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Abstract—The membrane computing model, also known as
the P system, is a parallel and distributed computing system.
K-medoids algorithm is one of the most famous algorithms in
partition-based clustering algorithms, and has been widely used
in data analysis and modern scientific research. Combining the P
system with the k-medoids algorithm, the maximum parallelism
calculated by the P system can effectively reduce the time
complexity of the k-medoids clustering algorithm. Based on this,
this paper proposes a cell-like P system with promoters and
inhibitors based on k-medoids clustering, and then an instance
is given to illustrate the practicability and effectiveness of the P
system designed.
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I. INTRODUCTION

Membrane computing[1,2], which is initiated by Pun in
1998, is a branch of molecular computing. The computing
models in the framework of membrane computing, also called
P systems, are distributed, non-deterministic and maximally
parallelized[1]. P systems are inspired from the compartmental
structure and the way to process chemical compounds of
alive cells, cells in tissue, organs, etc. Up to now, many
variants of P systems have been investigated, mainly includ-
ing cell-like P systems[1,3,4], tissue-like P systems[5-7] and
neural-like P systems[8,9]. P systems have been studied in
many areas, such as biology[10], linguistics[11], computer
science, mathematics[12], etc.[13]. Many variants are universal
computationally, likewise it has been proved that P systems
have the computing capacity with the equivalent of Turing
machine[14,15]. Besides, more information about P systems
can be found at the website of Ref[16].

Information plays an increasingly important role in modern
society. Consequently, the issue of crucial importance is data
analysis. Clustering is a basic and significant composition of
data analysis, and it is employed as an ordinary method in
modern science research[17]. However, it is not come to an
agreement with the complete definition for clustering. The
classic one is described as: instances in the same cluster
must be similar as much as possible, instances in the dif-
ferent clusters must be different as much as possible and
measurement for similarity and dissimilarity must be clear and
have the practical meaning[18]. Generally speaking, Clustering
algorithms are divided into traditional ones and modern ones,
where traditional ones are based on partition[19,20], fuzzy
theory[21], distribution[22,23], density[24, 25], grid[26-28],
graph theory[29,30], etc. It is applied crossing communication
science, computer science, biology science, etc. Clustering
is also introduced to membrane computing[31-33]. For the
data clustering problem, ref.[33] presents a novel clustering

algorithm based on a tissue-like P system with loop structure
of cells, called membrane clustering algorithm, to realize a
local neighborhood topology, and proves the high efficiency
and competitiveness of the proposed algorithm. To deal with
self-driven clustering problem, ref.[32] proposes a membrane
clustering algorithm based on a tissue-like P system with fully
connected structure to solve how many clusters is the most
appropriate and what does a good clustering partitioning look
like at the same time. It develops an improved velocity-position
model as evolution rules and proves the competitiveness of the
propose algorithm either. Ref. [31] proposes the k-medoids-
based consensus clustering based on a cell-like P system with
inhibiters and promoters by means of introducing k-medoids
algorithm and cell-like P system with inhibiters and promoters
to the consensus clustering, and it is proved to be highly
accurate and highly efficient. K-medoids[34] is a melioration
of k-means, and these two are the most famous ones of
clustering algorithm based on partition. K-medoids deals with
discrete data and designates the data point most near to cluster
center as medoid. This method is more robust to noise and
outliers as compared to k-means due to minimizing a sum of
pairwise dissimilarities instead of a sum of squared Euclidean
distances, but is suitable for small data sets because of larger
calculation. However, the time complexity can be decreased
by cell-like P systems with promoters and inhibiters, because
it has the inherent mechanism of parallel and distributed
computing. In short, the maximum parallelism of P systems
contributes to improving algorithm efficiency of unsupervised
learning.

In this paper, a P system Πkmbc is proposed to implement
a kind of k-medoids-based algorithm which is modified mildly
to adjust with the evolution mechanism of P Systems to
achieve clustering. The paper is organized as follows: Section
II introduces the basic knowledge of the k-medoids algorithm
and cell-like P system with priority and promoters; Section
III proposes the design of the P system Πkmbc with its k-
medoids-based algorithm, definition and rules discussed in
detail. Subsequently, an instance is given in section IV; and
the conclusions are drawn in Section V.

II. FOUNDATION

A. The k-medoids algorithm

The k-medoids algorithm proposed in 1987[34] is a classi-
cal partitioning algorithm of clustering related to the k-means
algorithm. Both the k-medoids and the k-means algorithms
are to cluster the data set of n objects into k (a known priori)
clusters and to minimize the distance between points in the
same cluster and a point called medoid which is designated as
the center of that cluster. A medoid is a most centrally located
point in the cluster.
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As the K-Medoids algorithm is improved by the K-Means
algorithm, it is partitioning around medoids instead of means.
The K-Medoids algorithm is more robust to outliers and noise
than the K-Means algorithm due to choosing medoids as
centers and minimizing a sum of pairwise dissimilarities. How-
ever, the same characteristic is that the actual definition of the
distance has various alternatives according to the requirement
of actual problems. The smaller the sum of distances between
each two data points is, and the more similar the data points
in same cluster are, the more dissimilar the data points from
different clusters are, the better the clustering result is.

The most representative realization of k-medoids algorithm
is the Partitioning Around Medoids (PAM) algorithm. PAM
uses a greedy search which may not find the optimum solution,
but it is faster than exhaustive search. It works as follows[35]:

1)Initialize: select k of the n data points as the medoids.

2)Associate each data point to the closest medoid.

3)While the cost of the configuration decreases, repeat step
4).

4)For each medoid m, for each non-medoid data point o,
repeat step 5) to 6).

5)Swap m and o, recalculate the sum of distances of data
points to their medoid.

6)If the total cost of the configuration increased in the
previous step, undo the swap.

Algorithms other than PAM have also been suggested in the
literature [36,37]. Voronoi iteration method is included, which
is more simple and faster than PAM. The steps of Voronoi
iteration method are as follows:

1)Initialize: select k of the n data points as the medoids.

2)Repeat step 3) to 4) while the cost decreases.

3)In each cluster, make the data point that minimizes the
sum of distances within the cluster the medoid.

4)Reassign each data point to the cluster defined by the
closest medoid determined in the previous step.

B. Cell-like P System with Priority and Promoters

There are many variants of P systems already introduced in
section 1. This paper is only related to cell-like P systems with
priority and promoters. Therefore, this piece gives the basic
concepts about cell-like P systems with priority and promoters.

There are three main components to cell-like P system:
the membrane structure, objects and rules. As suggested by
Fig.1, the membrane structure is a hierarchically arranged set
of membranes which are usually identified by labels from a
given set and divide a cell-like P system into separated regions.
A membrane which does not contain any other membranes
is called elementary. The membrane which contains all the
other membranes is referred as the skin. Each Membrane only
determines a region bordered above by itself and below by
the membranes placed directly inside, if any exists. Rules are
only effective in the region of the membrane they belong to.
Objects which are expressed by characters or string of symbols
can evolve to new objects or be transferred to new regions

Fig. 1. The membrane structure of cell-like P system[38]

according to the rules in the membrane whose region objects
appear in.

Formally, a cell-like P system (of degree m ≥ 1) with
priority and promoters is of the form

Π = (O,µ,M1,M2, · · · ,Mm, iout) (1)

where,

1)O is the alphabet of objects used in Π;

2)µ is the membrane structure of Π, and degree is m;

3)Mi = (ωi, Ri, ρi) defines the membrane with label i in
Π (i=1,2,· · · ,m), where ωi is the multiset including the initial
objects in membrane i, object λ (an empty string) means there
is no object in membrane i, Ri is a set of rules in membrane
i, promoters present in rules, ρi specifies a priority relation
among the rules in Ri, smaller value means higher executing
priority;

4)iout is appointed as output region which saves the results.

The form of rules in Π is: (u → v) or (u → v|α, ρ) or
(u→ (w)i), where, u∈O+, v∈(O×Tar)∗, α is promoter. O∗

is the finite and non-empty multiset over O, O+ = O∗−{λ},
Tar = {here, out, ini|1 ≤ i ≤ m}. Objects appear in u will
be consumed. If v appears in form of (a, here), a will remain
in the membrane where the corresponding rule is applied.
If v appears in form of (a, out), a will become an object
of the region immediately outside the membrane where the
corresponding rule is applied. If v appears in form of (a, ini), a
will be produced in membrane i. Object δ appeared in v means
dissolving the membrane where δ presents in and releasing all
objects in this membrane to the region immediately outside
this membrane. The second form means executing u → v
with the priority of ρ when α exists in the membrane where
the corresponding rule is applied. Priority and promoters can
both appear in this form or only one. The third form means
creating a membrane labeled i and adding w to the multiset
in membrane i.

Rules are executed according to the principles of non-
determinism and maximal parallelism in each membrane. Only
several rules are chosen non-deterministically when more rules
can possibly be applied. All rules that can be applied must
be applied concurrently. These two principles are limited by
reactant in a membrane. As only dealing with cell-like P
systems, the rest of this paper refers to the cell-like P system
as the P system for brevity.

III. THE DESIGN OF P SYSTEM Πkmbc

This paper aims to obtain a P system Πkmbc for clustering
based on k-medoids method. The algorithm for Πkmbc is
discussed before the definition of Πkmbc is designed.
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A. The algorithm for Πkmbc

The algorithm for Πkmbc is modified from PAM and
Voronoi iteration method which are mentioned in subsection
A in section II.

Suppose T = {p1, p2, , pn} denotes a dataset with n data
points which can be multi-dimensional vectors. This paper
supposes them two-dimensional, and names the input data set
Tkmbc = {pi = (xaii , y

bi
i )|1 ≤ i ≤ n, a, b ∈ N+} where ai

and bi represents the number of xi and yi respectively. All data
points are divided into k (k≤ n) clusters C = {C1, C2, , Ck}.
Each data point belongs to and only belongs to one cluster.
Default medoids are first k data points of Tkmbc.

According to subsection A in section II, distances between
un-medoid data points and medoids need to be calculated re-
peatedly. In order to reduce calculation amount and realize in P
systems, the algorithm for Πkmbc introduces definitions of the
distance matrix, and the point-medoids distances set, the point-
point distances set, the sum of the point-point distances set. In
addition, this paper considers squared Euclidean distance.

Suppose Dnn the distance matrix:

Dnn =


0 d1,2 · · · d1,n
0 0 · · · d2,n
· · · · · · · · · · · ·
0 0 · · · dn−1,n−1

0 0 · · · 0

 (2)

where di,j is the distance between pi and pj .

Suppose Di the point-medoids distances set which contains
k distances associated with pi and k medoids, and it meets:

Di = {dj,i, j ≤ i∧j ∈ Sm}∪{di,j , i ≤ j∧j ∈ Sm} ⊂ D (3)

where Sm is a set of k numbers which correspond to k
subscripts of k medoids, D is a set whose objects equal to all
the nonzero objects of Dnn.

Suppose D
′

i the point-point distances set which contains
distances associated with pi and all the other data points
belonged to the same cluster with pi, and it meets:

D
′

i = {dj,i, j ≤ i ∧ j ∈ Scm} ∪ {di,j , i ≤ j ∧ j ∈ Scm} (4)

where, Scm is a set of numbers which correspond to
subscripts of all the data points in cluster Cm(Cm ⊂ C,m ∈
[1, k]). Suppose d

′

i the sum of D
′

i.

It uses unique data point mark εi to replace pi for con-
venient. Therefore, unique data point marks are assigned to
clusters instead of data points benefited from introducing all
the definitions above.

Suppose z the number of iterations, and it is assigned
artificially.

Based on PAM and voronoi iteration method, all the defini-
tion introduced, the algorithm for Πkmbc is mainly composed
of initialization, initial assignment and iterative assignments.
The algorithm flow for Πkmbc is shown in Fig.2. The detailed
flow of the algorithm is described as follow.

The algorithm for Πkmbc computes Dnn and select first k
of the n data points as the medoids at first. It compute Di for

Fig. 2. The algorithm flow for Πkmbc

each pi in Tkmbc and associates each data point mark to the
closest medoid according to the minimal item in Di next. For
un-medoid data point pi, this algorithm elects the minimal item
di,j or dj,i in Di, then assigns εi to the cluster whose medoid
is pj . Then iterative steps go. The first step of iterative steps is
to compute D

′

i and d
′

i for each data point and to designate the
new medoid according to the minimal d

′

i in each cluster. That
is to elect theS pi which corresponds to the minimal d

′

i as the
new medoid in each cluster. The second step of iterative steps
is to reassign each data point mark to the cluster defined by the
closest medoid determined in the previous step. Moreover, the
implement of assignments in iterative step are similar to that
of the initial assignment. Due to the mechanism of parallel and
distributed computing, all data points are processed in parallel
in this algorithm.

B. The definition of Πkmbc

Based on the algorithm for Πkmbc which discussed in
subsection A in section III, the definition of P system Πkmbc

is figured out and as follow:

Πkmbc = (O,µ,MA,MBi
,MC ,MDi,j

,MEi
,MFj

, iout) (5)

where,

1)O = {xi, yi, xi,j , ai,j , di, di,j , hi, gi, ti, ti,j , εi, εi,j , αi,
βi, γi, ξi|1 ≤ i, j ≤ n} ∪ {s, a0, a1, b1, c, c1, c2, d, d1, d2,
e, z, α, α′ , α′′ , β, γ, δ, η, θ, λ, µ, ξ, π, ρ, σ, ω}. This multiset in-
cludes objects which are related to data points, which control
the application of the rules, and which are special in P system
(such as δ, λ, s and ω). The most important objects are di,
di,j , εi, εi,j and ti,j . Objects di denote the sum of distances
between data point pi to all other data points in the same
cluster. Objects di,j denote the distance between data point pi
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Fig. 3. The initial membrane structure of Πkmbc

to the medoid whose subscript is j. Object εi which is unique
in Πkmbc denotes data point pi or medoid pi (and then it is
called data point mark or medoid mark). Object εi,j is designed
to record the information that cluster i disignates the data point
whose subscript is j as the medoid. Object ti,j is designed as
transmission mark to record the information that data point pi
belongs to the same cluster with the medoid whose subscript
is j. Other objects are designed to ensure the integrity of data
information or as flow controller.

2)µ = [A[B1
]B1

[B2
]B2

[Bk
]Bk

[C [E1
]E1

[E2
]E2

[En
]En

]C ]A is the initial membrane structure of Πkmbc as shown as
what Fig.3 illustrates, and it will change with the evolution
of Πkmbc. As suggested by Fig.3, membrane A is the skin
which contains all other membranes. The class membranes
of Bi are designed as clusters in which data point marks
distributed to them are placed and new medoids are computed.
They also are storage areas of terminal results. Membrane C is
designed to deposit the distance matrix. The class membranes
of Ei are designed to compute the point-medoids distances
set and decide where unassigned data points will belong. One
membrane of Ei corresponds with one unassigned data point,
and they have the same subscript. With the evolution of Πkmbc,
the class membranes of Di,j and Fj are dynamically generated
in membrane A and the class membranes of Bi respectively.
The class membranes of Di,j compute the distance matrix
and are dissolved after computation. One membrane Di,j

corresponds with one nonzero element in the distance matrix,
and they have the same subscript. The class membranes of Fj
compute the point-point distances set and the sum of the point-
point distances set and are also dissolved after computation.
The delivery of objects between other membranes is achieved
in Membrane A. At the same time, information transferring or
calculation flow comes true.

3)Mmem = (wmem, Rmem, ρmem) represents a membrane
of Πkmbc in which mem ∈ {A,C} ∪ {Di,j , Ei, Fj |1 ≤ i ≤
n, 1 ≤ j ≤ n} ∪ {Bi, |1 ≤ i ≤ k}, wA = Tkmbc ∪ {s},
wBi = {ez}, wC = wDi,j = wEi = wFj = λ, Rmem and
ρmem are described in hand as Rmem for convenience, and
more details about Rmem are in subsection C in section III.

4)iout = {B1, B2, . . . , Bk}.

In addition, child membrane that dynamically generated
in father membrane inherits all rules in father membrane.
This paper eliminates the influence of inherited rules on child
membrane when designing all the rules in Πkmbc. As a result,
rule sets of dynamically generated membranes only contain un-
inherited rules for concision. The rules in Πkmbc are elaborated
in next subsection and calculation processes too.

C. The rules in Πkmbc

For the sake of being understand, the rule sets Rmem in
Πkmbc are explained in order of operation flow. Of these, ρmem
whose value is 1 or 2 or 3 specifies a priority relation among
a rule set of Rmem, and smaller value means higher executing
priority.

1)Initialization

a)Preparation

In P system Πkmbc, the rules in RA associated with the
preparation are:
r1 : s→ α1α2 . . . αn−1θ, 1;
r2 : xi → (xi, here)(hi)Di,i+1 . . . (hi)Di,n |αi , 1, 1 ≤ i ≤ n−1;
r3 : αi → βi, 1, 1 ≤ i ≤ n;
r4 : yi → (yi, here)(gi, inDi,i+1) . . . (gi, inDi,i+n)|βi

, 1, 1 ≤
i ≤ n− 1;

r5 : βi → γi+1, 1, 1 ≤ i ≤ n− 1;
r6 : xi → (xi, here)(hi, inD1,i) . . . (hi, inDi−1,i)|γi , 1, 2 ≤

i ≤ n;
r7 : yi → (yi, here)(gi, inD1,i) . . . (gi, inDi−1,i)|γi , 1, 2 ≤

i ≤ n;
r8 : γi → (εi−1, here)(α, inD1,2) . . . (α, inDn−1,n)|γi , 1, 2 ≤

i ≤ k + 1;
r9 : γi → λ, 1, k + 2 ≤ i ≤ n;

Rule of type r1 is used to start the system, rules of types
r2-r9 is used to create the class membranes of Di,j which
are to compute Dnn for preparing initialization and to move
objects which are data objects and flow controllers to these
membranes. After rules of type r2 and r4 are applied, each
membrane of type Di,j is created finished and contains objects
who has the same subscript with the first subscript of itself.
After rules of type r6 and r7 are applied, each membrane of
type Di,j contains objects who has the same subscript with the
second subscript of itself. Rule of type r8 moves specific flow
controllers to membrane Di,j . Other rules assist in process
control.

b)Compute and deposit Dnn

Rule set RDi,j
is associated with computation of Dnn, and

each subscript i and j in RDi,j
equals to the first and second

subscript of membrane Di,j respectively:
r1 : hi → a0, 1; r2 : a0 → a1, 1;
r3 : gi → b1, 1; r4 : a1hi → λ, 1;
r5 : a1 → c, 2; r6 : hj → c, 2;
r7 : b1gj → λ, 1; r8 : b1 → d, 2;
r9 : gj → d, 2; r10 : αk → α, 1;
r11 : α→ α

′
α

′′
, 2; r12 : c→ c1c2, 1;

r13 : d→ d1d2, 1; r14 : c1 → c1di,j |c2 , 1;
r15 : c2α

′ → α
′
, 1; r16 : d1 → d1di,j |d2 , 1;

r17 : d2α
′′ → α

′′
, 1; r18 : α

′
α

′′ → β, 2;
r19 : c1 → λ|β , 1; r20 : d1 → λ|β , 1;
r21 : β → (δ, here)(η, out), 1;

With the specific flow controller, rules in membrane Di,j

start being executed. Rules of type r4-r9 are used to turn the
differences of the first and second dimensions of the two data
points to objects type of c and d. After rules of type r12-r17 are
applied for limited times, each membrane of type Di,j contains
objects di,j with the quantities of squared c and squared d.
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Rule of type r21 means dissolving the membrane and send a
specific flow controller which reflects the end of computation
out.

The rule in RA associated with depositing Dnn moves
objects of type di,j to membrane C:
r10 : di,j → (di,j , inC)|η, 1, 1 ≤ i ≤ n− 1, 2 ≤ j ≤ n, i ≤ j;

c)Initialize k medoids

The rules in RA associated with the initialization of k
medoids are:
r11 : εi → (εi, inBi

)(εi, inC)|η, 1, 1 ≤ i ≤ k;
r12 : θ → (α, inC)|η, 1;
r13 : η → λ, 1;

After rule of type r11 is applied, each membrane Bi
contains a data point mark who has the same subscript with
the membrane. Other rules assist in process control.

2)Initial assignment

Rules of type r10-r12 in RA are used to move objects
associated with computing Di and the minimal item in Di

to membrane C . After that, rules of type r1-r6 in RC are
used to copy these objects into appointed membranes of type
Ei:
r1 : di,j → ai,j |εiεj , 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n;
r2 : di,j → (di,j , here)(di,j , inEj

)|εi , 2, 1 ≤ i ≤ n, 1 ≤ j ≤ n;
r3 : di,j → (di,j , here)(di,j , inEi

)|εj , 2, 1 ≤ i ≤ n, 1 ≤ j ≤ n;
r4 : εi → (εi, inall), 1, 1 ≤ i ≤ n;
r5 : α→ (β, here)(α, inall), 1;
r6 : ai,j → di,j |β , 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n;

Thus, each membrane of type Ei contains k medoid marks
and k objects of type di,j or dj,i which are all the items of
Di. Rule set REi

is associated with the computation of the
minimal item in Di, and each subscript i in REi equals to the
subscript of membrane Ei:
r1 : di,j → dj , 1, 1 ≤ j ≤ n; r2 : dj,i → dj , 1, 1 ≤ j ≤ n;
r3 : α→ β, 1; r4 : εjdj → ηεj , 1;
r5 : εjβ → γti,j |η, 2, 1 ≤ j ≤ n; r6 : β → γ, 3;
r7 : εj → λ|γ , 1; r8 : dj → λ|γ , 1;
r9 : ti,j → (ti,j , out)|γ , 1; r10 : η → λ|γ , 1;
r11 : γ → λ, 1;

When pi is a un-medoid data point, rules of type r4 and
r5 in REi

are used to consume dj for all j existed in the
membrane until there is no dj left for a certain j, then turn
the εj corresponding to the certain j to ti,j . As consequence,
transmission mark ti,j means that un-medoiod data point pi
belongs to the cluster with the medoid pj , and rule of type r9
is used to move ti,j out. Furthermore, rules of type r7-r11 in
REi ) are used to empty the objects in the membrane for the
convenience of the next computation.

When pi is a medoid, there is no need to compute, but some
objects are contained in membrane Ei after the execution of
rules of type r2-r5 in RC . For the convenience of the next
computation, rules of type r3, r6, r7 and r11 in REi are
executed.

As transmission marks are contained in membrane C, rules
of type r7-r10 in RC are used to move them out:
r7 : βti,j → γti,j , 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n;
r8 : di,j → (di,j , here)(di,j , out)|γ , 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n;

r9 : ti,j → (ti,j , out)|γ , 1;
r10 : γ → (µ, out), 1;

Rule of type r14 in RA is used to send a flow controller
of type α to each membrane Bi:
r14 : µ→ (α, inB1

) . . . (α, inBk
), 1;

With the flow controllers, k marks of type εi,j which reflect
that the ith cluster has a medoid with subscript j right now
are copied into membrane A due to the execution of rule of
type r1 in RBi

:
r1 : αεj → (ξεi,j , out)(εj , here)|α, 1, 1 ≤ j ≤ n;

Finally, there are objects of type ti,j and εi,j in membrane
A. That is to say, all the objects for initial assignment are com-
pletely prepared. Rules of type r15- r18 in RA are associated
with initial assignment and preparation for the following step:
r15 : di,j → (di,j , inB1) . . . (di,j , inBk

), 1, 1 ≤ i, j ≤ n;
r16 : ti,j → (εi, inBm)|εmj , 1, 1 ≤ i, j ≤ n, 1 ≤ m ≤ k;
r17 : ξk−1 → λ, 1;
r18 : ξ → (β, inB1

) . . . (β, inBk
), 2;

r19 : εi,j → λ, 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n;

Rule of type r16 is used to send data point marks to the
certain membranes of type Bi under the premise of ti,j and
εi,j . As a result, initial assignment is achieced. Meanwhile,
Dnn and flow controller β are send to each membrane Bi due
to rules of type r16 and r18.

3)Iterative assignment

a)Update medoids

As membranes of type Fj are dynamically generated in
each membrane Bi, the rules in RBi

associated with it are:
r2 : εj → (εj , here)(tj)Fj |β , 1, 1 ≤ j ≤ n;
r3 : β → λ, 1;
r4 : dp,q → (xp,q, inall)|γ , 1, 1 ≤ p ≤ n, 1 ≤ q ≤ n;
r5 : γ → (σ, inall)(η, here), 1;
r6 : η → θ, 1;

With the flow controller β, rule of type r2 is used to
generate membranes Fj each of which corresponds to a data
point in the cluster. Rule of type r4 is used to move Dnn

and a flow controller σ to all the membranes Fj . Therefore,
each membrane Fj contains all the objects associated with
computing D

′

i and d
′

i.

Each subscript j in RFj
equals to the subscript of mem-

brane Fj , and all rules in RFj
are as follow:

r1 : xi,j → dj |tj , 1, 1 ≤ i ≤ n;
r2 : xj,i → dj |tj , 1, 1 ≤ i ≤ n;
r3 : xp,q → λ, 2, 1 ≤ p ≤ n, 1 ≤ q ≤ n;
r4 : tj → λ|σ, 1;
r5 : σ → δ, 1;

In each membrane Fj , rules of type r1-r2 turn objects of
type xij to dj where the first or second subscript of xij and
the subscript of dj equals to that of Fj . Thus, the quantities
of dj equals to d

′

i which is the sum of D
′

i. Rule of type r5 is
used to dissolve the membrane and release objects of type dj .

Rules of type r7-r8 in RBi
are executed repeatedly to figure

the object ξj which points to the minimal dj :
r7 : εjdj → εj , 1, 1 ≤ j ≤ n; r8 : εjθ → µξj , 2, 1 ≤ j ≤ n;
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That is to say, pi whose subscript equals to that of ξj will
be the new medoid. The rest rules in RBi are:
r9 : dj → λ|µ, 1, 1 ≤ j ≤ n;
r10 : ξj → εj |µ, 1, 1 ≤ j ≤ n;
r11 : εj → λ|µe, 1, 1 ≤ j ≤ n;
r12 : eµ→ π, 1;
r13 : µ→ π, 2;
r14 : πεj → (εj , here)(πεje, out), 1, 1 ≤ j ≤ n;

When the number of iterations left does not equal to zero,
rules of type r9-r13 are executed. Rules of type r10-r11 are
used to designate the new medoid and eliminate other data
points in the cluster. Rule of type r12 is used to reduce the
number of iterations by one.

When the number of iterations left equals to zero, rules
of r9-r10 and r13 are executed. Rule of type r10 is used to
designate the new medoid. Each membrane Bi contains data
point marks when system stops because rule of type r11 is not
executed and there is no iterations left.

No matter if the number of iterations left equals to zero or
not, rule of type r14 is executed to copy the new medoid out
and send object e which means one iteration.

b)Reassignment

The rest rules in RA are:
r20 : εi → (εi, inC)|π, 1, 1 ≤ i ≤ n; r21 : πk → π, 1;
r22 : π → (α, inC), 2; r23 : ek → e, 1;
r24 : ez → ω, 2; r25 : ω → (ω, out), 1;

When the number of iterations left does not equal to
zero, rules of type r20-r23 are executed. Rules of type r20
and r22 are used to move new medoid marks and the flow
controller to membrane C. Then, reassignment gets start with
flow controllers playing their roles and the specific flow of
reassignment is identical with that of initial assignment.

When the number of iterations left equals to zero, rule of
type r24 reaches the conditions of usage, and rules of type r20-
r25 are executed. Rule of type r24 is used to create ω which has
the meaning of end of the system. Rule of type r25 is used to
send ω out membrane A to end the system, and the execution
of rules of type r20-r22 does not impact the clustering results.

D. Complexity Analysis

In this subsection, the time cost in the worst case of Πkmbc

is analyzed according to the algorithm flow and the operation
flow of rules. It is assumed that executing a rule costs a slice.

In initialization, preparation will be done in four slices.
Computing and Depositing Dnn starts at the third slice of
the previous part and will be done in 7 + Max data slices.
Initialization of k medoids will be done at the last slice of
the previous part. It needs 11 + Max distance sum slices
to achieve initial assignment. In iterative assignment, updating
medoids starts at the last slice of the previous part and will be
done in 5+Max distance sum slices. Reassignment will be
done in 11 + Max distance sum slices. The end of Πkmbc

will cost one slice. In summary, while the number of iterations
is z, the cost of Πkmbc is 20 + 16z + Max data + (2z +
1) ∗ Max distance sum slices at most. Obviously, Πkmbc

reduces the time complexity of k-medoids algorithm. In above,
Max data is the maximum of all the dimensions of all the

data points, and Max distance sum is the maximum of d
′

i
mentioned in subsection A in section III.

IV. CALCULATE INSTANCE

In this section, an instance is given to show how to
achieve k-medoids-based clustering in P system Πkmbc. Let
the number of iterations equals to 4, a data set contain-
ing 15 data points is clustered to 3 clusters in this in-
stance. The data set to be processed is as follow: Tins =
{(1, 2), (2, 8), (2, 7), (2, 4), (2, 2), (3, 7), (3, 2), (4, 3), (5, 6),
(6, 8), (6, 7), (6, 5), (7, 9), (7, 8), (7, 7)}. And the data points in
Tins in turn correspond to data point marks form ε1 to ε15.

The initialization gets starts as rules mentioned in sub-
section 1) in subsection C in section III are applied. The
configuration of Πkmbc after initialization is shown in Fig.4
and initial three medoid marks are ε1, ε2 and ε3. Then,
rules mentioned in subsection 2) in subsection C in section
III are applied to achieve initial assignment. At this time,
the configuration of Πkmbc becomes as shown in Fig.5,
and the temporary clustering results are {ε1, ε4, ε5, ε7, ε8},
{ε2, ε10, ε13, ε14}, {ε3, ε6, ε9, ε11, ε12, ε15}. In the following,
there are 4 iterations each one of which includes almost all
of the rules mentioned in subsection 3) in subsection C in
section III. After the first, second, third and fourth iteration,
the configurations of Πkmbc are as shown in Fig.6 to Fig.9.
For convenience, define two strings in Fig.4-Fig.9:

ST = {x11y21x22y82x23y73x24y44x25y25x36y76x37y27x48y38x59y69x610y810x611
y711x

6
12y

5
12x

7
13y

9
13x

7
14y

8
14x

7
15y

7
15},

SD = {d371,2d261,3d51,4d11,5d291,6d41,7d101,8d321,9d611,10d501,11d341,12d851,13
d721,14d

61
1,15d

1
2,3d

16
2,4d

36
2,5d

2
2,6d

37
1,7d

29
2,8d

13
2,9d

16
2,10d

17
2,11d

25
2,12

d262,13d
25
2,14d

26
2,15d

9
3,4d

25
3,5d

1
3,6d

26
3,7d

20
3,8d

10
3,9d

17
3,10d

16
3,11d

20
3,12

d293,13d
26
3,14d

25
3,15d

4
4,5d

10
4,6d

5
4,7d

5
4,8d

13
4,9d

32
4,10d

25
4,11d

17
4,12d

50
4,13

d414,14d
34
4,15d

26
5,6d

1
5,7d

5
5,8d

25
5,9d

52
5,10d

41
5,11d

25
5,12d

74
5,13d

61
5,14d

50
5,15

d256,7d
17
6,8d

5
6,9d

10
6,10d

9
6,11d

13
6,12d

20
6,13d

17
6,14d

16
6,15d

2
7,8d

20
7,9d

45
7,10

d347,11d
18
7,12d

65
7,13d

52
7,14d

41
7,15d

10
8,9d

29
8,10d

20
8,11d

8
8,12d

45
8,13d

34
8,14

d258,15d
5
9,10d

2
9,11d

2
9,12d

13
9,13d

8
9,14d

5
9,15d

1
10,11d

9
10,12d

2
10,13

d110,14d
2
10,15d

4
11,12d

5
11,13d

2
11,14d

1
11,15d

17
12,13d

10
12,14d

5
12,15

d113,14d
4
13,15d

1
14,15}.

As suggested by Fig.6, the temporary clustering results
are {ε1, ε4, ε5, ε7, ε8}, {ε10, ε11, ε13, ε14, ε15} and {ε2, ε3, ε6,
ε9, ε12} after the first iteration. As suggested by Fig.7, the
temporary clustering results are {ε1, ε4, ε5, ε7, ε8}, {ε10, ε11,
ε12, ε13, ε14, ε15} and {ε2, ε3, ε6, ε9} after the second
iteration. As suggested by Fig.8, the temporary clustering
results are {ε1, ε4, ε5, ε7, ε8}, {ε9, ε10, ε11, ε12, ε13, ε14, ε15}
and {ε2, ε3, ε6} after the third iteration. As suggested
by Fig.9, the temporary clustering results are
{ε1, ε4, ε5, ε7, ε8}, {ε9, ε10, ε11, ε12, ε13, ε14, ε15} and
{ε2, ε3, ε6} after the fourth iteration. Finally, data set
Tins is clustered into {(1, 2), (2, 4), (2, 2), (3, 2), (4, 3)},
{(5, 6), (6, 8), (6, 7), (6, 5), (7, 9), (7, 8), (7, 7)} and {(2, 8),
(2, 7), (3, 7)} as suggested by the scatter plot in Fig.10.

V. CONCLUSION

This paper proposes a P system Πkmbc based on k-medoids
to achieve clustering in a shorter time. The algorithm for
Πkmbc is modified to fit this cell-like P system with promoters
and inhibitors. In this P system, a hierarchically arranged
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Fig. 4. The configuration of Πkmbc after initialization

Fig. 5. The configuration of Πkmbc after initial assignment

Fig. 6. The configuration of Πkmbc after the first iteration

Fig. 7. The configuration of Πkmbc after the second iteration

Fig. 8. The configuration of Πkmbc after the third iteration

structure and numerous rules are designed to bring the parallel
and distributed computing mechanism into play. An instance
is given to illustrate the practicability and effectiveness of the

Fig. 9. The configuration of Πkmbc after the fourth iteration
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y

x

Fig. 10. Clustering results in Πkmbc

P system designed. However, space complexity of Πkmbc is
a bit high for purpose of lower time complexity. Our future
work includes simplifying the membrane structure and rules to
decrease the space complexity and optimizing the algorithm for
clustering to enhance learning efficiency.
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