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Abstract—Belief entropy, which represents the uncertainty
measure between several pieces of evidence in the Dempster-
Shafer framework, is attracting increasing interest in research.
It has been used in many applications and is mainly based on
the theory of evidence. To quantify uncertainty, several measures
have been proposed in the literature. These measures, sometimes
in extended or hybrid forms, use the Shannon entropy principle to
determine uncertainty degree. However, the failure to consider
the scale of the frame of discernment framework remains an
open issue in quantifying uncertainty. In this paper, we propose
a new uncertainty measure that takes into account the power
set of the frame of discernment. After analysing the different
existing methods, we show the performance and effectiveness of
our proposed approach.
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I. INTRODUCTION

In recent years, there have been increasing improvements in
the management of uncertainty issues in information systems
[1], [2], [3], [4]. Several theories including Shannon’s entropy
[5], probability theory [6], [7], possibility theory [8], [9] and
Dempster-Shafer evidence theory [10], [11] have been devel-
oped. Dempster-Shafer theory in particular, provides effective
tools for modelling and processing uncertain information [12],
[13], [14], [15]. It has been widely used in various applications
including information fusion [16], [17], decision making [18],
[19], diagnosis and fault detection [20], [21], target recognition
[22], [23], and so on. In applying this theory, many challenges
are increasingly being addressed. We can mention, conflict
management through different sources of information [24],
[25], Consideration of the relationship between various pieces
of evidence before the fusion step [26], [27], the problem in
body of evidence (BOE) generation [28], [29] and finally,
the consideration of the frame of discernment (FOD) in
uncertainty management [24], [30].

In the Dempster-Shafer framework, there are several hybrid
or extended uncertainty measures. These measures use the
Shannon entropy principle for the uncertainty quantifiying.
Also, these measures include Hohle’s confusion measure [31],
Dubois & Prade’s weighted Hartley entropy [32], Yager’s
dissonance measure [33], Klir & Ramer’s discord measure
[34], Klir & Parviz’s strife measure [35], George & Pal’s
conflict measure [36], Deng entropy [37] and modified Deng
entropy proposed by Zhou et al. [30].

In this work, we are mainly interested in Deng entropy and
modified Deng entropy. The Deng entropy, a very effective

measure, compared to various measures in some cases, has
been used in several fields of application[38], [37]. However,
one of the main limitations of this uncertainty measure is
related to not considering the scale of FOD. To address this
limit, some authors, including Zhou et al., have proposed a
modified Deng measure [30]. Nevertheless, although effective
in some cases, the problem related to the scale of FOD is
still perceptible. In this paper, we propose a new uncertainty
measure by extending the modified Deng entropy. This new
measure improves the performance of the measures proposed
by Deng and Zhou takes into consideration the power set of the
FOD. After analysing the different existing methods, we show
the performance and effectiveness of our proposed approach.

The rest of this document is organized as follows : section 2
provides a brief overview of Dempster-Shafer theory and Shan-
non entropy. Section 3 presents some uncertainty measures
in the Dempster-Shafer framework and and some limitations.
Section 4 describe the new uncertainty measure. Section 5
presents, using numerical examples, the effectiveness of the
new measure. The conclusion and some perspectives related
to this work are presented in Section 6.

II. PRELIMINARIES

A. Dempster-Shafer Theory

Dempster-Shafer Theory [10], [11], also known as belief
theory or evidence theory, has many advantages for processing
uncertain information. We present some basic concepts related
to this theory.

1) Formalism: Let Ω = {ω1, . . . , ωN} a set of N mutually
exclusive and exhaustive events. Ω represents the frame of
discernement FOD. A mass function is defined on the power
set of Ω, noted 2Ω with :

2Ω = {∅, {ω1}, . . . , {ωN}, . . . , {ω1, . . . , ωi}, . . . ,Ω} (1)

In Ω, a mass function assigns to each subset a value
between 0 and 1 representing its elementary belief mass
defined by :

m : 2Ω → [0, 1] (2)

Such as :
m(∅) = 0 et

∑
A⊆Ω

mΩ(A) = 1 (3)

When m(A) > 0, A is called a focal element. Belief
is the amount of trust that supports a hypothesis A of the
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power set 2Ω. It is most often called the Body Of Evidence
BOE or Basic Probability Assignment BPA or Basic Belief
Assignment BBA [39] and is characterized by all the focal
elements and their associated mass value (Eq.4):

(ℵ,m) = {(A,m(A)) : A ∈ 2Ω,m(A) > 0} (4)

where ℵ represents a subset of the power set 2Ω and each
proposition A ∈ ℵ are focal elements.
A BOE can also be represented by its associated belief Bel
and plausibility Pl functions defined as follows :

Bel(A) =
∑

06=B⊆A
m(B) and Pl(A) =

∑
B∩A=φ

m(B)

(5)

2) Combination rules: In Dempster-Shafer theory, two in-
dependent mass functions, noted m1 and m2, can be combined
with the Dempster’s combination rule [40], defined as follows:

m(A) =
1

1− k

∑
B∩C=A

m1(B)m2(C) (6)

where k represents the degree of conflict between m1 and
m2. k is defined as follows:

k =
∑

B∩C=φ

m1(B)m2(C) (7)

B. Shannon entropy

In information theory, Shannon entropy (Es) [5] is used
to measure the volume of information in a system, process or
message. This measure determines the expected value of the
information contained in a message. The measure is defined
as follows :

Es(m) = −
n∑
i=0

pi logb pi (8)

where n represents the quantity or number of basic states,

pi represents the probability of the state i with
n∑
i=0

pi = 1, b

is the basis of the logarithm, it most often takes the value 2.

III. RELATED WORKS

In this section, we present some uncertainty measures in the
Dempster-Shafer framework. In these measures, X represents
FOD, A and B are the focal elements. | A | refers to the
cardinality of A.

A. Uncertainty measures

Some uncertainty measures are represented in the table
I. These measures include Hohle’s confusion measure [31],
Dubois & Prade’s weighted Hartley entropy [32], Yager’s
dissonance measure [33], Klir & Ramer’s discord measure[34],
Klir & Parviz’s strife measure [35], George & Pal’s conflict
measure [36], Deng entropy [37] and modified Deng entropy
proposed by Zhou et al. [30]. In this study, we are particularly
interested in the entropies proposed by Deng and Zhou et al.

B. Problem formulation

In Demspter-Shafer theory, uncertain information should
not only be modelled by mass functions, FOD is also a source
of uncertainty [38]. This paper recall this problem by using
the Zhou et al.’s [30] example. Some measures such as Deng
entropy (Ed) and Modified Deng entropy (Ez) are calculated.

Example 3.2: Consider two BOEs m1 and m2, repre-
senting respectively results of two reliable sensors in a target
identification problem as follows :

m1 : m1({a, b}) = 0.4, m1({c, d}) = 0.6
m2 : m2({a, c}) = 0.4, m2({a, b}) = 0.6

Deng entropy is calculated as follows :

Ed(m1) = −
∑
A⊆X

m1(A) log2(m1(A)
2|A|−1

)

= −0.4× log2( 0.4
22−1 )− 0.6× log2( 0.6

22−1 )

Ed(m1) = 2.5559

(9)

Ed(m2) = −
∑
A⊆X

m2(A) log2(m2(A)
2|A|−1

)

= −0.4× log2( 0.4
22−1 )− 0.6× log2( 0.6

22−1 )

Ed(m2) = 2.5559
(10)

Despite the difference in FODs (i.e.X1 = {a, b, c, d} et
X2 = {a, b, c}), The results obtained from the Deng measure
about the BOE m1 are similar to the uncertainty measure
of BOE m2. Intuitively, the uncertainty measure of BOE
m1 should be bigger than that of BOE m2. This, because the
FOD related to the BOE m1 contains more elements than the
FOD related to the BOE m2. At this main limitation, some
authors, notably Zhou et al. [30] have proposed the modified
Deng entropy.

Modified Deng entropy is calculated as follows :

Ez(m1) = −
∑
A⊆X

m1(A) log2(m1(A)
2|A|−1

e
|A|−1
|X| )

= −0.4× log2( 0.4
22−1e

2−1
4 )− 0.6× log2( 0.6

22−1e
2−1
3 )

Ez(m1) = 2.1952
(11)

Ez(m2) = −
∑
A⊆X

m2(A) log2(m2(A)
2|A|−1

e
|A|−1
|X| )

= −0.4× log2( 0.4
22−1e

2−1
3 )− 0.6× log2( 0.6

22−1e
2−1
3 )

Ez(m2) = 2.0750
(12)

As can be seen, the modified Deng entropy gives almost
different results for each BOE. In this measure, we can see
that the degree of uncertainty calculated from the different
BOEs is reduced compared to the Deng measure. However,
although the modified Deng entropy takes into account the
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TABLE I. SOME UNCERTAINTY MEASURES

Measures Expression

Hohle’s confusion measure [31] Ch(m) = −
∑
A⊆X

m(A) log2 Bel(A)

Yager’s dissonance measure [33] Ey(m) = −
∑
A⊆X

m(A) log2 Pl(A)

Dubois & Prade’s weighted Hartley entropy [32] Edp(m) = −
∑
A⊆X

m(A) log2 | A |

Klir & Ramer’s discord measure [34] Dkr(m) = −
∑
A⊆X

m(A) log2

∑
B⊆X

m(B) |A∩B||B|

Klir & Parviz’s strife measure [35] Skp(m) = −
∑
A⊆X

m(A) log2

∑
B⊆X

m(B) |A∩B||A|

George & Pal’s conflict measure [36] Cgp(m) = −
∑
A⊆X

m(A) log2

∑
B⊆X

m(B)[1− |A∩B||A∪B| ]

Deng entropy [37] Ed(m) = −
∑
A⊆X

m(A) log2( m(A)
2|A|−1

)

Modified Deng entropy [30] Ez(m) = −
∑
A⊆X

m(A) log2( m(A)
2|A|−1

e
|A|−1
|X| )

number of elements in the FOD, this measure often gives
counter-intuitive measures. We present another problem in
example 3.3.

Example 3.3 : Consider the BOEs m3 and m4 in the
FOD X = {a, b} as follows :

m3 : m3({a, b}) = 1
m4 : m4({a}) = m4({b}) = 0.5

Modified Deng entropy is calculated as follows :

Ez(m3) = −1× log2( 1
22−1e

2−1
2 ) = 0.8636

Ez(m4) = −0.5×log2( 0.5
21−1e

1−1
2 )−0.5×log2( 0.5

21−1e
1−1
2 ) = 1

Deng entropy is calculated as follows :

Ed(m3) = −1× log2( 1
22−1 ) = 1.5850

Ed(m4) = −0.5× log2( 0.5
21−1 )− 0.5× log2( 0.5

21−1 ) = 1

As can be seen, example 3.3 defines two BOEs m3 and
m4 where BOE m3 represents a case of total uncertainty.
Intuitively, the uncertainty level of the BOE m3 must be
bigger than that of the BOE m4, which is in contradiction with
the modified Deng measure (Ez). However, the Deng measure
(Ed) better distinguishes total uncertainty with an uncertainty
measure of BOE m3 bigger than that of BOE m4.

Thus, after analyzing examples 3.2 and 3.3, it can be seen
that example 3.2 presents a case of variable FOD with the
same number of elements in the focal elements. And example
3.3 presents a case where the FOD does not vary. In contrast,
in example 3.3, the measure proposed by Deng has better
results compared to the Zhou et al. results. Therefore, how
to quantify optimally uncertainty by taking into account the
limits observed in the measures proposed by Deng and Zhou
et al.?

To solve this problem, we propose a new uncertainty

measure by extending the measures proposed by Deng and
Zhou et al.

IV. NEW UNCERTAINTY MEASURE

In the Dempster-Shafer framework, the new uncertainty
measure (ENm) we propose is as follows:

ENm(m) = −
∑
A⊆X

m(A) log2(
m(A)

2|A| − 1
e
|A|−1

2|X| ) (13)

where m is the mass function defined on X . A is the focal
element of X and | A | represents the cardinality of A.The
particularity of this measure is that it takes into account the
number of elements of the power set represented by 2|X|.

A simple transformation of the new entropy is as follows:

ENm(m) =
∑
A⊆X

m(A) log2(2|A| − 1)−
∑
A⊆X

m(A) log2 m(A)

−
∑
A⊆X m(A) log2 e

|A|−1

2|X|

(14)

As can be seen in this expression, the first two terms
refer to Deng entropy [37]. These are respectively the measure
of the total non-specificity in the mass function m, and the
measure of the discord of the mass function between focal
elements. The third term, the exponential factor, e

|A|−1

2|X| , is
the main factor in this contribution. The choice of this factor
is based on the exponential factor (i.e. e

|A|−1
|X| ) proposed by

Zhou et al. [30], which represents the measure of uncertain
information in a BOE. Compared to the Zhou et al. measure,
the new measure takes into account the number of elements in
the power set represented by 2|X|. Thus, the new measure is
intended to be more generic in resolving the limitations of the
measures proposed by Deng and Zhou et al. in examples 3.2
and 3.3 respectively. Let’s go back to example 3.2, the new
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entropy is as follows:

ENm(m1) = −
∑
A⊆X

m1(A) log2(m1(A)
2|A|−1

e
|A|−1

2|X| )

= −0.4× log2( 0.4
22−1e

2−1

24 )− 0.6× log2( 0.6
22−1e

2−1

23 )

ENm(m1) = 2.4657
(15)

ENm(m2) = −
∑
A⊆X

m2(A) log2(m2(A)
2|A|−1

e
|A|−1

2|X| )

= −0.4× log2( 0.4
22−1e

2−1

23 )− 0.6× log2( 0.6
22−1e

2−1

23 )

ENm(m2) = 2.3755
(16)

The results of the different uncertainty measures of the two
(BOEs) m1 and m2 are summarized in the table II.

TABLE II. UNCERTAINTY MEASURES CALCULATED IN EXAMPLE 3.2

BOEs Deng entropy Modified
Deng entropy

New entropy

m1 2.5559 2.1952 2.4657

m2 2.5559 2.0750 2.3755

In this table, like Zhou et al.’s proposed measure, the new
measure gives different measures for each of BOEs m1 and
m2. However, the new measure gives bigger values compared
to those of Zhou et al. Table III takes the measures from table
II, provides the distance d(m1,m2) between the measures of
BOEs m1 and m2 to determine the observed information
loss between these BOEs. Finally, the BOE m1 measure is
added to the calculated distance. In this case, the new measure
compared to the Zhou et al. measure, takes into account the
loss of perceived information in the Deng measure.

TABLE III. EFFECTIVENESS OF THE NEW MEASURE

BOEs Deng entropy
[37]

Modified
Deng entropy

[30]

New
entropy

m1 2.5559 2.1952 2.4657

m2 2.5559 2.0750 2.3755

d(m1,m2) 0 0.1202 0.0902

m1 +
d(m1,m2)

2.5559 2.3154 2.5559

Thus, using the example 3.3, the new measure of the
different BOEs m3 and m4 is as follows :

ENm(m3) = −1× log2( 1
22−1e

2−1

22 ) = 1.2243

ENm(m4) = −0.5× log2( 0.5
21−1e

1−1

22 )−0.5× log2( 0.5
21−1e

1−1

22 )
ENm(m4) = 1

The results of the (BOEs) m3 and m4 are summarized
in the table IV. In this table, the new entropy (ENm) is also

represented. And as can be seen, only the entropy proposed
by Zhou et al. gives counter-intuitive results. In this case of
example where the FOD does not vary, the new measure is
close to the merits of the Deng measure.

TABLE IV. UNCERTAINTY MEASURES CALCULATED IN EXAMPLE 3.3

BOEs Deng entropy
[37]

Modified
Deng

Entropy [30]

New Entropy

m3 1.5850 0.8636 1.2243

m4 1 1 1

Thus, the proposed new measure responds to the limitations
of Deng and Zhou et al. by taking a more generic character
and an efficient quantification of uncertainty.

V. PROOF AND DISCUSSIONS

In this section, we first present some fundamental proper-
ties of the new uncertainty measure. Then, using numerical
examples, we show the concordance of the new entropy
with some basic entropy including Shannon’s entropy (Es),
Deng entropy (Ed) and the entropy proposed by Zhou et al.
(Ez). Finally, we discuss the superiority of the new entropy
compared to the above-mentioned entropies.

A. Concordance with Shanon entropy

The proposed entropy measure is identical to the basic
entropy, the Shannon entropy (Eq. 17), when we have a
Bayesian mass function (i.e. a single element in the BOE
or | A |≡ 1) as follows.

ENm(m) = −
∑
A⊆X

m(A) log2( m(A)
2|A|−1

e
|A|−1

2|X| )

= −
∑
A⊆X

m(A) log2(m(A)
21−1 e

1−1

2|X| )

= −
∑
A⊆X

m(A) log2 m(A)

ENm(m) = Es(m)

(17)

In addition, another proof of concordance of the new
entropy with different uncertainty measures is provided in
the case where the (FOD) has only one element (ı.e. total
uncertainty case) as shown in the following example.

Example 5.1 : Consider an information processing system
in which information I reported by a sensor has a belief equal
to one hundred percent. In X = {I}, the mass function can
be noted as m({I}) = 1. The calculation of the entropies
of Shannon (Es), Deng (Ed), Zhou et al (Ez) and the new
entropy measure (ENm) are defined as follows:

Es(m) = −1× log2 1 = 0
Ed(m) = −1× log2

1
21−1 = 0

Ez(m) = −1× log2( 1
21−1e

1−1
1 ) = 0

ENm(m) = −1× log2( 1
21−12

1−1

21 ) = 0
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B. Superiority of the new uncertainty measure

To show the superiority of the new uncertainty measure,
recall the example mentioned in [37].

Exemple 5.3 : Consider a mass function m in a FOD X
such that : X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
m({6}) = 0.05, m({3, 4, 5}) = 0.05, m(E) = 0.8 et m(X) =
0.1. E represents a subset of elements varying from 1 to 14
as shown in the table V.

TABLE V. ENTROPY MEASURES WITH A SUBSET E OF VARIABLE
ELEMENTS

Elements in E Deng
Entropy

[37]

Modified
Deng

entropy
[30]

New
Entropy

E = {1} 2.6623 2.5180 2.6622

E = {1, 2} 3.9303 3.7090 3.9302

E = {1, 2, 3} 4.9082 4.6100 4.9080

E = {1, ..., 4} 5.7878 5.4127 5.7876

E = {1, ..., 5} 6.6256 6.1736 6.6254

E = {1, ..., 6} 7.4441 6.9151 7.4439

E = {1, ..., 7} 8.2532 7.6473 8.2530

E = {1, ..., 8} 9.0578 8.3749 9.0575

E = {1, ..., 9} 9.8600 9.1002 9.8597

E = {1, ..., 10} 10.6612 9.8244 10.6608

E = {1, ..., 11} 11.4617 10.5480 11.4613

E = {1, ..., 12} 12.2620 11.2714 12.2616

E = {1, ..., 13} 13.0622 11.9946 13.0617

E = {1, ..., 14} 13.8622 12.7177 13.8617

Fig. 1. Comparison between the entropy proposed by Zhou et al. and the
new entropy

As can be seen in Figure 1, the new and modified entropy
of Deng proposed by Zhou et al. increase monotonously with
increasing size of the subset E. However, the values of the
new entropy are significantly bigger than that of Zhou et al.
measure. As shown in example 3.3. the measure proposed by
Zhou et al. records losses of information especially in such
a case where FOD that does not vary. Moreover, the new
entropy gives results almost identical to the Deng measurement
(figure 2), hence the effectiveness of the approach when the
FOD does not change.

Moreover, the new entropy gives results almost identical to
the Deng measure (figure 2), hence the effectiveness of the new
approach when the FOD does not change. The new measure
does not differ from the merits of the Deng measure.

Fig. 2. Comparison between Deng entropy and new entropy

Figure 3 shows the degree of uncertainty of the BOE
using other different uncertainty measures including Hohle’s
confusion measure [31], Dubois & Prade’s weighted Hartley
entropy [32], Yager’s dissonance measure [33], Klir & Ramer’s
discord measure [34], Klir & Parviz’s strife measure [35],
George & Pal’s conflict measure [36]. In this figure, we can
observe that only the entropies of Dubois & Prade [32], Deng
[37], Zhou [30], and the new entropy increase monotonously
with the increase in the size of subset E. Also with the increase
in size of E, there is either a declination or a change in the
pace of other uncertainty measures. Hence the effectiveness of
the new measure.

VI. CONCLUSION

Quantifying uncertainty in information systems is very
important for evaluating the quality of information. Several
methods based on entropy of beliefs have been proposed in the
literature, but these give counter-intuitive results, particularly
in the case of variable FOD with BOE. In this paper, we have
proposed a new measure to address these deficiencies. This
measure extends the measures proposed by Deng and Zhou
et al. From numerical examples and mathematical properties,
we have shown the effectiveness of the new measure which
gives more information in the power set of the FOD. Our
future studies will focus on the actual application of the news
in several areas including decision making, fault diagnosis and
detection, and so on.
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Fig. 3. Comparison with other uncertainty mesures
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