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Abstract—In this work, the pH neutralization process is
described by a neural network Wiener (NNW) model. A non-
linear Model Predictive Control (NMPC) is established for the
considered process. The main difficulty that can be encountered
in NMPC is solving the optimization problem at each sampling
time to determine an optimal solution in finite time. The aim
of this paper is the use of global optimization method to solve
the NMPC minimization problem. Therefore, we propose in this
work, to use the Self Organizing Migrating Algorithm (SOMA) to
solve the presented optimization problem. This algorithm proves
its efficiency to determine the optimal control sequence with a
lower computation time. Then the NMPC is compared to adaptive
PID controller, where we propose to use the SOMA algorithm to
formulate the PID in order to determine the optimal parameters
of the PID. The performances of the two controllers based on the
SOMA algorithm are tested on the pH neutralization process.

Keywords—Nonlinear model predictive control; optimization;
SOMA algorithm; adaptive PID; pH neutralization process

I. INTRODUCTION

The pH neutralization process is characterized by a nonlin-
ear behavior. The high nonlinear characteristic of this process
makes the control of the pH a hard task. Since the neces-
sity of maintaining the pH in a specific range value, many
control strategies have been proposed. For this purpose, [1]–
[3] designate a PID controller to control the pH value. An
adaptive controller is developed in [4]. [5] proposed a model
algorithmc control strategy. Other works [6]–[8] developed the
Model predictive control (MPC) which is a more advanced
control strategy. The MPC control strategy presents the major
advantage to efficiently handle nonlinearity and constraints
imposed on system input and output [10]. Indeed, for real
processes, the control values are usually delimited by an upper
and lower bound that should be respected.

The MPC is essentially based the choice of a suitable model
and adequate optimization method to solve the minimization
problem. Many structures was used to describe the nonlinear
behavior of the pH neutralization process: NARX model
[11],Fuzzy neural network model [12], Neural networks [13],
Wiener model [8], [14]–[17].

Respecting the nonlinear nature of the model, the resulting
NMPC minimization problem is nonlinear and nonconvex.
The nonconvexity will complicate the implementation of the

NMPC. Added to that, solving a nonlinear optimization prob-
lem is a hard task in terms of computation time and burden.
To overcome these difficulties a variety of solutions were
proposed in literature to avoid solving a nonlinear optimization
problem and ensure global convergence at each sampling time.
In [18], [19], the minimization problem is converted into a
linear one in the case of a simple polynomial description of
the nonlinear block. In this case, the nonlinearity is removed by
considering the inverse of the polynomial function. As a result,
the input control will be linearly expressed in the predicted
output leading to a quadratic optimization problem. Also, the
nonlinear optimization problem is formulated in [8], [15],
[16] as a linear problem by performing a linearization of the
nonlinear model. To avoid solving the nonlinear optimization
problem and reduce the implementation complexity of the
NMPC, [20], proposed to describe the nonlinear process by
a set of uncertain linear models instead of one nonlinear
model. We can note that all these works avoid to solve the
nonconvex optimization problem regarding the difficulty of
implementation and the high computation burden necessary
at each sampling time.

To obtain good control accuracy the NMPC optimization
problem must be solved as nonlinear [21]. However, global op-
timization methods are generally not recommended since they
are not able to ensure the real time feasibility of the NMPC.
In fact, the sampling period of the process under consideration
must be respected at each iteration when solving the NMPC
problem. This constraint is difficult to be satisfied using global
optimization method due to their slow convergence. Therefore,
the main aim of this work is the use of an efficient algorithm
to solve the NMPC optimization problem and ensure the real-
time feasibility of the control algorithm. For this, we propose
to use the Self Organizing Migrating algorithm (SOMA) in
this work to solve the optimization problem. The SOMA is
an evolutionary algorithm such as Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), Artificial Bee Colony
algorithm (ABC) and so on. The SOMA algorithm was suc-
cessfully applied to solve a variety of engineering problems.
The most interesting are: control issues [22], antenna design
[23], system identification [24], [25], Aircraft wing design and
Synthesis of robot control program [26]. This method presents
the significant advantage of high convergence speed.

In This work, we will be interested to represent the pH
neutralization process by a Wiener model. Wiener model
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belongs to block oriented models that are defined by a dynamic
linear block followed by a nonlinear static one. Due to the
specific structure of the pH neutralization process, the Wiener
model appears able to well reproduce the behavior of the
process. Many works used the Wiener model to describe the
nonlinear dynamic of the process.

The different representations vary in the way that linear
and nonlinear blocks are described.

Many structures are used to describe the steady state
block : Polynomial, [14], [27], support vector machine [16],
neural network [8], [15], [19], cubic spline [18]. In this work,
the nonlinear block is represented by a feed forward Neural
Network (NN).

In this paper, the NMPC is integrated with SOMA algo-
rithm to solve the optimization problem. We prove, in this
work, the ability of the SOMA algorithm to ensure good
control performances with a low computation time despite
the large prediction and control horizons. In the sequel, The
NMPC strategy integrated with SOMA algorithm is compared
to adaptive PID controller. We propose, in this work, to adjust
PID parameters using SOMA algorithm.

This paper is organized as follows: Section 2 describes the
Wiener model. The identification of the considered process
is detailed in Section 3. NMPC based on the Wiener model
is presented in Section 4. The SOMA algorithm used to solve
the minimization problem is described in Section 5. Simulation
results are given in Section 6.

II. WIENER MODEL

Wiener model belongs to block oriented models. It is
described by a linear dynamic block followed by a nonlinear
static one as shown in Fig. 1.

Fig. 1. Wiener model.

In this work, the linear dynamic block is described by a
simple autoregressive model defined as:

A(q−1)s(k) = B(q−1)u(k) (1)

Where polynomials A and B are given by:

A(q−1) = 1 + a1q
−1 + a2q

−2+, ...,+anaq
−na (2)

B(q−1) = b1q
−1 + b2q

−2+, ...,+bnb
q−nb (3)

na and nb are respectively the orders of the two polyno-
mials A and B.
The nonlinear block is defined as:

y(k) = f(s(k)) (4)

f(.) is a nonlinear function.

Different forms are used to describe the nonlinear block
for Wiener model starting from the simple polynomial form

[19], [28] to more complex description Neural network [19],
[15], support vector machine [16]. In this work the nonlinear
static block of the Wiener model is given by a feed-forward
neural network as adpoted in [15].

III. IDENTIFICATION OF THE WIENER MODEL

The aim of this paragraph is the determination of the
parameters ai and bi of the linear block as well as the weights
wi of the network that present the parameters of the nonlinear
block.

The structure of the Wiener model is depicted in Fig. 2.

Fig. 2. Identification of the Wiener model.

A. Identification of the Linear Block

Firstly, a small input signal is applied to the system to
ensure linear perturbation of the nonlinear system [29]. Then,
the recursive least square algorithm is firstly used to identify
the parameters of linear dynamic block.

The output of the linear block can be expressed as:

y(k) = ψT (t)θ(t− 1) (5)

ψ is the data vector defined as:

ψT (t) = [−y(k − 1), . . . ,−y(k − na)u(k − 1), . . . u(k − nb)]
(6)

θ is the parameter vector:

θT = [a1 a2, . . . ana b1 b2, . . . bnb] (7)

The update of the parameter vector is ensured by the
following equation:

θ(t) = θ(t− 1) + P (t)ψ(t)ε(t) (8)

P is weighting matrix given by:

P (t) = P (t− 1)− P (t− 1)ψ(t)ψT (t)P (t− 1)

1 + ψT (t)P (t− 1)ψ(t)
(9)

The initial parameter vector is θ(0) = 0.

Once the parameters of the linear block are determined, the
back-propagation algorithm is applied to train the feed-forward
neural network such as in [29].
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B. Identification of the Nonlinear Block

The structure of the nonlinear block is illustrated in
Fig. 3. The output of the nonlinear block can be computed
from Fig. 3 as:

yM (k) = b1,0 +

j∑
i=1

w1,if(e(k)) (10)

where j is the number of hidden nodes, f is a nonlinear
activation function taken as the hyperbolic tangent function
and e(k) is the output of the hidden layer defined as:

ei(k) = b0,i + w0,is(k) (11)

Fig. 3. Neural Network representation of the nonlinear Wiener block.

The weights wi,j of the neural network are updated by
minimizing the following criterion:

Jiden(k) =

N∑
i=1

(y(k)− yM (k))
2 (12)

where y(k) is the process output and yM (k) is the model
output defined as:

yM (k) = b1,0+
j∑

i=1

w1,if

(
b0,i + w0,i

(
na∑
i=1

−ais(k − i) +
nb∑
i=1

biu(k − i)
))
(13)

Applying the back-propagation training algorithm the opti-
mization is carried out in order to minimize the criterion (12)
with respect to the weights wi,j of the network.

∂J

∂w
= − (y(k)− yM (k))

∂yM (k)

∂w
(14)

The update equation of the different weights is defined as:

w(k + 1) = w(k) + ∆w(k) (15)

where ∆w(k) is defined as: ∆w(k) = −µ ∂J
∂w

w(k + 1) = w(k) + µ (y(k)− yM (k))
∂yM (k)

∂w
(16)

µ is the learning coefficient.

The Neural Network Wiener (NNW) model is used in this
work to compute the j-step ahead predictions. Future prediction
are used to define the cost function of the NMPC strategy.

IV. MODEL PREDICTIVE CONTROL DESIGN FOR WIENER
MODEL

The basic idea of the MPC strategy is the use of the process
model to compute the j-step ahead prediction over a prediction
horizon Np. At each sampling time, a control sequence U =

[u(k), u(k + 1), ..., u(k +Nu − 1)]
T is computed , where Nu

is the control horizon, by minimizing the cost function defined
as the difference between the predicted output ŷ(k + i|k) and
the future set-point ysp(k + i) defined by:

J(k) =
Np∑
i=1

(ysp(k + i|k)− ŷ(k + i|k))
2

+λ
Nu−1∑
i=0

∆u(k + i|k)2
(17)

subject to

∆umin ≤ ∆u(k + i|k) ≤ ∆umax

umin ≤ u(k + i|k) ≤ umax

λ represents a positive weighting coefficient, ∆u(k + i|k) is
defined as ∆u(k + i|k) = u(k + i|k)− u(k + i− 1|k).

Based on the receding control horizon, only the first ele-
ment of the control sequence U is applied to the system. Then,
the whole procedure will be repeated at the next sampling time
and the prediction horizon will be shifted one step forward.

In order to get efficient control results, predictions must be
accurately computed. It is so important to take into account the
effects of system and model mismatch coming from modeling
errors and unmeasured disturbance, a correction term as in the
dynamical matrix control, is added to model output defined as
[30]:

d(k) = y(k)− yM (k + i|k) (18)

where yM (k + i|k) is the model output and y(k) is
the process output. The correction term is constant over the
prediction horizon. Therefore, the model expression that will
be used to compute predictions is defined as:

ŷ(k + i|k) = yM (k + i|k) + d(k) (19)

Due to the nonlinear nature of the NNW model the result-
ing optimization problem will be nonlinear and nonconvex.
The convergence of this optimization problem is not guaran-
teed and the algorithm may be trapped in a local minimum that
will lead necessarily to suboptimal control performances. Solv-
ing a nonlinear optimization problem is a high time demanding
task. Added to that, real process requires generally a large
prediction and control horizons that will raise the computation
time. Moreover, the sampling period of the process presents
an additional constraint that should be respected when solving
the NMPC optimization problem.

Therefore, a fast convergence speed algorithm must be used
to ensure the global convergence and the real-time feasibility
of the control algorithm. Deterministic optimization methods
are used in [9], [31] to solve the NMPC optimization problem.
These methods are high time consuming also they can be
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only applied to systems requiring small prediction and control
horizons.

Many research papers propose to use stochastic optimiza-
tion methods to solve the minimization problem. The Artificial
Bee Colony (ABC) algorithm is combined with the NMPC in
[32] to solve the minimization problem. This algorithm proves
its simplicity of implementation and reduced computational
complexity. The genetic algorithm (GE) is used in [33], [34]
to determine the optimal control sequence. The particle swarm
optimization (PSO) algortihm is integrated in [35] with NMPC
to solve the resulting optimization problem. In [36], the neural
network is used to determine the solution of the minimization
problem. In [37], the Nelder Mead algorithm was applied
which leads to global solution by using far initialization. The
simulations gave optimal results with least computation time
for SISO and MIMO models. However, it remains a local
optimization method.

We propose in this work to use the SOMA algorithm to
solve the presented optimization problem. SOMA presents an
effective, robust and simple global optimization method.

V. SELF ORGANIZING MIGRATING ALGORITHM

SOMA is a stochastic optimization method proposed first
by Zelinka [25]. SOMA is based on the social group of indi-
vidual not on the philosophy of evolution. The classification
of SOMA as evolutionary algorithm is explicated by the fact
that the obtained results after a migration loop is the same
as the result of one generation of evolutionary algorithm [26].
The principle of SOMA algorithm can be summarized as a
migration loops during which the position of each individual
is enhanced in order to reach the leader position (individual
with the best fitness).

Each individual will be randomly initialized in the search
space described by the upper and the lower bounds of the
variables. At each migration loop, individuals are evaluated,
the one that has the less fitness will be the leader, the rest
individuals will cross a trajectory (pathlength) with step t in
the direction of the leader.

Similar to other evolutionary algorithms, the operation of
SOMA is ensured by some control parameters. The recom-
mended ranges of these parameters are fixed based on great
number of empirical tests and they are defined and given by
[24], [26]:

• Dim: It defines the problem dimension (number of
decision variable).

• Population size (Popsize): It defines the number of
individuals in population, recommended value ≥ 10.

• Migrations: It defines the maximum number of
iterations (migration loops). It is the stopping criterion
in SOMA recommended range [10, up to user].

• Pathlength: It fixes how far the individual will stop
its movement from the leader. If the pathlength=1
the individual will stop at the leader position, if
pathlength=2 the individual will surpass the leader
position by the same distance from the initial position,
recommended value 3.

• step: It defines the step that uses individuals to cross
the path.

• PRT : The PRT is used to determine the PRTvec.
Individuals are allowed to change their position based
on the PRT , recommended value 0.4.

SOMA is a population based algorithm. The initial popu-
lation P is generated randomly in the search space defined by
the lower xmin and upper xmax bound of the manipulated vari-
ables. So, P is defined as: P = {X1, X2, . . . , XPopsize}. The
ith individual Xi is defined by Xi = {xi,1, xi,2, . . . , xi,Dim},
i = 1, . . . , Popsize, j = 1, . . . , Dim.

xi,j = xmin,j + (xmax,j − xmin,j).rand (20)

Like other evolutionary algorithm, SOMA performs a set of
stochastic evolutionary operators. These operators are defined
by mutation and crossover.

• Mutation: This operator defines in evolutionary al-
gorithm the diversity in the population. In SOMA
mutation is applied differently. It is performed by the
PRT vector noted PRTvec. The PRTvec aims to perturb
the path of individuals randomly in order to ensure
diversification among them [38]. The perturbation in
SOMA algorithm presents the mutation phase in the
GA algorithm. Two values can be affected to this
vector: 0 or 1 based on the SOMA PRT control
parameter. Only individuals with PRTvec equal to 1
are allowed to change their positions. The PRTvec is
created as follows:

if rand < PRT
PRTvecj = 1;
else PRTvecj = 0;
end

(21)

• Crossover: Crossover operator means the creation of
new individual during the search. Since in SOMA al-
gorithm no new individual is generated, the crossover
is defined in this case by generating a new best
position of individual across the search space to reach
the leader. At each migration loop individuals explore
a set of positions when mapping the path, memorize
the best found one and move to this position at the end
of the path. At the next migration loop, individuals
start from this position. The movement of individuals
to reach the position of the leader is given by the
following equation:

xk+1
i,j = xki,j + (xkL,j − xki,j).t.PRTvecj (22)

where xk+1
i,j is the new individual position., xki,j is the

position of individual at iteration k, xkL,j is the leader position
and t ∈ [0 : step : path length]

The SOMA algorithm can be summarized as follows:
01 Choose the control parameters :PRT,step,pathlengthandmigrations.
Generate the initial population Pusing equation (20),
02 Evaluate individuals of the population
03 Sort individuals and select the leader
itetration = 1;
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while (iteration < migrations)
for i = 1 : Popsize
GeneratePRTvecusing equation(21)
Move each individual toward the leader using
equation (22)
Evaluate the individual at the new position

new fitness < fitness(individual (i))
Move individual(i) to the new best position.
end if
end for
sort individuals and select the new leader
iteration = iteration+ 1
endwhile

VI. SIMULATION RESULTS

The considered system is composed of the base stream
q1, the acid stream q2 and the buffer stream q3 that are
mixed in continuous stirred tank reactor. The dynamic model
of the reactor is derived from the conservation equation and
equilibrium relations [4]. The dynamic of the pH process is
given by two differential equations and a nonlinear one given
by (23) and (24 ).

Ẇa(t) =
q1(t)

V
(Wa1 −Wa(t)) +

q2(t)

V
(Wa2 −Wa(t))

+
q3(t)

V
(Wa3 −Wa(t))

Ẇb(t) =
q1(t)

V
(Wb1 −Wb(t)) +

q2(t)

V
(Wb2 −Wb(t))

+
q3(t)

V
(Wb3 −Wb(t))

(23)

Wa(t) + 10pH(t)−14 − 10−pH(t)+

Wb(t)
1 + 2× 10pH(t)−k2

1 + 10k1−pH(t) + 10pH(t)−k2
= 0

(24)

where Wa and Wb represent the charge balance coeffi-
cients. The base stream q1 is manipulated to control the pH
value, the acid stream q2, the buffer stream q3 are maintained
constant.

the different parameters of the reactor are listed in Table I.

In this section, we will consider the pH neutralization
process.

TABLE I. PARAMETERS OF THE PH PROCESS

Parameter value
Wa1 -3.05e-3
Wa2 -3e-2
Wa3 3e-3
Wb1 5e-5
Wb2 3e-2
Wb3 0
q2 0.55
q3 16.60
V 2900
k1 6.35
k2 10.25

A. Identification of the pH Neutralization Process

The pH neutralization process will be described by a
NNW model, where the linear block is described by an auto-
regressive model and the nonlinear block is given by a multi-
layer feed-forward neural network with one hidden layer. The
plant is excited using two different input signals to get the
identification and the validation data as shown respectively in
Fig. 4 and 5. The bounds on the input are 0 and 30.

A feed-forward neural network with one hidden layer and
3 nodes appears sufficient to describe the nonlinear block of
the Wiener model [15].
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0

10
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q
1

Fig. 4. Identification signal.
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Fig. 5. Validation signal.
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Fig. 6. Identification of the NNW model.
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Fig. 7. Validation of the NNW model.

Fig. 6 and 7 illustrate the identification and the validation
of the system. We can conclude that the neural Wiener model
can reproduce the dynamic of the pH process with sufficient
accuracy. This is well confirmed by the validation error de-
picted in Fig. 8 defined as the difference between the system
and the model output y(k) and yM (k), respectively.
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Fig. 8. Validation error.

B. NMPC Control of the pH Neutralization Process

The NMPC strategy aim to maintain the pH value at
a desired value. For this the neural Wiener model is used
to compute the j-step-ahead predictions for the NMPC. The
parameters of the NMPC are fixed as Np = 10, Nu = 3,
λ = 0.08, qmin = 0 and qmax = 30.

The recommended values of the parameters of the SOMA
algorithm are fixed as: pathlength = 3, step = 0.31, PRT =
0.4, popsize = 10, the number of migration loops is 30.

We can note that the SOMA algorithm proves its efficiency
to ensure good output tracking as depicted in Fig. 9. The
performance offered by the SOMA algorithm outperforms
those offered by the GBM method. This can be proved in
terms of less overshoot and best control quality as illustrated
in Fig. 9.
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Fig. 9. Output tracking using the SOMA algorithm and the GBM.

In order to test the efficiency of the SOMA algorithm in
presence of disturbance a constant v is added to the system
output as:

v(k)=0.8 110 ≤ k ≤ 130

v(k)=0.6 160 ≤ k ≤ 180
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Fig. 10. Output tracking in the presence of disturbance.

We can note from Fig. 10 the good ability of the SOMA

algorithm to reject disturbance. This latter is rejected within
10 iterations that present a short time.

The NMPC strategy is compared to an adaptive PID
controller. The Sum of square Error (SAE) defined by equation
(25) is minimized in order to determine the proportional,
integral and derivative coefficients of the PID controller: kp,
ki and kd, respectively:

SAE(k) =

k∑
i=1

|e(k)| (25)

Respecting the high nonlinear considered process, the
SOMA algorithm is adopted to derive the coefficients of the
adaptive PID controller at each iteration.

The control parameters of the SOMA algorithm are fixed
for the PID controller as those of the NMPC.
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Fig. 11. Output tracking for NMPC and PID.

Simulation results for PID and NMPC are given in
Fig. 11. The results show that both controllers ensure good
output tracking in steady state for the first and second setpoint
change. However, we can remark that the PID exhibits more
overshoots as well as the deterioration of the control quality
and consequently the output tracking in the last output change.
This proves the superiority of the NMPC strategy to ensure
good performances compared to PID.
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Fig. 12. Computation time of the NMPC and PID

Computation time present an important performance index
in control problem. Fig. 12 shows the computation time for
both NMPC and PID. The present results confirm the good
ability of NMPC to give better performances with the low
computation time. In fact, the determination of optimal PID
parameters on line at each sampling time using the SOMA
algorithm requires more migration loops this will directly
affect the computation time of the implementation of the PID
controller.
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VII. CONCLUSION

In this paper, a nonlinear model predictive control is
combined with the SOMA algorithm to solve the NMPC
optimization problem. The control performances of the SOMA
algorithm are tested on a high nonlinear process. Control
results prove the efficiency of this algorithm to ensure good
output tracking and control accuracy with a low computation
time. NMPC based on SOMA algorithm is compared to
adaptive PID controller. We can conclude from simulation
results that the NMPC outperforms the PID in terms of less
overshoot and computation time. NMPC offers the best control
results and the less computation time compared to PID. The
difficulty of the determination of PID parameters for high
nonlinear process limits the performance of this controller.
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