
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

522 | P a g e

www.ijacsa.thesai.org

Three Levels Quality Analysis Tool for Object

Oriented Programming

Mustafa Ghanem Saeed1, Kamaran HamaAli Faraj4

Computer Science Dept, College of Science

Cihan University-Slemani

Slemani, Iraq

Maher Talal Alasaady2

Computer system Dept,

Northern Technical University,

Mosul, Iraq

Fahad Layth Malallah3

 Computer and Information Technology,

College of Electronic Engineering,

Ninevah University, Mosul, Iraq

Abstract—In terms of evolution of software engineering

methods for complex software developments techniques, new

concepts have been emerged in the software languages, which

used to develop software quality models. In this research, the

Multi Levels Quality Analysis Tool (MLQA) is proposed as a tool

for computer-aid software engineering, which classifies software

complexity into three levels of analysis, namely the program

package analysis, class analysis (program class) and finally the

analysis at the level of the program method. MLQA is able to

support a method of visual analysis of the software contents with

color alerts, and recommendations systems, which can give a

quick view of the software development and its complexity. The

methodology of this work is a new suggested software quality

model based on the standards object-oriented programming

complexity metrics as well as threshold limits. In addition, a new

quality attribute namely clean code attribute has been proposed

and integrating it with the proposed software quality model in a

way that enables the user of the model relies on this attribute and

reduces the dependence on the software experience, which is

expensive and rare at times.

Keywords—Software quality models; software measurements;

clean code; source code complexity metrics

I. INTRODUCTION

The need for software quality has been extensively
continuous because of the increasing in the community need
for software in all aspects of life. The importance of providing
the highest quality standards is no longer an advantage, but it
is necessary for companies to be successful and competitive
[1, 2]. Therefore, there is a unified agreement on the need for
software quality, and a number of software quality models and
software measurements appeared to solve this problem
[2]. Everything in life, if it can be measured, gives the ability
to deal with it smoothly, so the importance of software
measurements provides indications on the quality and strength
of software [3,4]. In addition, the level of development and
improvement in the quality models to show the enhancement
and defects in the software from one version to another is an
important area to be studied [5]. The concept of the clean code
is used to distinguish the quality of the code in terms of
readability, understanding, structure and complexity [6-9]. All

these characteristics are difficult to be identified by depending
only on the experiences of programmers and developers [8]. It
is necessary to come out with approaches that solve these
problems more effectively than the experience of
programmers, which may not be available at any time or
expensive for the software developer.

The contribution of this paper is proposing a general
software quality model to give more flexibility and control
during the development of software by making the proposed
quality model work on three levels during the analysis of the
software product. The proposed model can also display visual
chart indictors with recommendations in case some expected
defects in software product are found. For this purpose, a tool
has been built to measure the quality of the software with an
object-oriented programming that measures the quality at
three levels: package, class, and function (Method). At the
package level, the tool gives the package details in terms of
complexity measures and threshold limits on the aspect and
quality attributes of Bansiya quality model [4, 20] normalized
by threshold value to explain high level of abstraction in
software. The Class level has been treated with the extraction
of special measures that can be extracted from the class only.
With comparison to the appropriate threshold limits, the
quality of this class can be judged. At low level of source code
(Function level), a quality attribute has been proposed for
clean code, which is a set of parameters that are only within
the function limits, by which the function can be classified as
either having the clean programming code attribute or not.
Moreover, the proposed software quality model suggested
using of visual color alerts, and recommendations systems in
order to help software engineer in the process of evaluating
software product.

The organization of the paper is as follows: Section 2
covers the literature review regarding overall previous works
on quality models and source code matrix, Section 3 explains
the proposed software quality model. While in Section 4
presents the experiment details of this research with the results
and discussions. Finally, Section 5 concludes this research
with the possible future work.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

523 | P a g e

www.ijacsa.thesai.org

II. LITERATURE REVIEW

This section reviews the previous works related to the
most widely used software quality model to determine the
ambiguity of the concept of software quality and the scope of
those models in real applications developments. In addition,
these works focus on the complexity of the source code
(Source Code Complexity Metrics)in terms of the use
mechanisms, analysis, and the appropriate threshold for each
metrics.

In 2006, Gitter conducted a study on how to apply the
Bansiya software quality model to evaluate the development
of 19 Azureus versions by making comparisons using object-
oriented metrics rather than the metrics proposed by Bansiya
and his colleagues. The researcher demonstrated the ability of
this model to track the evolution of design quality in several
versions by providing access to important information in the
internal life of the software. This information can support
design decisions at higher levels of abstraction. His proposed
model may require additional inputs to cover the highest
levels of abstraction to assess all aspects of the quality model
at this level [10].Another study by Panfowski (2008)
presented a new assessment of software product quality, which
focused on assessing the quality of the external features of the
software product, which means evaluating the behavior of the
software product when implemented. In addition, the study
focused on the development of the quality model (ISO / IEC
9126) at the level of software metrics. The study relied on
seven samples of the software product and evaluated them
using ISO / IEC 9126-2 quality model. In his work, Panfowski
concluded that external product quality attributes are an area
or category that can be adopted, and that the metrics provided
by ISO / IEC 9126-2 can be considered as a starting point for
the definition of standards, but are not ready to use in their
present form. The metrics of the software product need to be
more adapted to show better information [11]. Borgherth
(2008) discussed the method of code profiling by using a static
analysis. The study was done on (19) industrial samples and
(37) samples of students' programs. He has analyzed software
samples through software metrics. The results of this study
indicated that the code pattern could be a useful technique for
rapid program comparisons and quality observation in the
field of industrial application and education [12]. Moreover,
Bhatti (2010) explored the area occupied by the software
metrics. He used a QA-C tool to measure software metrics
automatically on the code written in C programming language
through expressing the association between software metrics
and the complexity of the source code. He attempted to
demonstrate the values of these metrics graphically only,
without considering the quality features and threshold limits
relationship [13].Another work in 2010 is the impact of code
complexity and usability, either in monitoring software
complexity during development, or in evaluating the
complexity of legacy software. The researchers of this work,
Goran and Dahiden proposed a new coupling metrics (Ecoup),
and introduced the Java met tool, which works in a static
analysis of programs written in Java with respect to coupling,
flow control, complexity and coherence [14].In the same year,
Chandra et al. proposed the use of Object Oriented metrics
that introduced by Chidamber and Kemerer (1994)[15] to
assess program quality at the class level. The proposed tool

can be used to verify the class design conforms to the design
specifications of the Object Oriented programming, through
using the threshold for each metric [16].

The following is a summary of the most important
software quality models:

1) McCall's Factors-Criteria (FCM) model presented by

McCall in 1977. The McCall model is the first model of

quality [1, 10, 17, 18].

2) ISO / IEC 9126: 2001, which was submitted by the

International Organization for Standardization (ISO) in 1991,

and has developed six quality metrics. This model was

updated in 2001, Quality ISO / IEC 9126: 2001 [10, 13, 18,

19].

3) Dormey's Quality Model, presented by Jeff Dormy

(1998) as a quality assessment model, by analyzing the quality

of program components through measuring concrete quality

characteristics [4, 10].

4) Boehm Software Quality Model presented by the

scientist Erwin Bohm in 1978. This model seeks to determine

the quality of the program through a predefined set of metrics

and measures [10, 11, 19].

5) FURPS Quality Model, introduced by Grady Robert

and Hewlett-Packard in 1987. This model focuses on the

analysis of quality characteristics in two categories of

requirements: functional requirements and non-functional

requirements [11, 17, 20].

6) Bansiya Quality Model, proposed by Bansiya in 2002.

This model focuses on the quality of Object Oriented Design

(QMOOD). It uses the source code metrics extract directly

from the software source code to give the quality attribute

through the use of mathematical equations [1, 10].

The Bansiya Quality model gives a way to assign source
code measurements to higher abstraction levels [10]. Although
the experiment results in this model were acceptable, the use
of new and non-standard measures in OOP metrics makes this
model not widely used, and this is why Gitter in [20] tried to
change the measures used in this model to the stranded OOP
metrics so that the model becomes more dependable. For this
reason, Bansiya model with stranded OOP metrics was used at
the software packages analysis stage in the proposed model.
Standard OOP metrics used in the proposed model can be
viewed in [6, 10, 14, 16, 21-27, 29]. Furthermore, the metrics
threshold values that used for the recommendations and alerts
are selected of this proposed model due to their usage in the
following references and full described in [9, 16, 23, 27-29],
which are the reason of the selection.

III. THE FRAMEWORK OF PROPOSED QUALITY MODEL

The previous quality models discussed in section II were
based on building a relationship between software metrics and
design features on the one hand, and design features and
quality attributes on the other hand. The relationship could be
direct or indirect, either through a paper questionnaire
(specific questions prepared by the quality model) or by
creating a mathematical relationship with each other as in the
Bansiya software quality model. Actually, the idea of using a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

524 | P a g e

www.ijacsa.thesai.org

mathematical relationship between source code metrics
extracted directly from the software and the quality attribute is
better than using indirect methods such as questionnaires,
because indirect methods take a lot of time and a deep
knowledge from a software engineer in the project under
development. Moreover, it requires a lot of paperwork that
exhausts the software engineer. In addition, the analysis
process may involve human feelings that affect the accuracy
of the judgment.

Therefore, the proposed software quality model suggests
four ideas for the analysis of the software product quality:
Firstly, the analysis process should be automatic (or semi-
automatic) and applied directly on the software source code to
reduce time, effort and cost on the software developer and to
reduce human errors. Secondly, the software quality model
should give informative details of the software product under
developments, such as quality attributes to higher abstraction
levels, intermediate structure and low-level details. All of
these levels must be supported by error detection, alerts, and
recommendations systems, because some metrics are just
numbers (e.g. line of code) and knowing their impact in
software product may require strong software engineering
experience. Thirdly, the quality models should use a visual
representation with color indicators to demonstrate analysis
result that gives a quick full picture of the software product.
This enables the software engineer to diagnose the location of
the strengths and the weaknesses in the software product
under development. Fourthly, the quality models support the
ability to view the source code for classes and functions while
displaying their own measurements and recommendations.

The proposed model is based primarily on the principles of
OOP, which is currently used in almost all software systems,

to make the proposed quality model close to the need of
developers and programmers. The proposed model singles out
the software under evolution into three parts as shown in Fig.1
which includes (Use cases) tool for quality and actor model
(Actor), which represents the end-user model. The idea of
dividing the software is to enable the developer team to
correct errors and reduce complexity as much as possible in
the next development cycle or the rewriting of the software
code as in the extreme programming development approach.

The three parts of the analysis of software product are as
follows:

1) Quality attributes that affect the quality of packages in

general. In this level of analysis, the proposed model suggests

using version of Bansiya Quality Model (with proposed

modification), because it is very informative in this level.

2) The quality attributes that affect the quality of the class.

The proposed model used the set of metrics suitable for

object-oriented design suggested by Gadabber and some other

measures of the OOP and linking them with the metrics

thresholds to generate an evaluation and recommendations for

the source code of the class.

3) Quality attributes that affect the quality of the functions

(Methods) in the class. The proposed model suggested new

attributes of the clean code. Through this attribute, the user

can evaluate the quality of the function.

The software metrics, especially the complexity metrics of
the source code, should be classified according to the three
levels of analysis of the proposed quality model as shown in
Fig. 2, which describes the classification of these metrics
according to their impact on quality aspects.

Fig. 1. The proposed quality model with other quality models from the point of view of the user.

 class analysis12

Research Quality ModelOthers Quality Model

User A

Analysis and calculate

the metrics

project source code

Quality Attributes

User B

Analysis and caculate

the Mertic

Quality Attributes

Projec source code

Package Lev el

Class Lev el

Method

Lev el-clean code

«precedes»

«precedes»

«precedes»

Softwaer Metrics

«precedes»

Sotfware Metrics

«precedes»

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

525 | P a g e

www.ijacsa.thesai.org

Fig. 2. The class diagram describing the classification of software metrics.

This model focuses on showing the complexity of the
source code at the level of the software function within the
class because the previous quality models focused on the
software as a whole and did not identify points that are likely
to be more informative; instead of that, these provided just
general indicators. Analysis of the complexity at the level of
the source code (low-level components in the software
package) is very close to the software developer team.
Therefore, the proposed quality model has more effective and
practical results to help software developer team during
decision-making and improvement of the software product.
One of the most important things that affect the accuracy of
the analysis of software product at this level is which
complexity metrics with suitable threshold value to give clear
and efficient assessments.

A. Proposed Model for Function Level

The proposed quality attribute at the function level is the
clean code attribute, and the value of this attribute is the
binary type (the function either has the character of the clean
code or not). This value is determined by the function
complexity metrics by linking it to the appropriate threshold
value to ensure that the source code of the function has low-
complexity, readable and easy to understand. This makes
software engineering more efficient in inspection and
maintenance of the function source code. As shown in Table I,
the complexity of the source code is within the limits of the
clean code at the function level.

TABLE I. THRESHOLD LIMITS AND RECOMMENDATIONS AT THE

FUNCTION LEVEL

Metric
Threshold

limit

Recommendations

over the Threshold

limit

Recommendations

under Threshold

limit

Method

Lines of

Code

(mLOC)

Less than

50

Segment the function

into new functions

by re-structuring the

function.

No

Recommendations

McCabe’s

cyclomatic

complexity

(CC)

Threshold

limit in the

Table II

Code Reconstructand

optimize the function

to reduce complexity.

Recommendations as

in the Table II

Number of

parameters

Less than

or equal to

3

Check the function

and make sure that

the function

performs one task

No

Recommendations

Average

length of

identifier

Greater

than 10

Rename identifiers in

order to be more

clearly.

No

Recommendations

According to [22], the threshold limit of McCabe
Cyclomatic complexity should be classified into the categories
as in Table II which shows the appropriate threshold limit of
Cyclomatic complexity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

526 | P a g e

www.ijacsa.thesai.org

TABLE II. RECOMMENDATIONS ON THE MEASURE OF MCCABE’S

CYCLOMATIC COMPLEXITY (CC) AND ITS RELATION TO RISK [24]

Cyclomaticcomplexity

value
Functions Types Possible Risk

1 to 4 Simple function Low

5 to 10
The function is well

structured and stable
Low

11 to 20 A complex function Medium

21 to 50
A complex and

troubling function
High

More than 50

A function that

generates errors and is

Extremely annoying and

unstable

Very high

The value of the clean code attribute will be evaluated as a
clean code if the threshold is exceeded; otherwise, it will be
evaluated as a non-clean code.

B. Proposed Model for Class Level

The proposed quality model at this level generates
recommendations on measures that affect the complexity of
the product depending on the threshold limit as in Table III.

C. Proposed Model of Package Level

The proposed quality model at this level generates
recommendations on measures that affect the complexity of
the product depending on the threshold limit as in Table IV.

TABLE III. THRESHOLD LIMITS AND RECOMMENDATIONS ON THE LEVEL OF CLASS

Metric Threshold limit
Recommendations above the Threshold

limit

Recommendations under Threshold

limit

Class Lines of Code (cLOC) Greater than 500 Class segmentation to more than one Class No Recommendations

Average number of McCabe’s

cyclomatic complexity (CC)
Greater than 10 The class is complex A well-structured Class

Number of Methods (NM). Greater than 20 Functional examination of the class No Recommendations

Number of direct Children (NOC) Greater than 6

High reusablethus requires examination of

class carefully because it depends upon a

large number of Classes

Indicating no reuse in the class

Number of Methods overridden

(NMO).
Greater than 3

The class is complex and difficult to

understand
No Recommendations

Weighted Methods per Class(WMC) Greater than 15 The class is complex A well-structured Class

Depth of Inheritance Tree (DIT) Greater than 5

The complexity of the class as a whole is

increasing and there is difficulty in

calculating the behavior of the class

No Recommendations

Average length of IDs Less than 8 IDs are not clear enough No Recommendations

Lack of Cohesion in Object

Methods(LCOM)
Greater than 0.6

Class achieves different purposes and

should be divided into several sub-classes
No Recommendations

TABLE IV. THRESHOLD LIMITS AND RECOMMENDATIONS ON THE LEVEL OF PACKAGE

Metric Threshold limit Recommendations above the Threshold limit
Recommendations under Threshold

limit

Average Weighted Methods per

Class(aWMC)
Greater than 3. The package is complex A well-structured package

Average Number of Methods

overridden (aNMO).
Greater than 15.

The classesare complex and difficult to

understand
No Recommendations

Abstractness – RMA Greater than (0.5) Abstract package Cohesive package

Normalized Distance from Main

Sequence- Dn
Greater than (0.5) The package is unstable The package is stable

Instability-RMI Greater than (0.5)
The package must be inspected and re-

structured
The package is well-designed

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

527 | P a g e

www.ijacsa.thesai.org

D. Modified Bansiya model of Package Level

At the level of the package, the proposed model also
suggests using the attributes of Bansiya quality model. These
attributes can be used for the purpose of making comparisons
between software packages to know the best in terms of the
closest to the requirements of the user, and this helps the
software engineer to choose the best packages during reuse or
use of commercial packages. The quality model of the object-
oriented design [1] consists of four levels and three
relationships among them as in Fig. 3. First Level (L1)
represents quality attributes and it should be wide enough to
cover all aspects of design quality.

Fig. 3. A Quality model of the object oriented [1].

These qualities are targeted at design quality. A definition
of quality characteristics are well explained in Table V.

TABLE V. DEFINITION OF QUALITY ATTRIBUTES OF BANSIYA [5]

Quality Attributes Definition

Reusability
Reflects the existence of characteristics of object-oriented design that allow the design to be reused to a new problem without

much effort.

Flexibility Characteristics that allow inclusion of changes in design, or adaptive design ability to provide functional-related capabilities.

Understandability
Design characteristics that make the design easy to learn and understand. This relates to the complexity of the design structure

directly.

Functionality The responsibilities assigned to the design of the classes, which are provided through the public interfaces.

Extendibility Refers to the presence and use of features in the current design that allows integration with the new requirements.

Effectiveness Refers to the design ability to achieve desired functionality and behavior using object-oriented design concepts and techniques.

TABLE VI. QUALITY CHARACTERISTICS OF BANSIYA AND ITS MEASUREMENTS BY OBJECT-ORIENTED DESIGN METRICS

Design characteristics Definition Measured with object-oriented design metrics [10]

Design size Measures the number of classes used in the design NumberofClasses

Hierarchies

Hierarchy is used to represent different concepts of generalization

and specialization in design. It is calculated from the number of

inherited classes that have children in design.

DepthofInheritanceTree

Abstraction

A measure of the aspects of generalization and specialization in

design. Items in design that have one or more offspring carrying the

property of abstraction

Abstractness

Encapsulation
It is defined as combining data and behavior within a single

structure.

No equivalent in object-oriented design measures [20].

This value has been counted as one.

Coupling

Specifies the interconnection of an object with other objects in the

design. It is a measure of the number of objects to be accessed by a

particular object until it works correctly.

Instability

Cohesion

Evaluates the relationship between functions and variables in the

class. Strong overlap in function parameters, variable types is a sign

of strong cohesion.

(1)

Composition

Measures relationships: (part-of), (has), (consist-of-part), and (part -

whole) relationships, which are aggregation relationships in object-

oriented design.

NumberofAttributes

Inheritance

A measure of the "is-a" relationship between the classes. This

relationship is related to the level of nesting of the hierarchical

structure.

(2)

Polymorphism

The ability to replace objects that have similar interfaces with each

other at runtime. It is a measure of the services that are dynamically

determined at runtime in an object.

NumberofOverriddenMethods

Messaging

Calculates the number of public functions that provide services for

other classes. This is a measure of the services provided by the

class.

NumberofMethods

Complexity

A measure of the degree of difficulty in understanding and

absorbing internal and external structural classes and their

relationships.

WeightedMethodsperClass

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

528 | P a g e

www.ijacsa.thesai.org

The third level (L3) represents design characteristics.
Design characteristics as explained in Table VI can be
measured by standard object-oriented design metrics instead
of using non-standard metrics that suggested by the original
model. It expresses the degree of design compatibility to suit
the specific properties in L2. L3 is an additional level
compared to the Dormey's Quality Model [4].

The tangible elements of L4are converted into digital form
and this made the proposed model gain greater objectivity
[10]. As it can be seen, the design of software components
written using the object-oriented programming shown in Fig.
3 represents the fourth level of the model (L4). These
components are mostly determined through the programming
language (for example, functions, objects, and classes). L4
delivers sources that are source code (functions, classes,
packages, etc.) that will be measured at the top of level (L3).
The next step consists of setting design metrics for design
properties (L23). This model selects only one metric for each
of the design characteristics. The L2 and L3 relationship was
direct and traceable, as shown in the third column of Table VI
since the object-oriented design metrics are used to evaluate
design characteristics. L12 step probably is the most important
step; this step is blending design characteristics with quality
attributes. The model uses weights for the design
characteristics for obtaining quality attributes value as shown
in equations (3), (4), (5), (6), (7), and (8) [1, 10].

The weights can be either positive or negative. The
algebraic sign indicates that a particular design characteristic
has a positive or negative effect respectively on the quality
Attributes [1, 10]. For example, Reusability is positively
affected by the Design size (the greater the number of classes,
the greater the possibility of reuse). All weights of design
characteristics have a specific range between [-1 and +1], so
that all quality attributes are in the same range. Positive effects
have the values of initial weights (+1) or (+0.5). The negative
effects were selected (-1) or (-0.5), and then this value was
changed relatively to bring the total results of weights (± 1).

For a better illustration of the relationship between quality
characteristics and design characteristics, Table VII explains
these relationships. The symbols in the table VII indicate the
type of relationship, where the symbol indicates a positive
correlation between design characteristics and quality
attributes, i.e. the better the design size value, the better the
reuse. However, the symbol indicates a negative relationship,
i.e. high coupling value reduces flexibility. The original model
was based on the choice of one of the software package as a
basis for the process of normalizing the results of quality
attributes to display the last results. This makes the results of
this model unstable because the results will be changed
whenever the basis of comparison is changed. Therefore, the
researcher believes that relying on the limits of the threshold
in the normalization of quality attributes will increase the
stability of the results of the proposed model and this leads to
increase the reliability of the proposed quality model.

 (1)

 (2)

𝑅𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑢 𝑙𝑖 𝑔 𝑒𝑠𝑖
 𝑒𝑠𝑠𝑎𝑔𝑖 𝑔 𝑒𝑠𝑖𝑔 𝑖 𝑒 (3)

 𝑙𝑒 𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑐𝑎 𝑠𝑢𝑙𝑎𝑡𝑖
 𝑢 𝑙𝑖 𝑔 𝑠𝑖𝑡𝑖 𝑙𝑦 𝑖𝑠
 (4)

 𝑑𝑒 𝑠𝑡𝑎 𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

 𝑏𝑠𝑡 𝑎𝑐𝑡𝑖 𝑐𝑎 𝑠𝑢𝑙𝑎𝑡𝑖
 𝑢 𝑙𝑖 𝑔 𝑒𝑠𝑖 𝑙𝑦 𝑖𝑠
 𝑙𝑒 𝑖𝑡𝑦 𝑒𝑠𝑖𝑔 𝑖 𝑒 (5)

 𝑢 𝑐𝑡𝑖 𝑎𝑙𝑖𝑡𝑦 =
 𝑒𝑠𝑖 𝑙𝑦 𝑖𝑠
 𝑒𝑠𝑠𝑎𝑔𝑖 𝑔 𝑒𝑠𝑖𝑔 𝑖 𝑒 𝑖𝑒 𝑎 𝑐𝑖𝑒𝑠
 (6)

TABLE VII. THE RELATIONSHIP BETWEEN QUALITY ATTRIBUTES AND CHARACTERISTICS OF THE DESIGN [1]

Design

characteristics

Quality attributes

Reusability Flexibility Understandability Functionality Extendibility Effectiveness

Design size

Hierarchies

Abstraction

Encapsulation

Coupling

Cohesion

Composition

Inheritance

Polymorphism

Messaging

Complexity

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

529 | P a g e

www.ijacsa.thesai.org

Fig. 4. Proposed graphical analysis algorithm for the package and the coloring.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

530 | P a g e

www.ijacsa.thesai.org

 𝑡𝑒 𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑏𝑠𝑡 𝑎𝑐𝑡𝑖 𝑢 𝑙𝑖 𝑔
 𝑒 𝑖𝑡𝑎 𝑐𝑒 𝑙𝑦 𝑖𝑠 (7)

 𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑒𝑠𝑠 = 𝑏𝑠𝑡 𝑎𝑐𝑡𝑖
 𝑐𝑎 𝑠𝑢𝑙𝑎𝑡𝑖 𝑠𝑖𝑡𝑖
 𝑒 𝑖𝑡𝑎 𝑐𝑒 𝑙𝑦 𝑖𝑠 (8)

E. Visual Representation of the Proposed Quality Model

Graphical representation and color have been used for the
proposed software quality model to illustrate the software
parts as one of the quality models requirements. The graphical
representation, in general, is more intuitive and efficient in
understanding than just a table of numbers and values.
Therefore, that makes software engineers create a complete
and rapid view for software under development. Different
colors can also be used to illustrate the complexity of each
part of the software under development, in which the
algorithm for the analysis and colorization of the parts of the
software under development is illustrated in Fig. 4 by using
the UML activities diagram, which is designed in line with the
Java presser package. The algorithm description of the
proposed model is as following steps:

Step 1: Read the source code of the project (Java files) to be

analyzed.

Step 2: Read the software metrics from the xml file for the

project to be analyzed.

Step 3: Calculate the additional metrics from the source code

of the project to be analyzed in the first step.

Step 4: Integrate all software metrics together from Step 3 &

2.

Step 5: Determine the package components graphically:

(radial tree, tree, compact tree, fast organic).

Step 6: For each node in the drawing, apply Step 7 and 8.

Step 7: Determine the characteristics of each node in the

graphical analysis by type

1) If the node type is a package, give the node following

characteristics:

 It is defined as the root of the tree in the graphic.

 The cyan color (CYAN) is given.

 Binds with the display interface of packet analysis.

2) If the node type is a class, give the node following

characteristics:

 An address shall be given according to its sequence in
the graphic.

 The blue color (BLUE) is given.

 Binds to the display interface of the class analysis.

Step 8: If the node type is a function, do the following:

1) If the function type is Constructor(special function for

building the object), give the node following characteristics:

 An address shall be given according to its sequence
inthe graphic.

 The gray color (GRAY) is given.

2) If the function is a regular function, give the node

following characteristics:

 An address shall be given according to its sequence
inthe graphic.

 A green color (GREEN) is given if the node has a clean
code attribute and a red color (RED) is given if not.

 Binds with display interface function analysis

Step 9: Show the graphic.

IV. EXPERIMENT WITH RESULT AND DISCUSSION

The proposed software namely Multi Levels Quality
Analysis Tool (MLQA) is developed to analyze and evaluate
the engineered software. The tool was programmatically based
on Metrics 1.3.6 (Eclipse Metrics plugin-
Provide metrics calculation and dependency analyzer plug in
for the Eclipse platform) as well as a Java doc parser to
calculate the non-supported metrics in Metrics 1.3.6.Java doc
parser was also needed to extract code information. In
addition, for graphical representation, the MLQA used package
Jgraph 5.13. Moreover, XML Doc Parser to read XML reports
from Metrics 1.3.6 was built as part of MLQA tool.

To test the proposed algorithm, three Java programs have
been tested in this experiment to demonstrate the proposed
tool results and their practicality in software analysis, these
programs are:

1) Patience game: This game is used for the purpose of

learning how to deal with arrays and the structure of data in

Java language. The source code of the game was downloaded

from the website (http://www.neiljohan.com/java).

2) Syntexchecker game: This game is used to learn how to

handle matrices and data structures in Java. The source code

of the game was downloaded from the website

(http://www.neiljohan.com/java).

3) Payroll System (payRoll): An accounting system that

deals with databases and reports in Java. The source code

(payRoll) was downloaded from

(http://www.projectsparadise.com).

To illustrate the test of the three projects, the results of the
project (Patience Game) were explained at all levels of
analysis. The remaining projects will be later compared with
the first project results. The Patience Game consists of seven
classes including two interfaces (interface). As illustrated in
Fig. 5, graphical analysis of the source code was executed
using the tool (MLQA) and the style used to display the
package components is the radial tree.

The color of each node in Fig. 5 has its different meaning
as explained in section 3.5. The results of the Fig. 5 are
explained in Table VIII.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

531 | P a g e

www.ijacsa.thesai.org

TABLE VIII. RESULTS OF THE GRAPHICAL ANALYSIS OF THE PATIENCE

GAME PACKAGE

Class Name

Number of

Total

Functions

Number of

clean code

functions

Number of

unclean code

functions

CardTest 2 1 1

PlayCardImp 7 7 0

Patience 5 2 3

NeilClass 4 0 4

PackImp 10 9 1

Table VIII shows that the PlayCardImp functions all have
the clean code attribute. This is a good indicator of the design
quality of this class. The PackImp class had one function,
which does not have the clean code attribute out of 10
functions, the researcher believes that this is a good indicator.
The CardTest class has two functions, one with a clean code
attribute and the other without it. While the Patience class has
five functions, three of them do not have the clean code
attribute, and some complexity can be found in this class. All
NeilClass functions do not have clean code, this is an
indicator of poor design quality, and this is the most complex
class in this package, so it should be further emphasized
during inspection and maintenance.

The proposed algorithm has been designed as GUI to give
details for the user, these details view of nodes components
with a separate interface for each node, which gives the
software engineer the ability to view software complexity
metrics and recommendations with source code. The results
can be presented according to the three levels of the proposed
quality model, in which for each one of these 3-level, there is
a separated GUI. First level, Package-level analysis results as
depicted in Fig. 6 shows package details in terms of
complexity metrics and threshold limits as well as the quality
attributes of update Bansiya quality model for the highest
level of abstraction.

Package-level results can be used to compare or track
package development during software development. It is
observed in Analysis and Recommendations for this package
section in Fig. 6, that the Patience Game package has good
properties in terms of the NORM metric, which is affecting
the readability and comprehension, while the package is
complex according to WMC metric because this metric
directly affects on the complexity of the package in general.
Moreover, the Abstractness (RMA) and Normalized Distance
from Main Sequence (Dn) metrics affect on the quality of the
package design in terms of incoming and outgoing pairing,
and these measures were within the threshold. However, the
Instability (RMI) metric was far from the threshold, so this
package is unstable.

Fig. 5. Shows the graphical analysis of the components of the Patience Game.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

532 | P a g e

www.ijacsa.thesai.org

Fig. 6. Results of the package level analysis.

Secondly, Class-level analysis results consisting of the
values of the complexity metrics of the class with the
recommendations depend on the threshold for these metrics.

To illustrate the ability of the tool at this level,
PlayCardImpl class has been chosen to explain the results of
class analysis support by MLQA tool as shown in Fig. 7.

Fig. 7. Analysis results of the AnalysisCardImp class.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

533 | P a g e

www.ijacsa.thesai.org

Fig. 8. Shows the internal details of the function (menu) that does not have the clean code attribute.

Fig. 9. Internal details of the function (main) that have the clean code attribute.

Here the point of view of the researchers observed that
PlayCardImpl class has a good quality design in terms of
Class Lines of Code (cLOC), the Average number of
McCabe’s Cyclomatic complexity (CC), the Number of
Methods (NM), the Number of direct Children (NOC), Depth
of Inheritance Tree (DIT), the Average length of IDs, Number
of Methods overridden (NMO) and Lack of Cohesion in
Object Methods (LCOM) because they were within the limits
of threshold. However, this class is considered complex
because the Weighted Methods per Class (WMC) metric has
moved away from the appropriate threshold, exceeded by (20)

while the appropriate threshold limit is (15). Moreover, the
results of any class in the package can be displayed in this
way.

Thirdly, Function-level analysis, in order to clarify this
level, the two functions in two different classifications were
selected, as illustrated in Fig. 8 function details (menu) within
the class (CardTest), which classified as it does not have the
clean code attribute.

The researcher noted that the menu function was classified
unclean code because the software complexity measures are

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

534 | P a g e

www.ijacsa.thesai.org

beyond the scope of the clean code attribute. The researcher
believes that this function should be restructured or it will lead
to difficulties in the inspection, maintenance and reuse process
in class. While the function (main) in Patience class described
in Fig. 9 was classified as it has the clean code attribute
because the software complexity measures are within the
scope of the clean code attribute, which is a good indicator of
the design of this

The researcher noted that the menu function was classified
unclean code because the software complexity measures are
beyond the scope of the clean code attribute. The researcher
believes that this function should be restructured or it will lead
to difficulties in the inspection, maintenance and reuse process
in class. While the function (main) in Patience class described
in Fig. 9 was classified as it has the clean code attribute
because the software complexity measures are within the
scope of the clean code attribute, which is a good indicator of
the design of this function. Moreover, the same method of
displaying results at the function level can be used for all
functions within the package to be analyzed. In order to
illustrate the quality attributes of the update Bansiya quality
model at the package level, the researcher chose three
software (patience game, syntexchecker game, payRoll
accounting system), which were analyzed using the
MLQAtool, and the results were shown in Table IX.

TABLE IX. COMPARISON OF SOFTWARE (PATIENCE, SYNTEXCHECKER,
PAYROLL), USING THE QUALITY ATTRIBUTES OF THE UPDATE BANSIYA

QUALITY MODEL

S
o

ftw
a

re N
a
m

e

R
eu

sa
b

ility

F
lex

ib
ility

U
n

d
ersta

n
d

a
b

ility

F
u

n
ctio

n
a

lity

E
x

ten
d

ib
ility

E
ffectiv

en
ess

T
o

ta
l v

a
lu

e

Patience 1.02 0.576 0.38 0.92 0.36 0.68 3.94

syntaxChecker 0.60 2.36 0.89 0.91 0.79 1.38 5.15

PayRoll 0.60 17.83 -2.25 2.07 0.79 7.51 26.56

The researchers observed from the Table IX that an
increase in the Effectiveness attribute and the Flexibility
attribute strongly conflict with Understandability attribute,
while with Reusability, functionality and Extendibility
attributes, the effect has been reduced, although the values are
also relatively large. However, the differentiation between the
values of these attributes is due to the non-functional
requirements of the customer, so that the software engineer
can make appropriate decisions in the light of these values.
These features were illustrated graphically in Fig. 10 to give a
more comprehensive picture of the relationship among these
attribute.

Fig. 10. Chart for quality attributes in the three tested software projects.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

535 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION

To sum up this paper, the current software quality models
suffer from some ambiguities during the analysis of the
quality of the software as there is difficulty for the software
engineer during apply quality model because it requires direct
intervention for all operations manually and exhaustively,
which may affect on the process of software development.
Therefore, quality model and support tools are developed in
this paper to be used by software engineers to control software
product written in Java programming language named Multi
Levels Quality Analysis Tool (MLQA) as evaluation algorithm
for software quality model comprising software product,
software metrics, and clean code programming has been
proposed based on three levels of abstraction as package,
class, and function, as it is proved that three levels give more
accurate results and recommendations from analysis results of
code rather than from one level of abstraction, because
software measures that are appropriate for function-level
analysis may not be suitable for the class or package level.
Moreover, the proposed MLQA has been boosted with a
graphical analysis of color discrimination to give a quick look
to the software engineer about the complexity of the software,
as well as to give more ability to update the source code of the
software package with viewing the metrics values and
recommendations in the single environment regarding the
software source code during development. Besides that, it has
been concluded that IDs metric should be included in the
source code complexity metrics due to its great effect for the
clean code, in which IDs is more important than the measure
of comments ratio. Proposed MLQA is based on Bansiya
model, which is succeeded in finding a mathematical
relationship between quality attributes and software metrics in
terms of design characteristics, however, it is weak in the
normalization process in packages compare, therefore, the
modification of the proposed work is to change normalization
by using threshold values instead of using one of the packages
as the base of normalization process so as to make this model
more effective to track the development of software from one
version to another. The aforementioned results have come out
from the experiment conducted on three Java codes, which
have been tested in this experiment to demonstrate the validity
of the proposed tool results and their practicality in software
analysis. For the future work, there is a possibility of applying
artificial intelligence techniques in the field of building tools
of computer aided software engineering in the field of quality
models, especially the use of fuzzy logic in the field of
selecting the appropriate threshold for the software metrics.
Moreover, the possibility of incorporating the idea of adding a
quality model as part of a development environment of
programming languages will increase their adoption. Finally,
extend the scope of the proposed quality tool to include more
languages that support object oriented programming such as C
++, C #.

REFERENCE

[1] Bansiya, Jagdish.,"A Hierarchical Model for Object-Oriented Design
Quality Assessment", IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 28, NO. 1. pp. 4-17, 2002.

[2] Mrinal, R. Singh. And Mittal , Arpita.,"Survey on Impact of Software
Metrics on Software Quality", International Journal of Advanced

Computer Science and Applications (IJACSA), Vol. 3, No. 1 ,pp. 137-
141,2012.

[3] Lee, Alice T.," Software Analysis Handbook: Software Complexity
Analysis and Software Reliability Estimation and Prediction ",
Information Systems Journal, NASA Center for AeroSpace Information,
Available from ston.jsc.nasa.gov,1994.

[4] Dromey, R. Geoff.,"SOFTWARE PRODUCT QUALITY: Theory, Model,
and Practice". Software Quality Institute ,Griffith University,
AUSTRALIA, 1998.

[5] L. Smith, et al., "Guidelines for Successful Acquisition and
Management of Software-Intensive Systems: Weapon Systems
Command and Control Systems, Management Information Systems,"
Department of the Air Force-Software Technology Support
Center,(February), 2003.

[6] R. Martin, "OO design quality metrics," An analysis of dependencies,
vol. 12, pp. 151-170, 1994.

[7] Honglei, Tu., Wei, Sun., Yanan, Zhang., " The Research on Software
Metrics and Software Complexity Metrics ", IEEE journals, International
Forum on Computer Science-Technology and Applications, ISBN:
978076953930 Vol: 1 Pages: 131-136 , 2009.

[8] Martin, Robert C., " Clean Code - A Handbook of Agile Software
Craftsmanship ", Published by Pearson Education, Inc, ISBN 0-13-
235088-2, 2008.

[9] Martin, Robert C.," The clean coder : a code of conduct for professional
programmers ", Pearson Education, Inc, ISBN-13: 978-0-13-708107-3,
ISBN-10: 0-13-708107-3, 2011.

[10] Jetter, Andreas.,"Assessing Software Quality Attributes with Source
Code Metrics", Diploma Thesis, Department of Informatics, University
of Zurich, 2006.

[11] Panovski , Gregor., " Product Software Quality ", MASTER’S THESIS,
Department of Mathematics and Computing Science, TECHNISCHE
UNIVERSITEIT EINDHOVEN, 2008.

[12] Borchert, Thomas.," Code Profiling: Static Code Analysis ",
MASTER’S THESIS, Department of Computer Science, Karlstad
University, Sweden, 2008.

[13] Bhatti, Hassan R., "Automatic Measurement of Source Code Complexity
", MASTER’S THESIS, Department of Computer Science, Electrical
and Space Engineering, Lulea University of Technology,2010.

[14] Widheden, Göran. , " Software Complexity: Measures and Measuring
for Dependable Computer Systems ", MASTER’S THESIS, Department
of Computer Science and Engineering, University of Gothenburg,
Goteborg, Sweden,2010.

[15] Chidamber, S. R., & Kemerer, C. F., ” A metrics suite for object
oriented design”, IEEE Transactions on software engineering, 20(6),
476-493,1994.

[16] Chandra, E., Linda, P. Edith," Class Break Point Determination Using
CK Metrics Thresholds ", Global Journal of Computer Science and
Technology, Vol.10 ,Issue.14, Pp:73-77,2010.

[17] Jamwal, Ranbireshwar S.,Jamwal, Deepshikha. & Padha, Devanand.,"
Comparative Analysis of Different Software Quality Models",
Proceedings of the 3rd National Conference; INDIACom,Bharati
Vidyapeeth’s Institute of Computer Applications and Management, New
Delhi,2009.

[18] KITCHENHAM, BARBARA.,"SOFTWARE QUALITY: THE ELUSIVE
TARGET", IEEE SOFTWARE, Vol. 13, No. 1: JANUARY 1996, pp.
12-21,1996.

[19] Wang, Su-Hua., Samadhiya, Durgesh. & Chen, Dengjie., "Software
Quality: Role and Value of Quality Models", International Journal of
Advancements in Computing Technology Volume 3, Number 6, , pp.
65-74,2011.

[20] Jamwal. Dr. Deepshikha.," Analysis of Software Quality Models for
Organizations", International Journal of Latest Trends in Computing ,E-
ISSN: 2045-5364,Volume 1, Issue 2, pp. 19-23,2010.

[21] Abdul, Jabbar. P, S.Sarala," Advanced Program Complexity Metrics and
Measurement ", International Journal of Computer Applications (0975 –
8887), Val 23, No: 2, Pages: 29-33, 2011.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

536 | P a g e

www.ijacsa.thesai.org

[22] Laird, Linda M.," Software measurement and estimation: a practical
approach ", Published by John Wiley & Sons and IEEE Computer
Society, ISBN 0-471-67622-5,2006.

[23] Herbold, S. ," Calculation and Optimization of Thresholds for Sets of
Software Metrics ", Technical Report, Institute of Computer Science,
University of Goettingen, Germany, No. IFI-TB-2010-01, ISSN 1611-
104, 2011.

[24] Sastry, J.S.V.R.S.," MEASURING OBJECT-ORIENTED SYSTEMS
BASED ON THE EXPERIMENTAL ANALYSIS OF THE COMPLEXITY
METRICS ", International Journal of Engineering Science and
Technology (IJEST), ISSN : 0975-5462 ,Vol. 3, No. 5 , Pages: 3726-
3731, 2011.

[25] El-lateef, T. Abd., Yousef, A. H., "Object Oriented Design Metrics
Framework based on Code Extraction", Computers and Systems
Department, Faculty of Engineering, Ain Shams University,2006.

[26] Pressman, Roger S.," SOFTWARE ENGINEERING: A
PRACTITIONER’S APPROACH", 8th EDITION, McGraw-Hill,
ISBN 978-0-07-802212-8,2014.

[27] S. Misra, et al., "A suite of object oriented cognitive complexity
metrics," IEEE Access, vol. 6, pp. 8782-8796, 2018.

[28] Bruntink, M., van Deursen, A., "Predicting Class Testability using
Object-Oriented Metrics", Proceedings of the Fourth IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM’04).
Pages: 136- 145, ISBN: 0-7695-2144-4,2004.

[29] Abran, A., "SOFTWARE METRICS AND SOFTWARE METROLOGY",
IEEE Computer Society, Published by John Wiley & Sons, Inc., ISBN:
978-0-470-59720-0, 2010.

