
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

371 | P a g e

www.ijacsa.thesai.org

Topology-Aware Mapping Techniques for

Heterogeneous HPC Systems: A Systematic Survey

Saad B. Alotaibi
1
, Dr. Fathy alboraei

2

Faculty of Computing and Information Technology

King Abdulaziz University

Riyadh, Saudi Arabia

Abstract—At the present time, the modern platforms of high-

performance computing (HPC) consists of heterogeneous

computing devices which are connected through complex

hierarchical networks. Moreover, it is moving towards the

Exascale era and which makes the number of nodes to increase

as well as the number of cores within a node to increase. As a

consequence, the communication costs and the data movement

are increasing. Given that, the efficient topology-aware process

mapping has become vital to efficiently optimize the data locality

management in order to improve the system performance and

energy consumption. It will also decrease the communication cost

of the processes by matching the application virtual topology

(exploited by the system for assigning the processes to the

physical processor) to the target underlying hardware

architecture called physical topology. Additionally, improving

the locality problem which is one of the most challenging issues

faced by the current parallel applications. In this survey paper,

we have studied various topology-aware mapping techniques and

algorithms.

Keywords—Virtual topology; physical topology; topology-aware

mapping; parallel applications; communication pattern

I. INTRODUCTION

Good topology-aware process mapping has an acute role in
improving the performance of the parallel applications in high-
performance computing (HPC) as well as the energy
consumption, considering the increasing hierarchical,
heterogeneous and complex nature of the current and future
high-performance computing (HPC) platforms. The
"Heterogeneous" term refers to non-symmetry in a few or
several system aspects. The heterogeneity appears in several
parts such as; networks and can emerge from hardware
heterogeneity (CPUs, GPUs, FPGAs), software heterogeneity
(Compilers, operating system, libraries, etc.) and the network
topology complexity [1]. For that matter, the applications of
high-performance computing need to adapt the heterogeneity
platforms to optimum execution.

As an illustration, the topology-aware process mapping is a
way of carrying out a particular task to enhance parallel
application execution by decreasing the communication cost of
processes by matching the application of virtual topology
(exploited by the system for assigning the processes to the
physical processor) to the target underlying hardware
architecture called physical topology. One of the advantages of
topology-aware mapping is the decreased cost of

communication, by matching the application data to the
processors that are physically close one to the other.

In order to do a topology-aware process mapping, it is
necessary to choose the parallel programming models that help
in this matter. To put it another way, the parallel programming
model has a valuable help in application execution, because
some of the parallel programming models have a mechanism
that helps the application to exploit the underlying hardware to
improve communication and the locality. Moreover, it will be
helpful for virtual topology management to reorganize the
processes according to the target underlying hardware
architecture. Therefore, the most important parallel
programming model is the Message Passing Interface (MPI)
which is the standard model of the parallel programming
models.

As discussed above, we propose the main three steps to
make an efficient topology-aware process mapping, as follows:

1) Develop a virtual topology by gathering the application

communication pattern.

2) Develop a physical topology by modeling the

underlying hardware architecture.

3) Develop a clever algorithm or technique by matching

the numbers of computing elements and the process ranks of

the application.

The following architecture explains the previous steps “Fig.
1”.

The mapping of topologies is of two types: static and
dynamic. In the static approach, the mapping can be done prior
to the execution. As for the second approach which is dynamic
mapping, it happens at runtime (remap the processes to another
processor or core during the runtime) [2].

Fig. 1. High-Level Architecture of Topology-Aware Process Mapping.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

372 | P a g e

www.ijacsa.thesai.org

This paper is organized as follows: section 2 comprises the
definitions of the topologies with examples, section 3 includes
the previous related work, whilst section 4 discusses the
definition of the problem and the section 5 concludes this
paper.

II. TOPOLOGIES DEFINITIONS

A. Virtual Topology

The term virtual topology means the dependence among the
software processing entitles. These dependencies may be
defined as the data that is exchanged between the processes or
an access to the memory by the application threads. In other
words, the virtual topology refers to the application
communication patterns [2]. Furthermore, the virtual topology
has several types such as graph topologies and Cartesian
topologies. The example of the virtual topology is shown in
“Fig. 2”

Fig. 2. Virtual Topology Example, (0.0) is a Coordinate and 0 is a Rank Id.

B. Pysical Topology

Nowadays, the modern machines are increasingly complex,
include multiple processors, multi-core processors (socket =
package), simultaneous multithreading, NUMA nodes, shared
caches, and multiple GPUs, NICs, etc. Similarly, the
underlying hardware known as physical topology includes the
NUMA memory nodes, cores, simultaneous multithreading,
sockets and shared caches [3]. Correspondingly, the application
needs to understand the target underlying hardware for
optimum execution. The example of the underlying hardware
architecture is shown in “Fig. 3”.

Fig. 3. High-Level Architecture of the Target Machine.

Fig. 4. Hardware Topology Information.

Fig. 5. Physical Topology Distance, d = distince, N = node and s = switch.

Likewise, we can gather the information on the target
machine using the topology discovery mechanism as shown in
“Fig. 4”

Given that, the physical topology is the hardware affinity
known as physical topology distance [4], shown in “Fig. 5”.

C. Parallel Programming Model

The main parallel programming models for high-
performance computing are OpenMP (which are used for
shared memory architecture) and MPI (which are used for
distributed memory systems). At the present time, we have
several parallel programming models such as OpenCL (Open
Computing Language –used for the heterogeneous parallel
computing), OpenCV (which has the power to concentrate on
the real-time applications) and OpenACC (which is a
programming standard and was intended to simplify parallel
programming of heterogeneous CPU/GPU systems) [5] [6].

Additionally, in the high-performance computing we can
make hybrid parallel programming models to do a specific task
that takes the advantages of the shared and distributed memory.
“table-1” shows the parallel programming models as well as
the systems that implement them [6].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

373 | P a g e

www.ijacsa.thesai.org

TABLE I. PARALLEL PROGRAMMING MODELS AND THEIR IMPLEMENTED

SYSTEMS

Programming Model Example Programming Systems

Shared memory

Dynamic scheduling, nested bulk
synchronous

OpenMP, TBB, Cilk++

Dynamic scheduling, the general
synchronization

pthreads, OpenMP, TBB, Cilk++

Distributed memory

Bulk-synchronous
BSP, MPI with collectives/barriers, X10
with clocks

Static scheduling, two-sided

communication
MPI point-to-point

Static scheduling, one-sided

communication
MPI RDMA, SHMEM, UPC, Fortran

Hybrid scheduling (static across
nodes, dynamic within nodes)

MPI+OpenMP, DPLASMA

The local view of data and
control

MPI, Fortran

The local view of control, global
view of data

UPC, Global Arrays

Global view of data and control OpenMP, Chapel

CoProcessor/Accelerator
separate memory

OpenCL, OpenACC, CUDA

Domain-specific languages and
libraries

PETSc, Liszt, TCE

D. Parallel Computing Systems

The modern engineering and science applications require a
massive amount of computing because it deals with very
complex problems. In order to address these complex
problems, we need powerful computing systems such as
parallel computing. As an illustration, parallel computing is
one of the most powerful computations that can make
numerous calculations and execute the processes,
simultaneously. To put it differently, large problems can often
be divided into smaller ones, and then solved at the same time
[7].

Fig. 6. High-Level Architecture of Parallel Computing.

On the negative side and in our case, the programmers face
many challenges with the parallel systems such as the complex
hierarchy of the hardware, methods to minimize the memory
usage by the applications, less communication, and data
locality.

The high-level architecture of parallel computing is shown
in “Fig. 6”.

III. BACKGROUND AND RELATED WORK

The modern platforms of high-performance computing
(HPC) consists of heterogeneous computing devices which are
connected through complex hierarchical networks. In order to
efficiently execute the data-parallel Exascale applications on
that platforms, we need to balance a load of the processors, as
well as minimize the communications cost. To achieve that we
need to separate the data among processors whilst considering
their speed. The second can be optimized by decreasing the
communications volume by mapping the application data to the
processors that are physically close to one another. Moreover,
the topology information will be used as the guide to improve
the communications in the hierarchical-heterogeneous
platforms.

Nowadays, as we are moving towards the Exascale, the
topology-aware process mapping is becoming an important
approach to improve the performance and reduce the power
consumption of Exascale applications. Accordingly, most
researchers in this area have proposed many techniques and
approaches for finding the best and efficient topology-aware
process mapping. As can be seen, every researcher focusses on
different aspects of how to build the efficient mapping of the
process-to-processor. It is also noticed that most researchers
come up with their own mapping approach and try to make
efficient topology-aware process mapping.

Briefly, we have summarized all the previously done
studies on the topology-aware process mapping problem. To
begin with, Emmanuel et al. [7] have proposed techniques to
deal with NUMA node clusters for reducing the
communications costs. The proposed techniques can gather the
information of the application communication pattern and the
details of the target machine hardware, and then compute the
relevant ranks of reordering application process. Eventually,
the new ranks are used for reducing the application
communication costs. As a matter of fact, those techniques are
based on the TreeMatch algorithm. This algorithm deals with
resource binding technique such as computing unit numbers
and the rank reordering technique as the new MPI ranks.
However, the algorithm design is as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

374 | P a g e

www.ijacsa.thesai.org

The work by Guillaume et al. [8] has modified the function
of the MPICH2 implementation of the MPI_Dist_graph_create
for reordering the process ranks of MPI. The objective is to
create a map between the hardware topology and the
application communication pattern. Nonetheless, this
modification is achieved through two main but different
methods, the core binding, and the rank reordering.

Balaji et al. [9] say that the varying mapping of the
application on the large-scale systems is an important factor
that affects the overall performance. Furthermore, the authors
have highlighted the mapping impact on the application
performance of "the IBM Blue Gene/Q systems" with the
network topology of the 5D torus.

Francois et al. [3] have observed that the number of cores,
memory nodes, and shared caches are increasing, thus, making
the hardware topology very complex. Moreover, the high-
performance computing applications need to be careful while
adapting their placement to the target underlying hardware. For
that matter, they proposed the hardware locality (HWLOC)
tool that gathers the information of the physical topology
including caches, processors, and memory nodes which makes
it visible to the application as well as the runtime systems. This
tool is used by the most important parallel programming
models such as OpenMP & MPI.

Joshua et al. [10] have proposed a Locality-Aware
Mapping algorithm to distribute the parallel application
processes across processing resources in the high-performance
computing system. This algorithm is capable of dealing with
both, heterogeneous and homogeneous hardware systems. In
the final analysis, they implemented it on the OpenMPI.

Bhatele et al. [11] have proposed various heuristics that are
based on the hop-bytes metrics for mapping the graphs of
irregular communication to the mesh topologies. Their
heuristics try to place the communicating processes close to
one another.

Mercier et al. [12] built the topology-aware mapping, based
on the Scotch library. Generally speaking, they used the virtual
topology (The application communication pattern) and the
physical topology as a complete weighted graph.

Rashti et al. [13] have extracted the network topologies and
intra-node using the InfiniBand tools and HWLOC library
respectively. To develop the undirected graph with edges that
represent the performance of the communication between cores
depending on their distances. Then, this mapping technique is
executed by the Scotch library.

Ito et al. [14] have proposed a similar mapping technique
but using the existing bandwidth between the nodes measured
at the time of execution for assigning the edge weights in the
graph of the physical topology. Again, the method of this
mapping technique was implemented by the Scotch library.

Chung et al. [15] proposed an efficient technique based on
the hierarchical mapping which partitions the physical
topology graphs and the process into numerous super nodes.
Also, the very first mapping assigns process topology graph
supernodes to the equivalent peers in the graph of the physical
topology.

Cyril Bordage et al. [16] proposed a Netloc tool for
collecting the physical topology that is integrated with a Scotch
practitioner for computing the topology-aware MPI process
placement. However, their experiments were based on the fat-
tree machine.

K. B. Manwade et al. [17] proposed a novel technique
known as a “ClustMap” for mapping the application and
system topologies.

Abhinav Bhatele et al. [18] constructed an automatic
mapping framework that can help the developer to automate
the application communication pattern and physical topology
of the parallel application. In addition, their framework can
analyze the process topology to find regular patterns and then
identify the communication graphs dimensions for the
application.

Jingjin Wu et al. [19] proposed a strategy for the mapping
of the hierarchical task that implements inter and intra node
mapping. They considered supercomputers with torus network
and fat-tree topologies, additionally providing two mapping
algorithms. The first can deal with both inter-node and intra-
node mapping. The second can partition the nodes of the
computation regarding its affinity.

Torsten Hoefler et al. [2] demonstrate a new heuristic based
on the graph similarity and shows its utility with the virtual
topology on real physical topologies. In other words, their
mapping strategies support the heterogeneous networks and try
to reduce the congestion on fat-tree, torus, and the PERCS
network topologies for irregular communication patterns.

Subramoni et al. [20] proposed efficient topology mapping
on the InfiniBand networks for detecting the InfiniBand
network topology and that can be done using the neighbor
joining algorithm.

Deveci et al. [21] considered machines with the allocation
of the sparse node and then applied a geometric partitioning
algorithm to processors and tasks to find the appropriate
mapping.

Agarwal et al. [22] proposed a greedy heuristic through the
estimation functions that are used to evaluate the mapping
decisions effects.

Mohammad et al. [23] used the network/node architecture
and graph embedding modules for mapping the application
communication topology onto the multi-core clusters physical
topology with multi-level networks. As the result, they have
got the great improvement in the application communication
performance as well as the execution time. In the final analysis,
this result is obtained by Micro-benchmark.

IV. DISCUSSIONS

Aggregated power for computing is recognized as the most
recent phenomenon for data-intensive tasks in the 21st century.
High-performance computing is able to handle simulation
modeling as well as support standard workstations. Through
carrying out several computing operations within a reasonable
amount of time, high-performance computing is able to counter
performance challenges related to limited data sources. This is
achieved using high-end specialized hardware that incorporates

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

375 | P a g e

www.ijacsa.thesai.org

several units which gather computing power. Additionally, the
units use the concept of parallelization to distribute data and
operations across the various subsequent levels. This is due to a
large amount of data movement and lack of application
placement patterns onto the elements of the hardware
processing. In short, when we study the process placement, we
must focus on the system hierarchy of the high-performance
computing (HPC) because the system hierarchy increases more
and more, and the nodes become multi-levels of memory (non-
volatile memory, faster but smaller MCDRAM for KNL,
standard DRAM, etc.) and composed of multicore processors.
Moreover, the network that connects these nodes has very
complex topology [24]. Thus, it is concluded that the process
placement is not an easy task in case of very effective process
placement. Additionally, the topology mapping or process
placement has a critical role on the parallel application
performance and we need to map these processes onto
processors carefully. Therefore, the goal of every successful
mapping algorithm relies on how to reduce the communication
costs by carefully mapping the processes that are closest to
each other and require most communication. Algorithmically,
the mapping process has two kinds; the first one is how the
machine computes the messages communication costs and the
second one is how the application can describe the computing
elements affinity. Because the affinity of the computing entities
is very important in case of mapping the processes on the
processors which are close to each other.

Lastly, it was witnessed that the topology-aware process
mapping is an active research filed. The both, application
communication pattern (virtual topology) and the underlying
hardware details (physical topology) are not difficult to extract,
the main contribution is the topology process mapping
algorithm. In fact, we advise the interested researchers to use
HWLOC tool to extract the physical topology (underlying
hardware details) [3] and use any graph partitioning or MPI
ranks reordering for virtual topology [7].

V. CONCLUSION AND FUTURE WORK

At the present time, we observe that the number of nodes
are increasing, as well as the number of cores within a node are
increasing. As a result, the high-performance computing
systems are becoming very complex, which leads to the
increase in the heterogeneity levels at the communication
channels, such as inter-node and intra-node communications.
The diversity in the performance through different
communication channels in the high-performance computing
systems make it significant to think carefully about information
of topology at higher levels. The knowledge of topology
facilitates to fulfill the effective exploitation of underlying
communication channels which leads to an increase in
communication performance at the application level.
Therefore, the topology-aware process mapping is a necessary
approach for improving the performance of communication in
high-performance computing systems. In addition, the
topology-aware process mapping helps in reducing the lot of
congestion that happens in the system hierarchy on several
levels. As we know the congestion has its effect on
communication performance. Ultimately, based on the
previous description we are aiming and focusing on how to
improve the HPC systems performance without adding any

extra overhead and/or the power consumption. We will focus
on the mapping between the nodes (internode) and the mapping
within a node (intra-node) for achieving the efficient
performance as much as we can. Given that, we have proposed
an efficient new technique based on hybrid parallel
programming model as a tri-model for mapping virtual
topology onto physical topology to optimize the data locality
management for increasing the performance and reducing the
power consumption in the HPC systems. This approach can
optimize the mapping of inter-node by taking into account the
communication pattern of the inter-node and the network
topology. Moreover, it will optimize the intra-node mapping
whereby the node physical topology and the corresponding
communication pattern of intra-node. According to the
mapping process, we will consider the load balancing within
nodes as the nodes will be heterogeneous.

REFERENCES

[1] Tania Malik, (2016) Topology-aware Optimization of Communication
Cost of Parallel Applications in Heterogeneous HPC Systems, PhD.
University College Dublin

[2] Torsten Hoefler, Emmanuel Jeannot, Guillaume Mercier. An Overview
of Process Mapping Techniques and Algorithms in High-Performance
Computing. Emmanuel Jeannot and Julius Zilinskas. High Performance
Computing on Complex Environments, Wiley, pp.75-94, 2014.

[3] F. Broquedis et al., "hwloc: A Generic Framework for Managing
Hardware Affinities in HPC Applications," 2010 18th Euromicro
Conference on Parallel, Distributed and Network-based Processing, Pisa,
2010, pp. 180-186.

[4] M. J. Rashti, J. Green, P. Balaji, A. Afsahi, and W. Gropp. Multi-core
and network aware MPI topology functions. In Proc. European MPI
Users’ Group Meeting (EuroMPI), pages 50–60, 2011.

[5] M.D. Chougule, P. H. Gutte, “Parallel Programming Models: A
Systematic Survey” in an International journal IJCSIT of July issue
2014.

[6] W. Gropp, M. Snir, “Programming for Exascale Computers”,
Computing in Science & Engineering, 2013, 15(6), P.27-35

[7] Jeannot, E., Mercier, G. and Tessier, F., 2014. Process placement in
multicore clusters: Algorithmic issues and practical techniques. Parallel
and Distributed Systems, IEEE Transactions on, 25(4), pp.993-1002.

[8] G. Mercier and E. Jeannot, Improving MPI Applications Performance on
Multicore Clusters with Rank Reordering, EuroMPI, p.3949, 2011.

[9] P. Balaji, R. Gupta, A. Vishnu, and P. Beckman. “Mapping
communication layouts to network hardware characteristics on massive-
scale blue gene systems”. Computer Science-Research and
Development, 26(3-4):247–256, 2011.

[10] Joshua Hursey , Jeffrey M. Squyres , Terry Dontje, Locality-Aware
Parallel Process Mapping for Multi-core HPC Systems, Proceedings of
the 2011 IEEE International Conference on Cluster Computing, p.527-
531, September 26-30, 2011

[11] A. Bhatel´e and L. V. Kal´e. Heuristic-based techniques for mapping
irregular communication graphs to mesh topologies. In International
Conference on High Performance Computing and Communications
(HPCC),pages.765–771,2011.

[12] G. Mercier and J. Clet-Ortega. Towards an efficient process placement
policy for MPI applications in multicore environments. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface
(EuroPVM/MPI), pages 104–115. 2009.

[13] M. J. Rashti, J. Green, P. Balaji, A. Afsahi, and W. Gropp. Multi-core
and network aware MPI topology functions. In Proc. European MPI
Users’ Group Meeting (EuroMPI), pages 50–60, 2011.

[14] S. Ito, K. Goto, and K. Ono. Automatically optimized core mapping to
subdomains of domain decomposition method on multicore parallel
environments. Computers & Fluids, 80(0):88–93, 2013.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

376 | P a g e

www.ijacsa.thesai.org

[15] I.-H. Chung, C.-R. Lee, J. Zhou, and Y.-C. Chung, “Hierarchical
mapping for HPC applications,” in Proc Workshop Large-Scale Parallel
Processing, 2011, pp. 1810–1818.

[16] Cyril Bordage, Clément Foyer, Brice Goglin. Netloc: a Tool for
Topology-Aware Process Mapping. Euro-Par 2017: Parallel Processing
Workshops, Aug 2017, Santiago de Compostela, Spain.

[17] K. B. Manwade and D. B. Kulkarni, “ClustMap: A Topology-Aware
MPI Process Placement Algorithm for Multi-core Clusters”, in
Intelligent Computing and Information and Communication, Jan 2018,
pp. 67-76

[18] A. Bhatelé, G. R. Gupta, L. V. Kalé and I. H. Chung, "Automated
mapping of regular communication graphs on mesh interconnects," 2010
International Conference on High Performance Computing, Dona Paula,
2010, pp. 1-10.

[19] Wu, Jingjin and Xiong, Xuanxing and Lan, Zhiling “Hierarchical Task
Mapping for Parallel Applications on Supercomputers”, in J.
Supercomput, 2015, pp. 1776-1802

[20] Subramoni H, Potluri S, Kandalla K, Barth B, Vienne J, Keasler J,
Tomko K, Schulz K, Moody A, Panda D (2012) Design of a scalable
infiniband topology service to enable network-topology-aware
placement of processes. In: Proceedings of international conference on
high performance computing, networking, storage and analysis, pp 1–
12.

[21] M. Deveci, K. Kaya, B. Uc¸ar, and U. V. C¸ ataly ¨ urek, “Fast and high
¨ quality topology-aware task mapping,” in 2015 IEEE Intl. Parallel
Distrib. Proc. Symp. (IPDPS), 2015, pp. 197–206.

[22] Agarwal T, Sharma A, Laxmikant A, Kale LV (2006) Topology-aware
task mapping for reducing communication contention on large parallel
machines. In: Proceedings of IEEE international symposium on parallel
and distributed processing (IPDPS)

[23] Mehmet D. et al., “Exploiting Geometric Partitioning in Task Mapping
for Parallel Computers”, Proceedings of the 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, p.27-36,
May 19-23, 2014

