
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

A Routing Calculus with Distance Vector Routing
Updates

Priyanka Gupta, Manish Gaur
Centre For Advanced Studies

Dr. A.P.J. Abdul Kalam Technical University
Lucknow, India

Abstract—We propose a routing calculus in a process algebraic
framework to implement dynamic updates of routing table using
distance vector routing. This calculus is an extension of an
existing routing calculus DRω

π where routing tables are fixed
except when new nodes are created in which case the routing
tables are appended with relevant entries. The main objective
of implementing dynamic routing updates is to demonstrate the
formal modeling of distributed networks which is closer to the
networks in practice. We justify our calculus by showing its
reduction equivalence with its specification Dπ (distributed π-
calculus) after abstracting away the unnecessary details from
our calculus which in fact is one of the implementations of Dπ .
We nomenclate our calculus with routing table updates as DRϕ

π .
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I. INTRODUCTION

In recent years, developments in formal modeling of dis-
tributed networks in a process algebraic framework through
process calculi has marked profound work [1], [2] [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12]. The extended version
of Asynchronous Distributed π-calculus (ADπ ) named as
routing calculi DRω

π was one of the significant developments
towards modeling the distributed computer network using an
active component named router and considering the path of
a communication between the communicating nodes where
a routing table is a dynamic entity in a typical distributed
network.

DRω
π consists of a network of routers of fixed topology.

The processes reside in a located site called nodes which are
directly connected to some specific router. Any two processes
at nodes can communicate through the routers. The routers
find the path over the network between the communicating
processes. The processes communicate via this path.

A system in DRω
π , looks like ΓcBS. Here S can be of the

form 〈R〉Jn[P]K where P is a process that resides under node
n connected at the same or a different node to some router R.
The communication between the processes takes place through
routers. Each process is located at some particular node which
in turn resides at some particular router. The routers determine
the particular path along the router connectivity through which
the communicated values are forwarded. In this language, the
routing table is updated only when a new node is created which
limits dynamic updates of the table.

We present a new calculi DRϕ

π which is a direct adoption of
routing calculus DRω

π [10] with a modified feature of routing
table updates which is dynamic in DRϕ

π unlike DRω
π . We have

Fig. 1. A simple distributed with routers and nodes

abstracted away few details from DRω
π to demonstrate the

power of new calculi in more simple way. These features
can be adopted to DRϕ

π without much amendments to it.
We describe a method for routing table updates with the
help of implementation of distance vector routing method
[13], [14], [15], [16] which uses the Bellman-Ford algorithm
[17], [18], [19], [20] to compute the shortest route. In this
calculi, the routing tables are periodically exchanged with
their neighbors and with this updated entries new routes are
found. We abstract away the details of new routes calculation
methods by incorporating function δ in our semantics rule.
Further to maintain the consistency in the calculi a clock tk′
is introduced so that the routing table exchange and thereafter
update calculation are done at discrete time. The condition
in well formed configuration ensure that the calculi remains
consistent in term of self looping of message propagation, path
guarantee etc. This calculi presents more realistic picture of
distributed networks with routers and therefore is closer to the
real implementation.

In DRϕ

π , a system is represented by 〈Rtk′ 〉Jn[P]K where
a process P is located at node n. The node n is directly
connected to the router R at global clock t = tk′ . The system
is accompanied with the router connectivity Γc. Hence, the
configuration paves the way to reductions. A configuration
ΓcBS comprises of router connectivity Γc and system S.

In the following sections the paper is organized as follows:

The syntax , structural equivalence and reduction semantics
of DRϕ

π are described in Section 2, 3 and 4 respectively. We
have explained an example to illustrate the reduction rules
more clearly in Section 5. We require certain conditions on
well formed configuration for the consistent behavior of the
reduction semantics in Section 6. We describe the equivalence
between DRϕ

π and Dπ in Section 7. The conclusion is in
Section 8.
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II. SYNTAX

We will use v,v1,v2,u,u1.... to represents values which may
be a simple value or a name or a variable. For simplicity in the
language we don’t use tuples as values. Therefore u,v, ..... are
singleton names or simple values i.e. integers, boolean etc. We
use meta variables a,b,c, ... to range over channel names { or
node names N. In the description of the language n,m, ... are
used to range over node names N and we use R,R1,R2, ... to
range over set of router names ℜ at global time tk, tk+1, tk+2, ...
. The variables h, l, ... range over integers to represent the cost
of communication.

Further, we assume that sets of node names, router names
and channel names are disjoint from each other. More formally

ℜ∩{∩N = Φ

There exists three main syntactic categories in the language
that are Nodes , Systems, and Processes. We described the
syntax of DRϕ

π in Fig. 1. We have given the descriptions of
these syntactic categories in the following sub-sections.

A. System

In Fig. 2, we described a system as 〈Rtk′ 〉JMK where R
being a router at global clock tk′ and M is a another syntactic
category named as nodes that are directly connected to R.
S | T represents two parallel systems and [R]Mh

sg (n,m,v@c)
is a message at router R. This message is used to propagate
the value v from one router to another during communication
between some process at source node n to another process at
destination node m. The value propagated by the message is
represented by v@c to deliver value v to the specified channel
c of the destination process. Here the integer h indicates the
number of hops(routers), the message has already travelled
across the path towards its destination and ε is the identity.

B. Node

In Fig. 2, the nodes are named processes n [P] where n
is the name of a node and P is a process term in it. M | N
describes usual concurrency between nodes M and N at any
router. As an example, in a system 〈Rtk′ 〉JM | NK the nodes M
and N are running in parallel at router R at global clock tk′ . 0
is the identity.

C. Process terms

The process terms are very similar to the terms in [1], [5].
These process terms are described in Fig. 2.

III. STRUCTURAL EQUIVALENCE

We introduce a formal relation between the system terms
in DRϕ

π called structural equivalence which is represented by
the notation ≡ to this relation, they are same computational
entity. This is defined in [1], [5]. We describe the definition of
structural equivalence is separated for all syntactic categories.
Nevertheless, the node equivalence inherits process equiva-
lence and system equivalences inherits by node equivalence.
For example, the terms 〈Rtk′ 〉JM1 | M2K and 〈Rtk′ 〉JM2 | M1K,
instinctively represent the same systems where the nodes M1
and M2 at router R run in parallel at global clock tk′ and the

S,T ::= Systems

〈Rtk′ 〉JMK Router at global clock
S | T Concurrency
[R]Mh

sg (n,m,v@c) Messages
ε Identity

M,N ::= Nodes

n [P] Named processes
M | N Concurrency
0 Identity

T,U ::= Process Terms

c?(x)P Input
m!(v@c) Output
if v1 = v2 then P else Q Matching
P | Q Concurrency
∗P Recursive
stop Termination

Fig. 2. Syntax Of DRϕ

π

(SE-COM) P | Q ≡ Q | P
(SE-ASSOC) (P | Q) | R ≡ P | (Q | R)
(SE-ID) P |id ≡ P

Fig. 3. Structural Equivalence(Standard) for DRϕ

π

(SE-P-STANDARD) standard axioms
(SE-P-Recursion) ∗ P ≡ P | ∗ P

Fig. 4. Structural Equivalence(Processes) for DRϕ

π

(SE-N-STANDARD) standard axioms
(SE-N-STOP) m[stop] ≡ 0

(SE-N-INHERITANCE)
P ≡ Q

m[P] ≡ m[P]

Fig. 5. Structural Equivalence(Nodes) DRϕ

π

(SE-S-STANDARD) standard axioms

(SE-S-INHERITANCE)
N ≡ S

〈Rtk′ 〉JNK ≡ 〈Rtk′ 〉JSK

Fig. 6. Structural Equivalence(Systems) for DRϕ

π

order of their composition really does not matter. These are
defined in Fig. 2, 3, 4, 5 and 6.

IV. REDUCTION SEMANTICS

The reduction semantics are defined on configurations
ΓcB S. The configuration reduction step is defined as ΓcB
S −→h ΓcBS′ where the cost of reduction [3], [4] is h and a
system S reduces S′. These reduction rules for DRϕ

π are given
in Fig. 7 and directly inherited from [8], [10]. The Rule (R-
OUT) is for delivery. For example, let us take the configuration
ΓcB 〈Rtk′ 〉Jn[m!(v@c)
|P]|NK where a process m!(v@c) |P at source node n at router
R at a global clock tk′ outputs a value v at channel c which is
located at some process at destination node m. This reduction
rule generates a propagation message [R]M0

sg (n,m,v@c) in
parallel with the system 〈Rtk′ 〉Jn[P]|NK resulting in a configu-
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ration ΓcB [R]M0
sg (n,m,v@c) |〈Rtk′ 〉Jn[P]|NK. The message

with subscript 0 indicates that it has been generated at router
R and has not hopped to any other router yet. The term
(n,m,v@c) in the message represents the source node name n
where a process outputs a value and destination node m where
the value v is to be delivered on channel c to a waiting process.

The propagation of the message from one router to another
router towards the destination node is done using reduction
rule (R-MSG-FWD) in Fig. 7 . Let us consider the reduction
rule (R-MSG-FWD). In this reduction rule a configuration of
the form ΓcB [R1]Mh

sg (n,m,v@c) |〈R2
tk′ 〉JNK|S reduced to ΓcB

[R2]Mh+1
sg (n,m,v@c) |〈R2

tk′ 〉JNK|S. There are two premises the
first (R1,R2) ∈ Γc means that the routers R1 and R2 are
directly connected or R2 is a neighbor of R1. The second one,
〈R1

tk′ 〉(m) = R2 means that m belongs to the domain of the
routing table at R1 at global clock tk′ and the function 〈R1

tk′ 〉
returns R2 as the next hop towards the destination node m.

In the reduction rule (R-COMM) in Fig. 7, a configura-
tion ΓcB [R]Mh

sg (n,m,v@c)| 〈Rtk′ 〉Jm[c?(x)P|Q]|NK does a
reduction to ΓcB〈Rtk′ 〉Jm[P{v/x}|Q]|NK. Here note that cost of
reduction is h as the message has hopped h routers from source
node n to destination node m. However it is not necessary that
for every hop the global clock count increases by an interval.

we describe the reduction rule (R-TABLE-UPDATE) in
Fig. 7 which uses a new special notation (←→) to depict
the exchange of routing tables at global clock t = tk′ . This
notion (←→) adds a novelty to this calculus as this will
not only exchange the routing table between the connecting
routers but also update tables (using distance vector routing
methods [13], [14], [15], [16] dynamically with the help of
synchronization of the global clock. Here we define reduction
semantics for updating table dynamically, may or may not
at global clock tk′ . In this reduction rule a configuration of
the form 〈R1

tk′+1〉[M]|S reduces to 〈R′1
tk′+1〉[M]|S. There are

six premises, the first (R1,R2) ∈ Γc means that the routers
R1 and R2 are directly connected or R2 is a neighbor of
R1 at global clock t = tk′ . The second and third, Γc B
〈R1

tk′ 〉[M]| S and 〈R2
tk′ 〉[N]|T are well formed which mean that

the well formedness is preserved under reductions. The fourth,
〈R1

tk′ 〉[M]|S ←→ 〈R2
tk′ 〉[N]|T means that the routing table

between the connecting routers is exchanged. The fifth and
sixth, δ 〈R1

tk′+1〉 = 〈R′1
tk′+1〉 and δ 〈R2

tk′+1〉 = 〈R′2
tk′+1〉 mean

that routing tables (using distance vector routing methods) are
updated dynamically with the help of synchronization of the
global clock tk′ .

The rules (R-MATCH) and (R-MISMATCH) are tests for
values. Here the initial cost of these reductions is also zero.
The compositional rules are defined in the rule (R-CONTX)
in Fig. 7 and are preserved under the static operator |. The
other reduction rule (R-STRUCT) in Fig. 7 defines well formed
configuration reduction upto system structural equivalence.

Now we will demonstrate these rules with the help of an
example. This example also shows the exclusive feature of this
particular language regarding the novel rule is implemented for
routing table updates.

V. EXAMPLE

In Fig. 1, let us assume that a system S is defined as
S1|S2|S3|S4|S5 where

(R-OUT)
ΓcB 〈Rtk′ 〉Jn[m!(v@c) |P]|NK→
ΓcB [R]M0

sg (n,m,v@c) |〈Rtk′ 〉Jn[P]|NK

(R-COMM)
〈Rtk′ 〉(m) = R

ΓcB [R]Mh
sg (n,m,v@c)| 〈Rtk′ 〉Jm[c?(x)P|Q]|NK−→
ΓcB 〈Rtk′ 〉Jm[P{v/x}|Q]|NK

(R-MSG-FWD)
(R1,R2) ∈ Γc

〈R1
tk′ 〉(m) = R2

ΓcB [R1]Mh
sg (n,m,v@c) |〈R2

tk′ JNK|S−→
ΓcB [R2]Mh+1

sg (n,m,v@c) |〈R2
tk′ JNK|S

(R-MATCH)
ΓcB 〈Rtk′ 〉Jn[ if v = v then P else Q]K−→ ΓcB 〈Rtk′ 〉Jn[P]K

(R-MISMATCH)
ΓcB 〈Rtk′ 〉Jn[ if v1 6= v2 then P else Q]K−→ ΓcB 〈Rtk′ 〉Jn[Q]K

(R-TABLE-UPDATE)
(R1,R2) ∈ Γc, t = tk′

ΓcB 〈R1
tk′ 〉[M]| S is wff

ΓcB 〈R2
tk′ 〉[N]|T is wff

〈R1
tk′ 〉[M]|S←→ 〈R2

tk′ 〉[N]|T
δ 〈R1

tk′+1〉= 〈R′1
tk′+1〉

δ 〈R2
tk′+1〉= 〈R′2

tk′+1〉
ΓcB 〈R1

tk′+1〉[M]|S−→ ΓcB 〈R′1
tk′+1〉[M]|S

ΓcB 〈R2
tk′+1〉[N]|T −→ ΓcB 〈R′2

tk′+1〉[N]|T

(R-STRUCT)
S≡ S′,ΓcBS′ −→ ΓcBR′,R′ ≡ R

ΓcBS−→ ΓcBR

(R-CONTX)
ΓcBS1 −→ ΓcBS′1

ΓcBS1 | S2 −→ ΓcBS′1 | S2

ΓcBS2 | S1 −→ ΓcBS2 | S′1
Fig. 7. Reduction Semantics for DRϕ

π

S1 ≡ 〈Rtk
1 〉JP|N1K

S1 ≡ 〈Rtk
2 〉JN2K

S3 ≡ 〈Rtk
3 〉JN3K

S4 ≡ 〈Rtk
4 〉JN4K

S5 ≡ 〈Rtk
5 〉JQ|N5K

Where P≡ a[b!〈v@c〉] and Q≡ b[c?(x)R]
The router connectivity Γc is defined as {(R1,R2),(R1,R3),
(R2,R4),(R3,R4),(R3,R5),(R5,R4)}.

The configuration Γc B S1|S2|S3|S4|S5 does a reduction
using the rule (R-OUT) where the process b!〈v@c〉 at node
a generates a message at global clock tk′ where tk′ =
tk, tk+1, tk+2, ..... The configuration reduces to another configu-
ration of the form
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ΓcB [R1]M0
sg (a,b,v@c) |〈Rtk

1 〉JN1K|S2|S3|S4|S5

In the Fig. 1, R1 is directly connected to R2 and R3. we
know that (R1,R2) ∈ Γc and (R1,R3) ∈ Γc. Similarly we know
that (R2,R4) ∈ Γc, (R3,R4) ∈ Γc, (R4,R5) ∈ Γc, (R5,R3) ∈ Γc.

All the routing table will share its routing table with
adjacent router. Now by using rule(R-TABLE-UPDATE), we
get

ΓcB 〈Rtk
1 〉JP|N1K is wff

ΓcB 〈Rtk
2 〉JN2K is wff

ΓcB 〈Rtk
3 〉JN3K is wff

ΓcB 〈Rtk
4 〉JN4K is wff

ΓcB 〈Rtk
5 〉JQ|N5K is wff

All the systems are well formed which are defined in
definition 1. Now all the routing tables shall be exchanged
with each other at a global clock tk.

〈Rtk
1 〉JP|N1K←→ 〈Rtk

2 〉JN2K
〈Rtk

1 〉JP|N1K←→ 〈Rtk
3 〉JN3K

〈Rtk
2 〉JN2K←→ 〈Rtk

4 〉JN4K
〈Rtk

3 〉JN3K←→ 〈Rtk
4 〉JN4K

〈Rtk
3 〉JN3K←→ 〈Rtk

5 〉JQ|N5K
〈Rtk

4 〉JN4K←→ 〈Rtk
5 〉JQ|N5K

〈Rtk
5 〉JQ|N5K←→ 〈Rtk

3 〉JN3K

Now route checks update for new information then routers
will be calculated using Bellman-Ford algorithm and metric
is updated, new entries are stored in the routing table. Thus
routers will exchange routing information at tk+1.

δ 〈R1
tk+1〉= 〈R1

tk+1〉
δ 〈R2

tk+1〉= 〈R′2tk+1〉
δ 〈R3

tk+1〉= 〈R′3tk+1〉
δ 〈R4

tk+1〉= 〈R4
tk+1〉

δ 〈R5
tk+1〉= 〈R′5tk+1〉

In this way 〈R2
tk+1〉, 〈R3

tk+1〉 and 〈R5
tk+1〉 are updated

and new routing tables are 〈R′2tk+1〉 , 〈R′3tk+1〉 and 〈R5
t ′k+1〉

respectively at global clock tk+1.

Now the message hops towards the destination node b, the
router table 〈R1

tk+1〉 may return either the adjacent router R2
or the adjacent router R3 as next hop on the communication
path to node b at router R5. This may be formally expressed
as 〈R1

tk+1〉(b) = R2 and 〈R1
tk+1〉(b) = R3.

The communication path is chosen by distance vector
approach (shortest path). Suppose the routing table 〈R1

tk+1〉
returns R3 as the next hop for reaching b. This essentially
means that R3 is on the path towards b which is hosted at
router R5. Formally 〈R1

tk+1〉(b) = R3 and also we know that
(R1,R3) ∈ Γc. Therefore with an application of rule (R-MSG-
FWD) the message [R1]M0

sg (a,b,v@c) hops at R3. So the
configuration

ΓcB [R1]M0
sg (a,b,v@c) |〈Rtk+1

1 〉JP|N1K|〈R′2tk+1〉JN2K|
〈R′3tk+1〉JN3K|〈R4

tk+1〉JN4K|〈R′5tk+1〉JQ|N5K

reduces to

ΓcB [R3]M1
sg (a,b,v@c) |〈Rtk+1

1 〉JP|N1K|〈R′2tk+1〉JN2K|
〈R′3tk+1〉JN3K|〈R4

tk+1〉JN4K|〈R′5tk+1〉JQ|N5K

Further suppose 〈R′3tk+1〉(b) = R4 and the message
[R3]M1

sg (a,b,v@c) is propagated to R4. Since (R3,R4) ∈ Γc.
Therefore again using the rule (R-MSG-FWD) the configura-
tion

ΓcB [R3]M1
sg (a,b,v@c) |〈Rtk+1

1 〉JP|N1K|〈R′2tk+1〉JN2K|
〈R′3tk+1〉JN3K|〈R4

tk+1〉JN4K|〈R′5tk+1〉JQ|N5K

reduces to

ΓcB [R4]M2
sg (a,b,v@c) |〈R1

tk+1〉JP|N1K|〈R′2tk+1〉JN2K|
〈R′3tk+1〉JN3K|〈R4

tk+1〉JN4K|〈R′5tk+1〉JQ|N5K

Similarly again all the tables are updated with new entries
with an application of rule (R-TABLE-UPDATE) at global
clock tk+2. Further suppose 〈R′4tk+2〉(b) = R5 and message
[R4]M2

sg (a,b,v@c) is propagated to R5. Since (R4,R5) ∈ Γc.
Therefore again using the rule (R-MSG-FWD) the configura-
tion

ΓcB [R4]M2
sg (a,b,v@c) |〈R′1tk+2〉JP|N1K|〈R′′2 tk+2〉JN2K|

〈R′′3 tk+2〉JN3K|〈R′4tk+2〉JN4K|〈R′5tk+2〉JQ|N5K

reduces to

ΓcB [R5]M3
sg (a,b,v@c) |〈R′1tk+2〉JP|N1K|〈R′′2 tk+2〉JN2K|

〈R′′3 tk+2〉JN3K|〈R′4tk+2〉JN4K|〈R′5tk+2〉JQ|N5K

Because 〈R′5tk+2〉(b) = R5, the value v is delivered to the
waiting process at b using the rule (R-COMM). Therefore the
configuration

ΓcB [R5]M3
sg (a,b,v@c) |〈R′1tk+2〉JP|N1K|〈R′′2 tk+2〉JN2K|

〈R′′3 tk+2〉JN3K|〈R′4tk+2〉JN4K|〈R′5tk+2〉Jb[c?(x)R]|N5K

reduces to

ΓcB 〈R′1tk+2〉JP|N1K|〈R′′2 tk+2〉JN2K|〈R′′3 tk+2〉JN3K|
〈R′4tk+2〉JN4K|〈R′5tk+2〉Jb[R{v/x}]|N5K

Similarly all the tables are updated with new entries by
rule (R-TABLE-UPDATE) at every global clock tk′ where
tk′ = tk, tk+1, tk+2...... Thus all the routers in a path of com-
munication between R1 and R5 are updated dynamically. This
method of routing table update is known as distance vector
routing updates.

Previously the path for communication from a to b is via
R1  R3  R5 where the value propagating message hops
two routers before delivering the value at the destination
process which means paths are fixed. But now path are
changed and new path for communication from a to b via
R1  R3  R4  R5. Due to this all the routing tables are
updated dynamically. Therefore paths are also changed and
this ensures the best optimal path. This is more closer to the
real distributed network.
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VI. WELL FORMED CONFIGURATIONS

We define a set of conditions on well formed configurations
and prove them in DRϕ

π . The well formedness is preserved
under reductions. The conditions on well formed configura-
tions are explained in definition 1 and DRϕ

π is ensured by the
reduction semantics.

In definition 1, the concept of well formed configurations in
DRϕ

π is inherited from [8] and the reduction rule (6) and (7) are
used to illustrate that when (R-COMM) and (R-MSG-FWD)
occurs, reduction rule (R-TABLE-UPDATE) is prohibited for
given network and vice- versa. These configuration rules will
prevent looping and congestion in the network. Hence it will
reduce inconsistency in the network.

Definition 1: well formed configuration A configuration
is called well formed if it satisfies the following conditions:

1) ΓcB ε is a well formed system.
2) If ΓcB 〈Rtk′ 〉JNK | S is well formed at a global clock

if
a) ΓcB S is well formed where S contains no

message at R.
b) 〈Rtk′ 〉 does not occur in S. (Uniqueness of

router name R)
c) ∀ ∈ fn(N) such that m ∈ NN where NN is

the set of node names, if 〈Rtk′ 〉(m) = R then
∀ 〈Rtk′

1 〉 ∈ S,〈Rtk′
1 〉(m) 6= R1. (Uniqueness of

node name m)
3) If ΓcB〈Rtk′ 〉JNK | S is well formed at a global clock

t = tk′ , tk′+1, ..then ΓcB 〈Rtk′+1〉JNK | S is also well
formed.

4) ΓcB [R]Mh
sg (n,m,v@c) | S is a well formed if

a) Γc B S is well formed and S≡ 〈 Rtk′ 〉 JNK | S′
for some S′

b) There exists a path P(R′,R) = R′  R′′  
.....R for some R′,R′′, .....
such that 〈R′tk′ 〉(n) = R′ and 〈R′tk′ 〉(m) =
R′′..... where h =| ρ(R′,R) | −1

5) In any well formed configuration Γc B S , for ev-
ery pair of nodes n and m such that 〈Ri

tk′ 〉(n) =
Ri and〈R j

tk′ 〉(m) = R j at any global clock t = tk′
where (Ri,R j)∈ S, there exists a unique path Ri R j
such that
〈 Ri

tk′ 〉(m) = R′, 〈 R′tk′+1 〉(m) = R′′, ........R′tk′+p

〉(m) = R j
6) ΓcBS is well formed iff

a) If Γc B S −→h Γc B S′ is using rule (R-
COMM) then ΓcB S 6−→ hΓcB S′ will not
be used rule (R-TABLE-UPDATE).

b) If ΓcBS−→h ΓcBS′ is using rule (R-MSG-
FWD) then ΓcBS 6−→ hΓcBS′ will not be
used rule (R-TABLE-UPDATE).

7) ΓcBS is well formed iff
a) If Γc B S −→h Γc B S′ is using rule (R-

TABLE-UPDATE) then
ΓcB S 6−→ hΓcB S′ will not be used either
rule (R-COMM) or rule (R-MSG-FWD) .

b) If Γc B S −→h Γc B S′ is using rule (R-
TABLE-UPDATE) then
ΓcBS 6−→ hΓcBS′ will not be used rule (R-
COMM) and rule (R-MSG-FWD) .

Lemma.1. Suppose S ≡ T then ΓcB S is well formed iff
ΓcBT is well formed.

Proof.(OUTLINE) By induction on definition of ≡.

Theorem 1. If ΓcB S is well formed configuration and
ΓcBS−→h ΓcBS′ then ΓcBS′ is also well formed.

Proof. (OUTLINE) By rule induction on inference of
ΓcBS −→h ΓcBS′ then ΓcBS′. It is easy to prove that each
inference of ΓcBS′, using the reduction rules in Fig. 7, satisfies
all the properties of a well formed configuration.

VII. EQUIVALENCE BETWEEN DRϕ

π AND Dπ

We proved that whenever a Dπ [2] system does a reduction
there exists a corresponding well formed configuration in DRϕ

π

which can do a number of reductions such that the residual
are equivalent upto structural equivalence after φ abstraction
of the residual system in DRϕ

π . Similarly for the converse,
we proved that whenever a well formed configuration in DRϕ

π

does a reduction there exists a corresponding Dπ system which
either does nothing or does a reduction where residuals of both
Dπ and DRϕ

π systems are matched upto structural equivalence.
Since Dπ is a specification for DRϕ

π therefore we have shown
that DRϕ

π conforms to its specification. Our model is also closer
to real distributed networks.

we define a function to abstract away the details of routers
and paths from a DRϕ

π term state theorems about the equiva-
lence of DRϕ

π with Dπ .

Definition 2: We define a function φ : LSY →HSY , where
LSY and HSY are sets of DRϕ

π system terms and Dπ systems
respectively, as follows:

φ (ε) = nil
φ (〈Rtk′ 〉JNK) = N
φ
(
[R]Mh

sg (n,m,v@c)
)

= n[m!〈v@c〉]
φ (S|T ) = φ (S) |φ (T )

Proposition 1. For any system term L in DRϕ

π such that
φ(L) = H and H ≡ H ′ implies that there exists some system
term L′ in DRϕ

π such that φ(L′) = H ′ and L≡ L′.

Proof. We shall prove it by induction on various forms L
can take and syntactic analysis of L such that φ(L) = H and
H ≡ H ′.

1) Let us take a case when a system L, in DRϕ

π , is of
the form

L≡ 〈R1
tk′ 〉Jn[m!〈v@c〉|P]|NK

By using φ definition, we get
φ(L) = n[m!〈v@c〉|P]|N

H ≡ n[m!〈v@c〉|P]|N
Therefore when we write φ(L) = H for some term L
in DRϕ

π and a Dπ system H , we can rearrange the
terms in a Dπ systems H ′, by using various axioms of
structural equivalence (SE-COM) and (SE-ID). Since

H ′ ≡ N|n[m!〈v@c〉|P]
or

H ′ ≡ n[m!〈v@c〉|P]|N|e
Therefore H ≡ H ′. When a system term L′, in DRϕ

π ,
is of the form

L′ ≡ 〈R1
tk′ 〉JN|n[m!〈v@c〉|P]K
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Further by definition of φ we get,
φ(L′) = N|n[m!〈v@c〉|P] H ′ ≡ N|n[m!〈v@c〉|P]

By using axiom (SE-COM), we get
H ′ ≡ n[m!〈v@c〉|P]|N ≡ H

Now it is clear that, the relation = in the definition
φ is much stronger than ≡ i.e. φ is closed upto ≡.
Therefore, by definition of ≡ given in Figure 3 it can
be easily verified that φ(L′) = H ′ and L≡ L′.

2) Let us take another case when a system L, in DRϕ

π ,
is of the form

L≡ [R1]M0
sg (n,m,v@c) |〈R2

tk′ JNK|M
By using φ definition on L, we get

φ(L) = n[m!〈v@c〉|P]|N|M
H ≡ n[m!〈v@c〉|P]|N|M

Therefore when we write φ(L) = H, for some term
L in DRϕ

π and Dπ system H, we can rearrange the
terms in a Dπ systems H ′, by using various axioms of
structural equivalence (SE-COM),(SE-ASSOC) and
(SE-ID). Since H ′ is take various forms like,

H ′ ≡ n[m!〈v@c〉|P]|M|N
or

H ′ ≡M|N|n[m!〈v@c〉|P]
or

H ′ ≡ n[m!〈v@c〉|P]|N|M|e
All the form of H ′ is structurally equivalent to H, by
using various axioms of structural equivalence. Since
H ′
Now we take system term L′ in DRϕ

π , is the form of
L′ ≡ 〈R2

tk′ JNK|M|[R1]M0
sg (n,m,v@c)

Further by definition of φ we get,
φ(L′) = N||M|n[m!〈v@c〉|P]

H ′ ≡ N||M|n[m!〈v@c〉|P]
By using rule (SE-COM), we get

H ′ ≡ n[m!〈v@c〉|P]|N|M ≡ H
Therefore φ(L′) = H ′ and L≡ L′.

Similarly other cases can be proved.

Proposition 2. For any system term L in DRϕ

π L ≡ L′
implies φ(L)≡ φ(L′).

Proof. This can be proved by induction on the definition
of L and ≡ as defined in Figure 2 and . By applying function
φ above proposition can be derived fairly straightforward.

Lemma.2. In a Dπ system H1 does a reduction H1 −→
H2 and φ(L1) = H ′1 such that H ′1 ≡ H1 where L1 is a system
term over a well formed configuration ΓcBL1 in DRϕ

π , then
ΓcBL1 −→ ΓcBL2 for some h such that φ(L2) = H ′2 where
H ′2 ≡ H2.

Proof. We shall prove it by rule induction on the inference
of a Dπ system reduction H1 −→H2 and syntactic analysis of
L1 such that φ(L1) = H ′1 where H ′1 ≡ H1. There are various
possibilities and we we will take each of them as follows:

1) Let us take a case where a Dπ system H1 is the form
l1[c?(x)P
| M] | l2[l1!〈v@c〉 |N]. Suppose the Dπ system H1
does a reduction to

l1[P{v/x}|M] | l2[N]

By using the rule (R-H-COMM) where
H2 ≡ l1[P{v/x}|M] | l2[N]

A system term L1 in DRϕ

π , such that φ(L1) = H ′1 can
take various forms. We shall examine each of them
as follows:

a) We take the case where L1 is structurally
equivalent to

〈Rtk′
1 〉Jl1[c?(x)P |M]K | 〈Rtk′

2 〉Jl2[l1!〈v@c〉 |N]K
for some R1 and R2. We can clearly see that

φ(L1) = l1[c?(x)P | M] | l2[l1!〈v@c〉 |N]

where
l1[c?(x)P | M] | l2[l1!〈v@c〉 |N]≡ H1 s.t.

H ′1 ≡ H1

We know that Γc B L1 is a well formed
system and therefore L1 does a following
reduction using rule (R-OUT) to become
[R]M0

sg (l2, l1,v@c) | 〈Rtk′
2 〉Jl2[N]K | 〈Rtk′

1 〉
Jl1[c?(x)P | M]K

We use various standard axioms of structural
equivalence rules and by definition of φ we
know that
φ(L2) = l2[l1!〈v@c〉] | l2[N] | l1[c?(x)P | M]

where
H ′2 ≡ l2[l1!〈v@c〉] | l2[N] | l1[c?(x)P | M]

By using axiom (R-H-COM),we get
H ′2 ≡ l2[l1!〈v@c〉] | l1[c?(x)P | M]| l2[N]

By using axiom (R-H-COMM),we get
H ′2 ≡ l1[P{v/x}|M] | l2[N]≡ H2

Further as we know that ΓcB L1 is a well
formed system and therefore according to the
condition of well formed configuration R2 
R1 where 〈Rtk′

2 〉(l2) = R2 and 〈Rtk′
1 〉(l1) = R1.

Let us assume that 〈Rtk′
2 〉(l2) = R3 for some

R3 such that (R2,R3) ∈ Γc. A reduction is
done using rule (R-MSG-FWD)
[R2]M0

sg (l2, l1,v@c) | 〈Rtk′
2 〉Jl2[N]K | 〈Rtk′

1 〉
Jl1[c?(x)P | M]K

does a reduction to
[R3]M1

sg (l2, l1,v@c) | 〈Rtk′
2 〉Jl2[N]K | 〈Rtk′

1 〉
Jl1[c?(x)P | M]K

where
φ(L2) = l2[l1!〈v@c〉] | l2[N] | l1[c?(x)P | M]

and
H ′2 ≡ l2[l1!〈v@c〉] | l2[N] | l1[c?(x)P | M]

By using axiom (S-MONOID-COM), we get
H ′2 ≡ l2[l1!〈v@c〉] | l1[c?(x)P | M] | l2[N]

By using axiom (R-H-COMM), we get
H ′2 ≡ l1[P{v/x}|M] | l2[N]≡ H2

By using rule (R-COMM), after reduction
directly gives the form of H2.

b) We can take another possibility of the
form that a system L1 in DRϕ

π can
take. In a Dπ system H1 is the form
l1[c?(x)P | M] | l2[l1!〈v@c〉 |N]. It is pos-
sible that M and N contain several output
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process terms. Theses output terms will have
equivalent messages terms at L1 which are
originated at nodes l1 and l2 to carry arbitrary
values to some channel at various nodes.
Therefore L1 may contain several messages
which may be equivalent to one of the output
terms in M or N after φ abstraction.

2) We will now consider another possibility when a Dπ

system H1 is the form
n[ if v = v then P else Q]

and does a reduction using (R-H-MATCH), we get
n[ if v = v then P else Q]→ n[P]

where n[P]≡ H2

In one possibility a system term L1, in DRϕ

π , can take
a form

〈Rtk′ 〉Jn[ if v = v then P else Q]K≡ L1

for some R such that
φ(L1) = n[ if v = v then P else Q]

with an application of rule (R-MATCH) in a well
formed configuration ΓcBL1 can do a reduction to

ΓcB 〈Rtk′ 〉Jn[P]K
Here L2 ≡ 〈Rtk′ 〉Jn[P]K. Further with an application of
the function φ on L2 we can get

φ(L1) = n[P]≡ H ′2
3) We will now consider another possibility when a Dπ

system H1 is the form
n[ if v1 = v2 then P else Q]

and does a reduction using (R-H-MISMATCH), we
get

n[ if v = v then P else Q]→ n[Q]

where n[Q]≡ H2

In one possibility a system term L1, in DRϕ

π , can take
a form

〈Rtk′ 〉Jn[ if v1 = v2 then P else Q]K≡ L1

for some R such that
φ(L1) = n[ if v1 = v2 then P else Q]

with an application of rule (R-MISMATCH) in a well
formed configuration ΓcBL1 can do a reduction to

ΓcB 〈Rtk′ 〉Jn[Q]K
Here L2 ≡ 〈Rtk′ 〉Jn[Q]K. Further with an application
of the function φ on L2 we can get

φ(L1) = n[Q]≡ H ′2
4) Now we consider the cases of compositional reduc-

tion of a Dπ system. Let us assume that a Dπ system
H1 is of the form P1 | P2. An application of the rule
(R-H-CONTX) reduces H1 to P′1 | P2. Let us assume
that a system term in DRϕ

π , is of the form L1 | L2 such
that φ(L1) = P1 and φ(L2) = P2. We also assume that
a configurations ΓcB L1 | L2 and ΓcB L1 are well
formed configurations. By induction we can say that
ΓcBL1 −→ ΓcBL′1 such that φ(L′1) = P′′1 for some
h, P′′1 ≡ P′1. Therefore using the rule (R-CONTX),
we can conclude that ΓcBL1 | L2 −→ ΓcBL′1 | L2.
We know that φ(L′1 | L2) = φ(L′1) | φ(L2). Since
φ(L2) = P2 and φ(L′1) = P′′1 therefore φ(L′1 | L2) =
P′′1 | P2. Further we already know that P′′1 ≡ P′1

therefore from the axioms of structural equivalence
, we can conclude that P′1 | P2 ≡ H2.
Same as H1 is the form of P2 | P1. We can proved
similarly.

5) Let us now consider the last case when a Dπ system
H1 does a reduction to H2 using the rule (R-H-
STRUCT) because H ′1 −→ H ′2 where H1 ≡ H ′1 and
H2 ≡H ′2. Let us assume that for a system L1 in DRϕ

π ,
φ(L1) = H1. We also assume that ΓcBL1 is a well
formed configuration. Since H1 ≡H ′1 therefore using
proposition 1. we can say that there exists a L′1 such
that φ(L′1) = H ′1 and L ≡ L′. Further using lemma.1.
We know that Γc B L′1 is a well formed. Now by
induction we can say H ′1 −→H ′2 implies ΓcBL′1 −→
Γc B L′′1 for some L′′1 and h such that φ(L′′1) = H ′′2
for some H ′′2 such that H ′′2 ≡ H ′2. We already know
that L1 ≡ L′1 therefore with an application of rule (R-
STRUCT). We can say that ΓcBL1

∗−→ ΓcBL′′1 . We
know that φ(L′′1) = H ′′2 and since H ′′2 ≡H ′2 , H ′2 ≡H2
therefore H ′′2 ≡ H2

Lemma.3.In DRϕ

π , if a well formed configuration ΓcBL1
does a reduction ΓcBL1 −→ ΓcBL2 and φ(L1) = H1 where
H1 is a Dπ system then either there exists a Dπ system H2
such that H1 −→ H2 and φ(L2)≡ H2 or φ(L2)≡ H1.

Proof. By induction on the inference of reduction Γc B
L1 −→ ΓcBL1 of well formed configurations in DRϕ

π and syn-
tactic analysis of φ(L1) = H1. There are various possibilities
and we we will take each of them as follows:

1) Let us take a case when a system L1, in DRϕ

π , is
of the form 〈Rtk′ 〉Jn[m!(v@c) |P]|NK. A well formed
configuration ΓcBL1 does a reduction to

ΓcB [R]M0
sg (n,m,v@c)〈Rtk′ 〉Jn[P]|NK

using rule (R-OUT) in fig. 7, Let a Dπ system H1 is
of the form n[m!(v@c) |P]|N and by definition of φ

we know that
φ(L1) = φ(〈Rtk′ 〉Jn[m!(v@c) |P]|NK) =

n[m!(v@c) |P]|N
Further by definition of φ we know that

φ(L2) = φ([R]M0
sg (n,m,v@c)〈Rtk′ 〉Jn[P]|NK) =

n[m!(v@c) |P]|N
now by an application of axiom (S-H-MERGE), We
can conclude that

n[m!(v@c) |P]|N ≡ H1

2) In another case we consider that a system term L1, in
DRϕ

π , is of the form [R1]Mh
sg (n,m,v@c) |〈R2

tk′ JNK|S.
We consider a case when using the rule (R-MSG-
FWD), the well formed configuration ΓcBL1 does a
reduction to ΓcB [R2]Mh+1

sg
(n,m,v@c) |〈R2

tk′ JNK|S. Let a Dπ system H1 be of the
form n [m!〈v@c〉] |N|S where φ(L1) = H1. Clearly

φ(L1) = φ([R1]Mh
sg (n,m,v@c) |〈R2

tk′ JNK|S)
φ(L1) = n [m!〈v@c〉] |N|S≡ H1

Further by definition of φ we know that
φ(L2) = φ([R2]Mh+1

sg (n,m,v@c) |〈R2
tk′ JNK|S)

φ(L2) = n [m!〈v@c〉] |N|S≡ H1

3) Now let us take a case when a
system L1, in DRϕ

π , is of the form
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[R]Mh
sg (n,m,v@c)| 〈Rtk′ 〉Jm[c?(x)P|Q]|NK. The

well formed configuration ΓcBL1 does a reduction
using the rule (R-COMM) to another well formed
configuration Γc B 〈Rtk′ 〉Jm[P{v/x}|Q]|NK. Let us
assume that L2 = Rtk′ 〉Jm[P{v/x}|Q]|NK. Clearly

φ(L1) = n [m!〈v@c〉] |m[P{v/x}|Q]|N
By using the rule (R-H-COMM), The Dπ sys-
tem n [m!〈v@c〉] |m[P{v/x}|Q]|N can reduce to
m[P{v/x}|Q]|n[ε]|N which is structurally equivalent
to m[P{v/x}|Q]|N ≡ H1. We know that φ(L2) =
m[P{v/x}|Q]|N ≡ H1

4) Now we take another case where a system term L1,
in DRϕ

π , is of the form either Γc B 〈R1
tk′+1〉[M]|S

or ΓcB 〈R2
tk′+1〉[N]|T . We can take one form ΓcB

〈R1
tk′+1〉[M]|S. The well formed configuration ΓcBL1

reduces using the rule (R-TABLE-UPDATE) to an-
other well formed configuration Γc B 〈R′1

tk′+1〉[M]|S
and by definition of φ we know that

φ(L1) = M|S≡ H1
φ(L2) = M|S≡ H1

5) Now we take another case where a system term
L1, in DRϕ

π , is of the form Γc B 〈Rtk′ 〉Jn[ if v =
v then P else Q]K. The well formed configuration
ΓcBL1 reduces using the rule (R-MATCH) to another
well formed configuration Γc B 〈Rtk′ 〉Jn[P]K and by
definition of φ we know that

φ(L1) = n[ if v = v then P else Q]
φ(L1) = n[P]≡ H1 where value is true then result

is P
φ(L2) = n[P]≡ H1

6) Now we take another case where a system term
L1, in DRϕ

π , is of the form Γc B 〈Rtk′ 〉Jn[ if v1 6=
v2 then P else Q]K. The well formed configuration
ΓcB L1 reduces using the rule (R-MISMATCH) to
another well formed configuration ΓcB 〈Rtk′ 〉Jn[Q]K
and by definition of φ we know that

φ(L1) = n[ if v1 6= v2 then P else Q] = n[Q]≡ H1
φ(L1) = n[Q]≡ H1

7) Now let us take compositional cases. First suppose a
system in in DRϕ

π , is of the form L1 | L2 and a Dπ

system is of the form H1 | H2 where φ(L1) = H1 and
φ(L2) =H2. By definition of the φ we can clearly see
that φ(L1 | L2)=H1 | H2. Now take the case when the
well formed configuration in DRϕ

π , ΓcBL1 | L2 does a
reduction using the rule (R-CONTX) to another well
formed configuration ΓcBL′1 | L2, the well formed
configuration ΓcBL1 does a reduction to ΓcBL1 −→
ΓcBL′1 for some h. By induction we know that

a) either H1 −→ H ′1 such that φ(L′1) = H ′1
b) or φ(L′1) = H1

From the reduction rule reduction rule (R-H-
CONTX), the Dπ system H1 | H2 can reduce to
H ′1 | H2. We already know that either φ(L′1) = H ′1
or φ(L′1) = H1, therefore by definition of φ we know
that, either φ(L′1 | L2) ≡ H ′1 | H2 or φ(L′1 | L2) ≡
H1 | H2. The other case in rule (R-CONTX) is exactly
similar.

8) let us take second compositional case where a well
formed configuration in DRϕ

π , ΓcBL1 does a reduc-
tion to ΓcBL2 using the rule (R-STRUCT)because

ΓcBL′1 −→ ΓcBL′2
for some h where L1≡ L′1 and L2≡ L′2. Let us assume
that a Dπ system H1 is such that φ(L1) = H1. As
L1 ≡ L′1 therefore from proposition 2, we know that
φ(L1)≡ φ(L′1). Now by induction we know that ΓcB
H1 −→ ΓcBH2 for some h the Dπ system term H2
such that either φ(L′2) ≡ H2 or φ(L′2) ≡ H1. Since
it is known that L2 ≡ L′2 and using proposition 2 we
know that φ(L′2)≡ φ(L2) therefore either φ(L2)≡H2
or φ(L2)≡ H1.

Theorem 2. In DRϕ

π , if a well formed configuration ΓcBL1
does a reduction ΓcBL1 −→ ΓcBL2 and φ(L1) = H1 where
H1 is a Dπ system if and only if either there exists a Dπ system
H2 such that H1 −→ H2 and φ(L2)≡ H2 or φ(L2)≡ H1.

Proof.(OUTLINE) By using lemma.2 and lemma.3.

VIII. CONCLUSION

We described the syntax and reduction semantics for the
calculus DRϕ

π that gives a realistic model of distributed net-
work with incorporation of dynamic updation in routing table.
We have explained an example to demonstrate reduction rules
and also demonstrate that how routing table is updated across
the network by using distance vector routing updates. This
equivalence has been proved with the well known distributed
π-calculus, Dπ after abstracting away the unnecessary details
from DRϕ

π . Now we have proved that both DRϕ

π and Dπ

systems are reduction equivalent after abstracting away the
details of routers and paths from DRϕ

π .

This calculus implemented routing table updates via dis-
tance vector routing methods and included the exclusive fea-
ture of this particular calculus with a novel notation (←→)
to depict the exchange of routing tables at global time t = tk′ .
Thus all the routing tables are updated dynamically due to this
paths are also changed and ensure the best optimal path. This
is more close to the actual real distributed network.

In DRϕ

π , the δ function used in the calculus is abstract
function which does not allow a real value in the network. Also
the calculus does not support dynamic node creation which can
be a possible future work for further research. In this paper,
we have shown that specification coincides its implementation
in our next work will justify the calculus using bisimulation
based proof technique.
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