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Abstract—In this work, we propose an approach based on
building an adaptive base which permits to make accurate
decisions for diagnosis. The orthogonal adaptive transformation
consists of calculating the adaptive operator and the standard
spectrum for every state, using two sets of vibration signal records
for each type of fault. To classify a new signal, we calculate the
spectral vector of this signal in each base. Then, the similarity
between this vector and other standard spectra is computed. The
experimental results show that the proposed method is very useful
for improving the fault detection.
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I. INTRODUCTION

The rolling bearing is one of the most widely used elements
in rotating machinery. As a critical component, it carries most
of the load during the running of rotating machinery. If the
rolling bearing fails, serious problems arise, which will, in
turn, result in the decrease of production efficiency and large
economic loss. Records show that faulty bearings contribute
to about thirty percent of the failures in rotating machinery
[1]. As a result, it is of great importance to study the effective
fault diagnosis approaches for rolling bearings.

Various monitoring have been developed for bearing fault
diagnosis and condition monitoring, such as vibration analysis,
temperature and acoustic emission monitoring [2]. Vibration
signal analysis is one of the most efficient techniques thanks
to the useful information to severity and type of bearing
damage [3], [4]. Various signal processing techniques have
been proposed for mechanical fault diagnosis are time domain
[5], frequency domain [6]–[8], time-frequency domain analysis
[9], high frequency resonance technique (HFRT) [10], [11],
wavelet transform methods [12], [13] and automatic diagnosis
techniques [14]. In summary, such methods can be primarily
categorized into two classes: frequency identification and fea-
tures classification.

The basic idea of these methods is the decomposition of
the vibration signal in a system of function of orthogonal base
as those of Fourier, Walsh or Haar, [15]–[17] to obtain the
vector (spectre) of the informative characteristics. However, the
spectrum obtained by these frequency methods in the majority
of cases will complicate the procedure of comparing the signals
of various types of faults, since the vibration signal is a non-
stationary process. Hence the need for a method of computing
the vector of the informative characteristics with a minimum
dimension.

In this paper, for the first time, we propose to use the
adaptive orthogonal transformations for the extraction of the

informative characteristics of bearing vibration signal. This
method was used for voice signals [18] and was recently
employed for classification of breast masses in mammography
[19].

The use of these transformations is favored by the ability
to adapt the shape of their basic functions according to the
character of the standard vector. The latter is formed from
the vibration signals of each fault type. In other words, each
class of defects is associated with a system of basic functions
adaptive for the projection of the signals. The formed basic
function system is expressed as a factorization orthogonal
matrix operator, which allows making a transformation with
a fast calculation algorithm.

This paper is organized as follows. The principles of
adaptive orthogonal transforms are introduced in Section II.
The proposed method is validated using the data collected from
bearing run-to-failure tests in Section III. Finally, the main
conclusions are outlined in Section IV.

II. THEORETICAL BACKGROUND

In digital treatment, transformed shelf space orthogonal of
a signal X can be represented by the matrix (1).

Y =
1

N
HX (1)

Where,

• X = [x1, x2, ........., xN ]
T is the initial signal is to be

transformed (of size N = 2n).

• Y = [y1, y2, ........., yN ]
T is the vector of the spectral

coefficients calculated by the operator orthogonal H
of dimension N ×N.

To avoid the problem of signals synchronizations, we
mention that X is transformed to the Frequency domain.

Factorization of Good [20] showed a possibility of rep-
resenting the matrix operator H as product Gi (2) sparse
matrix with a higher proportion of zero which has allowed the
construction of the quick transformation algorithms of Fourier,
Haar, and Walsh. The matrices Gi (i = 1, ..., n) are constructed
by blocks of matrices Vi,j of minimum dimension that is called
spectral nuclei:
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(2)

With

vi,j =

[
αij ... γij
βij ... δij

]
=

[
cos (αij) ... wi,j sin (αij)
sin (αij) ... −wi,j cos (αij)

]
,

wi,j = exp (jθi,j) , ϕ ∈ [0, 2π] , θ ∈ [0, 2π]

Hence ((1)) can be written as follows:

Y =
1

N
HX =

1

N
G1G2 . . . GnX =

1

N

n∏
i=1

GiX (3)

By defining the angular parameters, ϕi,j and θi,j , the
operators of orthogonal transformations H can be formed with
basic functions complex, or with real functions when θi,j = 0.
The calculation of the parameters depends ϕi,j on the choice
of the structures of the spectral nuclei Vi,j . What allows
generating a system of basic functions adapted to a given class
of signals.

Yet, to assure a fast calculation, in this work, the spectral
nuclei in matrices Gi are established so that they contain a
higher proportion of zeros, such as he is explained below.

Adapting operator H in (1) is provided by the condition:

1

N
HaZcd = Yc = [yc,1, 0, 0, . . . 0]

T , yc,1 6= 0 (4)

Where,

• Yc is the target vector which builds the criterion of
adaptation of the operator Ha.

• Zcd represents the vector standard of a class calculated
by means of the statistical characteristics of several
vibratory signals.

• Ha is adaptable to synthesize operator.

The synthesis of the adaptable operator Ha based standard
Zcd(for a given class), consists in calculating the angular
parameters ϕi,j matrices Gi according to the condition (4). The
procedure of the calculation of the parameters is illustrated by
Fig. 1 the principle of which is based on an iterative algorithm
introduced by Fig. 2, which allows the calculation of the target
vector Yc is according to the equation:

Yi = GiYi−1 (5)

The calculation of the vector Yc allows the obtaining of
the adapted operator H. For the classification of the vibration
signals, we dispose two sets of the vibration signals. The first

Fig. 1. The procedure of synthesis of the operator of the adaptive transformed.

one serves to calculate the standard Zcd of i (class i) and
allows to generate the synthesis of the operator. Whereas the
second set used to form the spectral standard Ysd,i of i, which
is obtained by the projection of the recordings of the second
set in the adaptable base Ha.

To make the decision and classify vibration signal, we
calculate each Yi spectrum in each base Ha,i. To define
the fault corresponding to the vector Yi of the informative
characteristics, we lean on a rule of decision formed by a
combination of two criteria:

• The Euclidean distance δi = ‖Yi − Ysd,i‖ and

• The distance of the energy concentrated in their first
coefficients of the decomposition εi =

∣∣∣Y 2
1,i − Y 2

1,sd,i

∣∣∣.
So, the vector Yi will correspond to class i if δi =

min (δk=1...M ) and εi = min (εk=1...M ), with M is the
number of classes. This procedure of classification is illustrated

www.ijacsa.thesai.org 376 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 1, 2018

Fig. 2. The algorithm of synthesis of the operator of the adaptive transformed.

in the Fig. 3.

III. APPLICATION TO EXPERIMENTAL SIGNAL

A. Experimental setup

The bearing test rig hosts four bearings were installed on
a shaft. The rotation speed was kept constant at a rate of 2000
RPM by an alternative current motor coupled to the shaft via
rub belts. A uniform radial load of 6000 lbs is applied onto
the shaft and bearing. All bearings are lubricated.

Rexnord ZA-2115 double row bearings were installed on
the shaft as shown in Fig. 4. A PCB 353B33 High Sensitivity
Quartz ICP accelerometers were installed on the bearing
housing. The test rig and sensors placement are also shown in
Fig. 4. All failures occurred after exceeding designed lifetime
of the bearing which is more than 100 million revolutions. Vi-
bration data were collected every 10 minutes by NI DAQCard-
6062E at the sample rate set at 20 KHz.

Fig. 3. Classification procedure.

Fig. 4. Bearing test rig.

The test was carried out for 35 days until a significant
amount of metal debris was found on the magnetic plug of
the test bearing. An inner race defect was discovered in test
bearing 1.

B. Experimental Results Analysis

The proposed method was applied to detect the
bearing with outer race fault. The raw vibration
signal of normal operating conditions and outer
race failure occurred in bearing 1 are plotted in
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Fig. 5. Vibration signal of: (a) normal operating conditions, (b) outer race
failure occurred in bearing 1.

Fig. 5a and 5b, respectively.

Fig. 6a and 6b present the frequency spectrum of normal
state and outer race. The characteristic defect frequencies
cannot be obtained directly in FFT spectrum.

By using the elaborate method, the projection of normal
signal in the normal class base and fault class base are plotted
in Fig. 7a and 7b, respectively. We can notice that the energy
of the projection of the normal signal in the adaptive base has
a small spectral vector (Fig. 7a).

Fig. 8a and 8b illustrate the projection of fault signal in
the normal class base and fault class base. It can be seen that
during the projection of this signal at a normal base, we obtain
rather a broad spectral vector (Fig. 8a).

This result demonstrate that the first signal belongs to the
class of the normal signal and the second signal belongs to the
class of abnormal signal, respectively. The same conclusion
also manifested by values of δ and ε.

The results obtained by the developed method, illustrated in
Fig. 7 and 8 indicate its effectiveness and show that it ensures
a high distinction that will help to make the classification of
bearing vibration signal.

The efficiency of the elaborate method is illustrated on
Fig. 9 which reflects the certainty of classification according
to the size of the interval of the analysis. The certainty of the
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Fig. 6. FFT of: (a) normal operating conditions, (b) outer race failure occurred
in bearing 1.

classification of the signals is much higher and can reach a
100 % value as the interval of analysis increases.

IV. CONCLUSION

To improve the accuracy fault classification of bearings
in rotating machines, a new method is developed based to
calculate the informative characteristics of the vibration signal.
The experimental results show that the method ensures a high
distinction that will help to make the classification of bearing
vibration signal. The developed software system according to
this method will be beneficial for practical fault classification.
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(b) fault class base.
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