core nodes. 

The article is organized as follows. Section II reviews the 
related work. ParaDengraph algorithm is then presented in 
Section III. Finally, ParaDengraph was tested using real social 
networks, where experiments and evaluation are presented in 
Sections IV and V. 

II. BACKGRAOUND AND RELATED WORK 

Density-based algorithms consider a graph as areas of high 
density (clusters), surrounded by some areas of low density 
(noise). According to the graph, the algorithm reveals the 
number of clusters. Not only clusters of arbitrary shape can be 
discovered, but also outliers and noise. Density-based 
clustering requires some parameters, and generates clusters 
such that each cluster is a maximal set of density-connected 
points. Points that are not contained in any cluster are 
considered as noise. 
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A. DenGraph 

Given a graph G = (V,E) consisting of a set of nodes V and 
a set of weighted undirected edges E, DenGraph [5] algorithm 
produces clusters {C1,..,Ck} and noise nodes, that are not part 
of any cluster. Other non-noise nodes are either core nodes or 
border nodes. A node u ∈ V is considered as core node if it has 
an ε-neighborhood Nε(u)={v ∈ V | ∃(u, v) ∈ E ∧ dist(u, v) ≤ ε} 
of at least η neighbors (|Nε(u)| ≥ η). A Node that is non-core 
and connected to at least one core node is considered as border 
node. A core node along with its border nodes begin a cluster 
that can be expanded later. 

For undirected and weighted graph G = (V, E), the number 
of interactions between two actors reflects the closeness of 
them, so the distance between two actors, p and q, is 
defined as: 

    (   )  {

     

    (       )
   (     )  (     )

           

            ( )

Where Ipq, Iqp are the numbers of interactions between 
actors p and q initiated by p and q, respectively. The actual 
cluster criterion is based on the concepts: directly density-
reachable, density-reachable and density-connected, which are 
shown in Fig. 1. These three concepts are defined as follows: 

 Definition 1. Let u, v ∈ V be two nodes. u is directly 
density-reachable from v within V with respect to ε and 
η if and only if v is a core node and u is in its ε-
neighborhood, i.e. u ∈ Nε (v). 

 Definition 2. Let u, v ∈V be two nodes. u is density-
reachable from v within V with respect to ε and η if 
there is a chain of nodes p1, . . . , pn such that p1 = v, pn 
= u and for each i = 2, . . . ,n it holds that pi is directly 
density-reachable from pi−1 within V with respect to ε 
and η. 

 Definition 3. Let u, v ∈ V be two nodes. u is density-
connected to v within V with respect to ε and η if and 
only if there is a node m ∈ V such that u is density-
reachable from m and v is density-reachable from m. 

 
Fig. 1. Density reachability concepts. 

In general, a set of core and border nodes VC forms a 
cluster C if each node u ∈ VC is density-connected to each 
node v ∈ VC.  It is usually that an actor in a social network 
might be part of more than one community. This overlapping 
was not allowed in the first version of DenGraph algorithm. An 
extended version, called DenGraph-O, has addressed this 

drawback by allowing border nodes to belong to more than one 
cluster and it is described in Table I. 

B. Graph Parallel Module: Pregel 

Graphs are completely data-driven computations, dictated 
by vertices and edges structure rather than directly expressed in 
code.  In addition, because of the irregular structure of graph 
data, scalability can be quite limited by unbalanced 
computational loads [8]. 

The Bulk Synchronous Parallel (BSP) model [9] provides 
the means to design parallel processing algorithms. It addresses 
the problem of parallelizing tasks across multiple workers by 
using a message-passing interface (MPI) instead of a shared 
memory. 

Pregel introduced originally by Google [7], addresses 
distributed processing of large-scale graphs. It is a vertex-
centric approach, where user focuses on the local action, 
processes each item independently, and then the system 
processes all actions on the large dataset. 

TABLE I. DENGRAPH ALGORITHM 

DenGraph 
input : Graph, ε, μ 

output: Overlapped clusters, noise. 
1.  Begin 
2.       Repeat 

3.         Select a u ∈ V that is not yet labeled 

4.         Compute ε-neighborhood(u) 
5.          If u is core vertex then 

6.              A new cluster id is generated 

7.              u is assigned to the cluster and labeled as "core  

                 vertex" 

8.              All v ∈ ε-neighborhood(u) are labeled as "border 

                 vertex" 

9.              The new id is added to list of cluster-ids for all v 

10.            All v are pushed on a stack 
11.             Repeat 

12.                  Pop the top vertex v of the stack 

13.                  Compute the ε-neighborhood of v 
14.                  If v is core vertex then 

15.                      Label v as "core vertex" 
16.                      For each n ∈ ε-neighborhood(v) do 

17.                           Add new cluster-id to list of n 

18.                            Label n as "border vertex" 

19.                            Push n on the stack  

20.                      End  

21.                  End 

22.            Until (the stack is empty) 

23.        End 

24.        If u is not labeled then 

25.             Label u as "noise vertex" 

26.        End 

27.     Until (all vertices in V are labeled) 

28. End 

The basic idea is that each node of the graph corresponds to 
a task. The node generates output messages that are destined 
for other nodes, and then each node processes the inputs it 
receives. This computation consists of a sequence of iterations, 
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called super-steps. During each super-step, the framework in 
parallel invokes a user-defined function for each vertex. 

III. PARADENGRAPH 

In this section, we present a parallel density based 
community detection algorithm in social networks based on 
Pregel parallel model (ParaDengraph). Given two real 
parameter ε and η, and undirected weighted graph represented 
in adjacency lists, ParaDengraph finds clusters and any 
possible overlapping or noise. 

ParaDengraph works as follows: Firstly, cut off the edges 
with distance more than ε to compute the ε-neighborhood 
Nε(u) for each node u, and classify it as core or non-core node. 
Then, generate a new graph of the core nodes only, and use this 
graph in Pregel model to find all the connected components in 
the core graph, each of which is a cluster. Finally, process non-
core nodes by assigning each non-core node to the cluster(s) of 
its adjacent core nodes if exist, or mark it as a noise if no core 
node is adjacent to it. Notice that all steps are executed in 
parallel. ParaDengraph is divided into the following three 
stages: 

A. Computing ε-neighborhood 

ParaDengraph uses a graph parallel model and generate a 
graph structure from the input adjacency lists. Therefore, many 
graph functions can simplify the process, such as filtering 
feature. This step is accomplished by filtering the graph from 
all edges with distance > ε. The number of the remaining edges 
that are adjacent to each node is used to classify it. 

B. Core Graph Connected Components 

Core graph is generated by filtering the graph of the 
previous step from all nodes with adjacent edges < η. Then, the 
core graph is processed in Pregel model to find connected 
components. The connected core nodes form a cluster. Solving 
such problem requires unknown number of iterations (super-
steps) to find all the connected core nodes by passing 
messages. 

C. Expanding Clusters 

After discovering all connected core nodes and generating 
all initial clusters, the next step is to process non-core nodes, 
assigning each to the same cluster of its neighbor core nodes, 
and mark it as border. Overlapping must be considered when 
the border node connects to more than one cluster. Note that 
when a node does not adjacent to any core node (cluster), it 
must be marked as noise. The proposed algorithm of 
ParaDengraph is shown in Table II. 

IV. EXPERIMENTS 

ParaDengraph was tested with two real networks. The 
whole workflow is shown in Fig. 2. ParaDengraph was 
implemented with Apache Spark GraphX engine for large-
scale graph processing and Hadoop distributed file system 

(HDFS), and was run on a 64-bit PC with Intel® Core™ i5-
3337U CPU @ 1.80GHz × 4, 5.7 GB RAM and 732.0 GB HD. 

A. Enron Emails Network 

The Enron email network [10] consists of 1,148,072 emails 
sent between 87,273 employees of Enron. Nodes in the 
network are individual employees, and edges are individual 
emails. We run ParaDengraph for many times, changing both 
parameters: epsilon ε and minimum point η, as shown in 
Table III. Fig. 3 shows the relation between the values of 
ParaDengraph parameters and the number of generated clusters 
of Enron network. 

TABLE II. PARADENGRAPH ALGORITHM 

ParaDengraph 
input   : Graph adjacency lists, ε, μ 

output : Overlapped clusters, noise. 
1. Begin 

2.     Generate the graph (G) 

3.     Filter G from any edge with distance > ε. 

4.     CoreGraph=Filter G from nodes with neighbors < η. 

5.     Mark each u in CoreGraph as "CORE" 

6.     NoneCore_nodes=Filter G from nodes with neighbors>η. 
7.     Start Pregel(CoreGraph): vertex-program 

8.        Receive messages from the connected vertices. 

9.        Compute label = min(u ID, u label, IDs of all source 

           vertices of the received messages). 
10.      If  label is changed 

11.        send messages to connected vertices with the new one 

12.      End 

13.   Until (no new messages). 

14.   Join CoreGraph and NoneCore_nodes 

15.   Set  for each non-core u label  = list of labels of all 

        directly reachable core. 
16.   If u label is empty 

17.       Mark u as "NOISE" 
        Else 

            Mark u as "BORDER" 

18.   End 

19. End 

 

 
Fig. 2. ParaDengraph workflow. 
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TABLE III. ENRON NETWORK RUN STATISTICS 

 

B. Twitter Interactions Network 

The second data set was Twitter interaction graph, where 
nodes represent users and edges represent interactions, such as 
retweets or replays. ParaDengraph was applied many times to 
the graph of 9187 nodes as shown in Table IV. The relation 
between the generated clusters of Twitter graph and the 
parameters values of ParaDengraph is shown in Fig. 4. 

From both Fig. 3 and 4, it can be seen that the resulted 
clusters were not related directly to the parameters values, 
since the number of clusters decreased in Enron network with 
increasing the values, while it increased in the Twitter network. 
Therefore, the result depends mainly on the graph nature and 
the core nodes locations to each other’s. 

 
Fig. 3. Enron clusters and parameters values. 

TABLE IV.  TWITTER NETWORK RUN STATISTICS 

Epsilon Min points Clusters Noise Cores Borders 

0.1 1 9 8792 395 0 

2 7 8796 36 355 

3 9 8796 16 375 

4 9 8796 15 376 

5 9 8801 13 373 

6 8 8807 12 368 

7 8 8807 12 368 

8 8 8807 12 368 

9 8 8807 12 368 

10 8 8807 12 368 

0.2 1 5 8377 810 0 

2 4 8379 70 738 

3 8 8379 29 779 

4 7 8385 19 783 

5 7 8385 18 784 

6 7 8385 17 785 

7 7 8385 16 786 

8 7 8385 16 786 

9 7 8385 16 786 

10 7 8385 16 786 

0.3 1 6 8176 1011 0 

2 3 8182 85 920 

3 8 8182 31 974 

4 8 8182 21 984 

5 7 8187 20 980 

6 6 8191 18 978 

7 7 8191 16 980 

8 7 8191 16 980 

9 7 8191 16 980 

10 7 8191 16 980 

0.4 1 4 7756 1431 0 

2 3 7758 111 1318 

3 6 7759 44 1384 

4 8 7763 26 1398 

5 8 7763 22 1402 

6 6 7772 19 1396 

7 6 7772 18 1397 

8 5 7780 17 1390 

9 6 7780 16 1391 

10 6 7780 16 1391 

 

0.5 

1 3 6787 2400 0 

2 3 6787 182 2218 

3 5 6787 61 2339 

4 5 6787 36 2364 

5 9 6792 25 2370 

6 9 6792 23 2372 

7 9 6792 22 2373 

8 8 6799 20 2368 

9 8 6799 20 2368 

     

10 8 6799 20 2368 

Epsilon Min points Clusters Noise Cores Borders 

0.1 1 31 86346 927 0 

2 17 86374 387 512 

3 10 86408 237 628 

4 10 86445 168 660 

5 9 86466 131 676 

6 9 86494 102 677 

7 7 86515 87 671 

8 9 86521 81 671 

9 8 86544 69 660 

10 8 86559 60 654 

0.2 1 31 85494 1779 0 

2 15 85526 830 917 

3 10 85568 557 1148 

4 7 85596 409 1268 

5 5 85618 320 1335 

6 5 85647 254 1372 

7 6 85663 215 1395 

8 7 85679 191 1403 

9 6 85715 166 1392 

10 5 85750 144 1379 

0.3 1 25 85068 2205 0 

2 15 85088 1028 1157 

3 11 85124 707 1442 

4 12 85149 534 1590 

5 10 85188 426 1659 

6 7 85226 342 1705 

7 5 85250 287 1736 

8 4 85279 245 1749 

9 6 85309 216 1748 

10 6 85318 193 1762 

0.4 1 26 84476 2797 0 

2 13 84502 1336 1435 

3 11 84533 963 1777 

4 8 84573 740 1960 

5 7 84607 598 2068 

6 8 84630 487 2156 

7 7 84656 417 2200 

8 5 84691 358 2224 

9 4 84714 310 2249 

10 4 84725 272 2276 

0.5 1 40 83327 3946 0 

2 12 83383 1902 1988 

3 11 83426 1406 2441 

4 8 83471 1103 2699 

5 6 83509 908 2856 

6 6 83538 748 2987 

7 6 83568 648 3057 

8 5 83599 567 3107 

9 2 83647 491 3135 

10 2 83663 441 3169 
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Fig. 4. Twitter clusters and parameters values. 

However, the clear result was the relation between the 
number of core nodes and the parameters values. The number 
of core nodes increased when the epsilon value increased, but 
decreased with increasing the value of minimum points. 

V. EVALUATION 

For evaluation purpose, both ParaDengraph and Newman 
Edge Betweenness Clustering (EBC) [2] algorithms were 
applied to the same social network graph to compare both 
results and obtain the characteristics of both clustering 
methods. The   previous   Enron   and   Twitter   graphs,   with 
87,273 and 9,187 nodes respectively, are too large to fit in the 
low capacity of EBC.  So, for evaluation, a smaller Twitter 
data set (539 nodes) was used to run both algorithms. 
ParaDengraph was applied on the graph with different 
collections of parameters values, epsilon (ε) and minimum 
points (η). Since the average noise percentage   for all runs 
(140 runs) was 54.24 %, we chose the closer epsilon value 
(ε=0.09). The result with ε=0.09 and η=5 was 8 clusters, and 
294 nodes as noise. 

Then, Newman EBC was applied to the same graph of 539   
nodes. Notice that EBC is a hierarchical clustering algorithm. 
EBC gave the best modularity at level 9 with 17 clusters. 
While EBC generated 17 clusters, ParaDengraph with the 
ability of density-based clustering to discover noise generated 
only 8 clusters. In order to test the effect of noise in the result, 
a total of 294 noise nodes that discovered by ParaDengraph (ε= 
0.09 and η=5) were removed from the original graph, and EBC 
was applied again. On the graph of 245 nodes (after removing 
noise), the best modularity was found at level 6 with 10 
clusters. The number of clusters decreased from 17 to 10, 
which was closer to ParaDengraph result (8 clusters). 

As a result, we found that ParaDengraph outperformed 
EBC mainly in two parts. First, EBC failed to deal with large 
social networks due to its high time complexity. However, 
ParaDengraph was capable to run with better performance, 
even in the sequential version. This result proves that density-
based clustering algorithms are more appropriate for large 
social networks than hieratical clustering algorithms. Second, 
notice that EBC at the first run on the complete graph (539 
nodes) gave a result of 17 clusters. However, the result of the 
second run on the same graph after excluding all noise (245 

nodes) was 10 clusters. In the other hand, ParaDengraph gave 
both 8 clusters and some noise. We can notice that this result (8 
clusters) was too close to the second result of EBC (10 
clusters) after removing all noise. 

VI. DISCUSSION 

In addition to the suitability for large-scale graph 
computing, which is most critical in dealing with massive 
networks, ParaDengraph is also able to give reasonable clusters 
by discovering and excluding noise from the clustering 
process. This feature is essential in social networks, since there 
is usually a large number of actors, but there is also a high 
number of them do not contribute (outliers). While EBC found 
clusters, it was unable to detect outliers, resulting in more 
clusters where some may contained only one or very few 
nodes. However, outliers did not affect the outcome of 
ParaDengraph. 

Moving to the limitations of this proposed algorithm, the 
most noticeable limitation is that ParaDengraph was proposed 
based on the static version of DenGraph, where communities 
are observed as static. However, they are evolving 
continuously and such dynamic networks require considering 
the time and changes over time. 

VII. CONCLUSION 

This article proposed ParaDengraph, a graph-parallel 
algorithm for community detection in large social networks 
based on the original sequential algorithm called DenGraph. 
The suggested algorithm is suitable for large-scale graph 
computing. ParaDengraph has been applied to two real social 
networks: Enron emails and Twitter. For evaluation, 
ParaDengraph was compared with Newman Edge Betweenness 
Clustering (EBC) algorithm. ParaDengraph outperformed EBC 
in terms of performance and the ability to generate clusters that 
are more reasonable by excluding noise from the clustering 
process. For future work, ParaDengraph can be improved for 
studying communities on dynamic social networks. 
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