
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

Evaluating the Quality of UCP-Based Framework
using CK Metrics

Zhamri Che Ani, Nor Laily Hashim, Hazaruddin Harun
School of Computing

Universiti Utara Malaysia
06010 UUM Sintok, Kedah, Malaysia

Shuib Basri, Aliza Sarlan
Department of Computer and Information Sciences

Universiti Teknologi PETRONAS
31750 Tronoh, Perak, Malaysia

Abstract—Software effort estimation is one of the most
important concerns in the software industry. It has received
much attention since the last 40 years to improve the accuracy
of effort estimate at early stages of software development. Due
to this reason, many software estimation models have been
proposed such as COCOMO, ObjectMetrix, Use Case Points
(UCP) and many more. However, some of the estimation methods
were not designed for object-oriented technology that actively
encourages reuse strategies. Therefore, due to the popularity of
UCP model and the evolution of the object-oriented paradigm, a
UCP-based framework and supporting program were developed
to assist software developers in building good qualities of software
effort estimation programs. This paper evaluates the quality
of the UCP-based framework using CK Metrics. The results
showed that by implementing the UCP-based framework, the
quality of the UCP-based program has improved regarding the
understandability, testability, maintainability, and reusability.

Keywords—ucp-based framework; use case points; ck metrics

I. INTRODUCTION

Software effort is defined as the person months required
to make a software application [1]. This definition is close
to [2] who define software effort as the number of staff
days/weeks/months or even years associated with a project.
Software effort estimation (SEE) can broadly be defined as the
process of estimating the effort required to develop a software
project [3]. It has been focused by many researchers over the
past 40 years [4] and nowadays, it has become one of the most
important concerns of the software industry [5]–[9].

There are many software estimation models have been
proposed to improve the accuracy of effort estimate at
early stages of software development [10]–[12]. However,
some estimation methods were not designed to work well
with object-oriented technology that introduces inheritance
and actively encourages reuse strategies. SLIM [13],
Checkpoint [14], PRICE-S [15], SEER [16], COCOMO
II [10], ObjectMetrix [17], [18] and Use Case Points [19] are
among the popular object-oriented estimation models that have
been widely used in previous studies.

Use Case Points (UCP) is a software sizing and estimation
method adopted from the standard Function Point (FP) method
in solving the specific needs of object-oriented systems based
on use cases [20], [21]. It was developed by Gustav Karner at
Objectory Systems [19]. Previous studies have demonstrated
that the accuracy of UCP estimations was quite close to the
actual estimates [22]–[25]. Due to the popularity of UCP,

in the last two decades, many UCP-based effort estimation
techniques have been proposed [24], [26]–[35], either to give
more options or to enhance the capability of UCP. Studies also
showed that some parts of UCP-based models have similarity
in estimating software effort [19], [24], [30], [32]. However,
just a few of them are equipped with proper estimation tools.
Most of them used MS Excel to calculate the estimates [36],
[37].

To date, software developers have very little guidance to
develop quality UCP-based software effort estimation using
the object-oriented approach. Even though a tool known as
U-EST was developed using Java programming language, the
design framework was not accessible to the public [38]. The
authors also did not claim that the tool was well-designed and
able to be reused or extended by other developers. Therefore,
a new framework for UCP-based software effort estimation
was developed to promote the reusability of UCP. Without
reusability, software applications are very hard to maintain or
extend [39]–[42].

Therefore, this study aims to evaluate the quality of
UCP-based framework using CK Metrics. The framework
was designed using UML notations after identifying the
class dependencies using Java programming language. The
remainder of this paper is structured as follows. Section II
and III provide some basic concept of the UCP-based
framework and CK Metrics respectively. Section IV describes
the experimental research design. Experimentation results and
discussion are discussed in section V. Section VII includes
conclusion and suggestion for future work.

II. THE PROPOSED UCP-BASED FRAMEWORK

The UCP-based framework is defined as a general reusable
solution for UCP-based software effort estimation design. This
framework is not a finished design that can be transformed
directly into source codes. It is a description or template
for solving a UCP-based problem that can be used in many
different design approaches [43]. This framework was formed
based on four UCP-based models namely Use Case Points
(UCP) [19], Adapted Use Case Points (AUCP) [30], Industrial
use of Use Case Points (IUCP) [24] and Simplified Use
Case Points (SUCP) [32]. Fig. 1 illustrates the UCP-based
framework.

The UCP-based framework shows how the elements are
structured, and how they work together. In other words,
the UCP-based framework is more to the abstract level of

www.ijacsa.thesai.org 624 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

Fig. 1. A UCP-Based Framework

software design, where the abstraction and implementation are
independent. The implementations may vary dynamically [44].
This framework captured the important aspects of the
UCP-based models to visualize the main packages, classes,
and the relationship among them. By using this UCP-based
framework, software designers can easily conduct experiments
and propose the possible well-designs which can contribute to
high-quality software. This framework is also useful especially
in software maintenance because it suggests the high-level
aspects of UCP-based requirements. By using this framework,
the existing UCP-based programs can be changed or extended
systematically.

The main elements of the UCP-based framework are
classes and use two types of relationships namely association
and generalization. The classes determine the general concept
of UCP domain knowledge where every software designer
familiar and understandable. Classes can be interpreted at
various levels in software design. In the early stages of
software design, the UCP-based framework captures more
logical aspects of the problem. In the later stages, the
framework can be extended to any object-oriented design
decisions based on the software designer’s experience and
creativity. In this study, a class is drawn as a rectangle.

Overall, there are 19 classes, and 12 of them are the
principal classes where the principal classes are derived from
the UCP model. In general, the UCP-based framework is
divided into three main components: project size, project
complexity, and risk factors. These three main components
are based on the estimating principle defined by Garmus and
Herron [45]. Project size is composed of six classes. Five
of the classes are the principal classes while AUCP_UAW
class is the extended class. Project complexity includes four
principal classes as well as four extended classes namely
IUCP_EFactor, SUCP_EFactor, IUCP_TFactor, and

SUCP_TFactor. Meanwhile, risk factor has only one
principal class namely Productivity_Factors and two
extended classes.

Relationships among classes are drawn as paths connecting
class rectangles. Generalization shows the relationship between
a more general class and a more specific class which is
used for inheritance. In this framework, 11 classes are
inherited from their parent classes. For instance, AUCP_UAW
class is extended from Unadjusted_Actor_Weight
class. Associations carry information about the relationship
among objects in UCP-based domain knowledge. For
instance, the Use_Case_Points class is associated with
Unadjusted_UseCasePoints class. All principal classes
which are captured from nine steps of UCP [36] are associated
with the association relationship. This means that without these
key classes the effort estimation cannot be done completely.

III. CHIDAMBER AND KEMERER (CK) METRICS

Software metrics play a major role in comparing different
versions of object-oriented programs [46]. One of the most
popular object-oriented metrics and the most thoroughly
investigated is CK Metrics [47]. It was introduced by
Chidamber and Kemerer [48] and has been a subject of
discussion since the last two decades. The authors themselves
and other researchers have carried out a series of experiments
to improve the accuracy of the metrics. Even though it was
proposed quite a long time ago, the usefulness in analyzing
open-source software is still significant [49]–[52], including
examining the reusability of software projects [53].

Chidamber and Kemerer proposed six metrics for
evaluating the quality of software design namely Weighted
Method per Class (WMC), Response For a Class (RFC),
Lack of Cohesion in Methods (LCOM), Coupling Between

www.ijacsa.thesai.org 625 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

Objects (CBO), Depth of Inheritance Tree (DIT) and Number
of Children (NOC). The definition of each metric can be
found in [48]. The metrics have been theoretically validated
and widely accepted standard to be used as early quality
indicators [52], [54]–[58]. By using these metrics, it will help
software designers to make a better decision in designing any
object-oriented software applications.

IV. EXPERIMENTAL SETTING

The object-oriented approach is very important among all
software practitioners. Generally, encapsulation, inheritance,
and polymorphism are three main object-oriented principles
that are applied throughout the whole object-oriented software
engineering process [59]. Instead of these three principles,
abstraction is also considered as a key element in designing
software applications. By using abstraction, the complexity of
a large problem can be minimized. The idea of abstraction
is to identify common features in two or more classes and
abstract those features out into a higher-level class [60]. A
good design, each method in a well-designed class should
support abstraction and encapsulation [61]. In this case, all
common functionalities of UCP-based models were grouped
to form reusable abstract classes.

In this experiment, a new program known as Like-UCP
was developed to simulate the UCP-based framework. In order
to achieve the consistency between the UCP-based framework
and Like-UCP program, the Like-UCP was designed based
on four object-oriented programming principles; abstraction,
inheritance, encapsulation, and polymorphism. The design
must ensure that, for every abstract class of Like-UCP, the
subclass must implement the method from the abstract class
unless the subclass is also an abstract class.

After completing the development, CK Metrics was used
to measure the quality of Like-UCP program. It is impossible
to obtain the Like-UCP metrics without using supporting
tools. Thus, in this study, CK Java Metrics (CKJM) extended
version 2.2 [62] was used to obtain the metrics. CKJM
is an open-source program which was also written in Java
programming language used to obtain six CK Metrics of the
object-oriented programs. In many cases, no single design
style can meet all quality attributes simultaneously. Software
architects or designers often need to balance among quality
attributes. Most of the time, a new program needs refinement,
extension, generalization, or improvement [63]. Therefore,
if the quality of Like-UCP program did not achieve the
desired quality attributes, repetition process from designing the
UCP-based framework must be done.

Then, each of the classes was analyzed, and each metric
was calculated to obtain the mean value. The mean value of
each metric was used as an indicator of quality measurements.
Finally, the obtained results were concluded based on the
relationship between CK Metrics, Object-oriented Design
(OOD) measures, and quality factors. Table I and Table II
show the relationship between CK Metrics and OOD measures,
and the relationship between CK Metrics and quality factors
respectively [64].

V. EXPERIMENTATION RESULTS AND DISCUSSION

The Like-UCP program was developed using Java
programming language to evaluate the quality of the

TABLE I. RELATIONSHIP BETWEEN CK METRICS AND OOD
MEASURES

OOD Measures CK Metrics
Class WMC, RFC, LCOM
Attribute LCOM
Method WMC, RFC, LCOM
Inheritance DIT, NOC
Cohesion LCOM
Coupling CBO, RFC

TABLE II. RELATIONSHIP BETWEEN CK METRICS AND QUALITY
FACTORS

Quality Factors CK Metrics
Understandability RFC, CBO, DIT
Reusability WMC, CBO, DIT, NOC
Testability RFC, CBO, NOC
Maintainability WMC, CBO
Development Effort WMC, LCOM

UCP-based framework. To visualize the dependencies between
classes, class diagram of Like-UCP was generated in Eclipse
environment. Fig. 2 shows the class dependencies of Like-UCP
program. Basically, each of the classes is a replication of
UCP-based framework using the object-oriented approach. As
can be seen in Fig. 2, some of the classes such as UCP_UUCW,
Unadjusted_UseCasePoints, and UseCasePoints
have high dependencies compared to other classes. In other
words, these three classes are required by all the identified
UCP-based models to form the UCP-based framework.

To obtain the empirical evidence of quality attributes
achieved by Like-UCP program, 22 classes (19 classes derived
from the UCP-based framework with three additional driver
classes) were analyzed using CKJM-extended-2.2. Table III
and Table IV present the descriptive statistics of Like-UCP
program and the summary of all the metrics respectively. In
this experiment, the total number line of codes (LOC) of
Like-UCP is 2556 with the mean value 116.18. The maximum
LOC is 380 used by IUCP class, and the minimum is 11 used
by UseCasePoints class. The next sub-sections will discuss
the obtained results and compare with the suggestions in [48].

A. Weighted Method per Class (WMC)

The number of methods and the complexity of the methods
involved indicate how much time and effort is required
to develop and maintain the class. The larger the number
of methods in a class, the higher the potential impact on
subclasses, since subclasses will inherit all the methods defined
in the superclass. It was recommended that most classes should
have a small number of methods, maximum up to 10 methods
in a class [48]. If WMC value is one, it was recommended
that to merge the class in some other classes within the same
package without influencing the LCOM value, that is without
affecting the abstraction and encapsulation of the classes. If
WMC value is zero, the possibility of a redesign is high. If
WMC over than 20, the class should be refactored to reduce
the complexity of the software project. 20 WMC is consistent
with the threshold value suggested by Shatnawi [65].

Based on the WMC statistics shown in Table IV, it can be
seen that the mean value of the WMC metric is 6.50 which is
less than 10. Only four classes, TechnicalComplexity,
EnvironmentalComplexity, IUCP_PF, and IUCP have
more than 10 but still below 20 WMC. None of the classes has

www.ijacsa.thesai.org 626 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

Fig. 2. Class Dependencies of Like-UCP Program

TABLE III. CK METRICS FOR LIKE-UCP PROGRAM

CLASS LOC WMC RFC LCOM CBO DIT NOC
UCP 281 9 34 24 8 1 0
UseCasePoints 11 2 3 1 4 1 0
UnadjustedUseCasePoints 12 3 4 3 4 1 0
UnadjustedActorWeight 70 9 10 8 2 1 2
AUCP UAW 24 2 5 1 2 2 0
UCP UAW 40 2 7 1 3 2 0
UnadjustedUseCaseWeight 91 10 11 3 1 1 1
UCP UUCW 65 3 9 1 5 2 0
EnvironmentalComplexity 171 15 16 45 3 1 3
IUCP EFactor 86 2 13 1 2 2 0
UCP EFactor 102 4 14 6 3 2 0
SUCP EFactor 38 2 7 1 2 2 0
TechnicalComplexity 265 20 21 96 3 1 3
IUCP TFactor 126 2 19 1 3 2 0
UCP TFactor 142 4 19 6 4 2 0
SUCP TFactor 54 2 9 1 2 2 0
ProductivityFactors 30 7 8 15 5 1 2
AUCP PF 23 3 4 3 2 2 0
IUCP PF 127 12 13 28 2 2 0
IUCP 380 12 46 54 9 1 0
AUCP 218 10 33 33 8 1 0
SUCP 200 8 30 18 7 1 0

TABLE IV. SUMMARY OF CK METRICS FOR LIKE-UCP PROGRAM

Metrics Total Mean Maximum Minimum
LOC 2556 116.18 380 11
WMC 143 6.50 20 2
RFC 335 15.23 46 3
LCOM 350 15.91 96 1
CBO 84 3.82 9 1
DIT 33 1.5 2 1
NOC 11 0.50 3 0

zero or one WMC. These results indicate that all the classes
were properly designed.

B. Response For a Class (RFC)

RFC is the number of methods that can be invoked in
response to a message in a class. If RFC for a class is
large, it means that there is high complexity [48]. If RFC
increases, the effort required for testing will increase because
the test sequence grows. The overall design complexity of the
class also increases and it is difficult to maintain the classes
later on. The RFC for a class should usually not exceed 50
although it is acceptable to have RFC up to 100 [66]. However,
Shatnawi [65] suggested that the threshold value for RFC is
40. Based on the RFC statistics shown in Table IV, it can be
seen that the mean value of the RFC metric is 15.23. None of
the classes exceed 50. Fig. 3 shows that only one class which
is IUCP has more than 40 RFC. Overall, the low values of
RFC indicate that the Like-UCP design is less complex.

www.ijacsa.thesai.org 627 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

Fig. 3. Boxplot of Achieved Value by CK Metrics

Fig. 4. Total Metric Value Achieved by Each Class

C. Lack of Cohesion in Methods (LCOM)

The cohesiveness of methods inside a class is desirable
since it promotes encapsulation and decreases the complexity
of the objects. High cohesion decreases complexity, thereby
decreasing the probability of errors during the development
process [48]. Accordingly, a high LCOM value is a major
issue in all the software projects. High LCOM value shows
poor encapsulation and abstraction at the class level. The

general threshold for LCOM is classified as Good: 0, Regular:
range between 1 − 20 and Bad: > 20 [67]. Based on
the LCOM statistics shown in Table IV, the mean value
of LCOM is 15.91. This value indicates that most of the
classes are normal and less complex. Only six classes,
UCP, AUCP, IUCP, IUCP_PF, TechnicalComplexity,
and EnvironmentalComplexity have greater than 20.
However, as can be seen in Fig. 3, only one class
which is TechnicalComplexity has a very high value

www.ijacsa.thesai.org 628 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

of LCOM. Fig. 4 also shows that the total value of
TechnicalComplexity class is also the highest among
all classes of Like-UCP. The results indicate that the
TechnicalComplexity class should be re-designed to
improve the quality the overall quality of Like-UCP program.

D. Coupling Between Objects (CBO)

In general, objects should be loosely coupled, which
implies there ought to be a little dependency between objects.
High coupling implies that the sensitivity to changes in other
classes is also high which may indicate poor class design [48].
A class which is tightly coupled will cause a large ripple
effect when an object is changed and increasing the risk
of regressions. Furthermore, testing all the changes will be
tedious and hard to check. In contrast, the low CBO values
demonstrate that most of the classes refer to a few other
classes. In other words, the more independent a class is, the
easier to reuse it in other applications. Therefore, it increases
the understandability, efficiency, and reusability of the class
design [48]. A measure of coupling is useful to determine
how complex the testing of various parts of a class design
are likely to be. It was suggested that classes with a CBO
more than 19 should be examined to reduce coupling [65].
Based on the CBO statistics shown in Table IV, the mean
value of CBO is 3.82. None of the CBO values greater than
19. The maximum value of Like-UCP is nine which is equal
to the threshold value suggested by Shatnawi [65]. Therefore,
it can be concluded that the possibilities of understandability,
efficiency, and reusability of the class design are very high.

E. Depth of Inheritance Tree (DIT)

DIT is the length of the longest path from a subclass
to the superclass in the inheritance hierarchy. A high value
of DIT implies more reusability, but the complexity of the
class design may increase due to more methods and classes
involved [48]. Classes with bunches of subclasses need to
be very carefully modified to avoid regressions in those
subclasses. One conceivable solution is that the classes ought
to be more abstract with a reasonable number. It was proposed
that the maximum value of DIT should be less than 10 [48].
If DIT value is zero or one, it demonstrates poor reusability of
the class. Based on the DIT statistics shown in Table IV, the
mean value of DIT is 1.5. This value indicates that inheritance
was rarely used in Like-UCP program, mainly because of the
domain model. Consequently, the program did not have a deep
inheritance tree. However, the maximum value of DIT is two
which is evaluated as Good/Common by DIT threshold [68].
Therefore, with 1.5 DIT, Like-UCP program can be concluded
as potentially to be reused and easy to be understood by
software developers.

F. Number of Children (NOC)

Inheritance is a form of reuse. Thus, the greater the number
of subclasses for a class, the greater reuse. However, a large
number of subclasses may introduce inappropriate abstraction
of the superclass. It is better to have depth than breadth in
the inheritance hierarchy [48]. In other words, high DIT and
low NOC is the perfect combination for software design. Low
values of DIT and NOC are firmly indicated that reuse through
inheritance may not be completely adopted [48]. Based on the

NOC statistics shown in Table IV, the majority of the classes
(77%) have no subclasses, and the mean value of NOC is
0.50 which is less than the mean value of DIT. Fig. 3 shows
that Like-UCP program has a minimal number of outliers.
The results indicate that the Like-UCP program may not be
using inheritance of methods as a basis for designing classes.
However, these results are consistent with the previous case
studies [48]. Due to the mean value of NOC smaller than the
mean value of DIT, most probably the Like-UCP classes are
potential to be reused by other UCP-based programs.

VI. THREATS TO VALIDITY

Each of metric tools might interpret and produce a different
set of results. To avoid this problem, the replication of this
study must follow the interpretation that we describe in this
paper. However, we encourage readers to use different metric
tools with different programming languages.

VII. CONCLUSION AND FUTURE WORK

This study presents an evaluation of UCP-based framework
using CK Metrics. In order to achieve this objective, Like-UCP
program was developed using Java programming language.
The program was a replication of the UCP-based framework
using the object-oriented approach. Then the developed
program was examined using CK Metrics to evaluate whether
the Like-UCP has accomplished the desired quality standard.
As can be seen in Fig. 4, TechnicalComplexity and
EnvironmentalComplexity have higher metric values.
Therefore, these two classes need more treatments in order
to improve the quality of Like-UCP program. As mentioned
earlier, IUCP, AUCP, and SUCP are the class drivers of
Like-UCP. These classes were merely used for program
simulation. Thus, the high metric values of these three classes
will not affect the overall quality of UCP-based framework.

Overall, based on WMC, RFC, CBO, DIT and NOC
obtained by CKJM-extended-2.2, it can be concluded that
Like-UCP program was well designed. Low value of LCOM
indicates that most of these classes were also less complex.
Although this experiment was based on a small sample of
programs, the results have provided additional evidence that
by implementing the object-oriented approach, the quality
of Like-UCP has improved regarding the understandability,
testability, maintainability, and reusability of the program.
The results also indicate that less effort was required
to develop the Like-UCP program. As mentioned earlier,
Like-UCP is a replication of UCP-based framework. Therefore,
the achievement of these quality attributes also reflects
the UCP-based framework. In other words, the UCP-based
framework can also be said good qualities regarding the
understandability, testability, maintainability, and reusability.

The results also show that the program did not have
a deep inheritance tree due to the fewer functionalities
in the domain model. However, this can be improved by
implementing more UCP-based models in the program.
Hence, we intend to additionally investigate this topic by
utilizing other object-oriented design methodologies such
as implementing SOLID Design Principles and make a
comprehensive comparison against these outcomes.

www.ijacsa.thesai.org 629 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

As has been mentioned earlier, U-EST was also developed
using Java programming language. However, there was no
evidence regarding the quality of the program. Therefore, to
date, we are unable to compare the Like-UCP program with
other ucp-based programs. To ensure this ucp-based framework
has a significant contribution to the software practitioners, we
encourage other researchers to simulate this framework using
new design approaches and compare the outcome with our
results.

Besides CK metrics, there are several object-oriented
techniques for evaluating the quality design of object-oriented
programs. One of the most commonly used is QMOOD
(Quality Model for Object-oriented Design). Therefore, we
also plan to investigate this topic further using QMOOD and
make a comparison between the two approaches.

ACKNOWLEDGMENT

The researchers acknowledge the financial support
(Research Generation University Grant) received from
University Utara Malaysia (S/O Code: 13847).

REFERENCES

[1] S. Tariq, M. Usman, R. Wong, Y. Zhuang, and S. Fong, “On
learning software effort estimation,” in 3rd International Symposium
on Computational and Business Intelligence (ISCBI). IEEE, 2015, pp.
79–84.

[2] L. Laird and M. Brennan, Software measurement and estimation: a
practical approach. New Jersey: John Wiley and Sons, 2006.

[3] L. L. Minku and X. Yao, “Which models of the past are relevant to the
present? a software effort estimation approach to exploiting useful past
models,” Automated Software Engineering, vol. 24, no. 3, pp. 499–542,
2017.

[4] C. Jones, “Software cost estimation in 2002,” The Journal of Defense
Software Engineering, vol. 15, no. 6, pp. 4–8, 2002.

[5] S. Basha and D. Ponnurangam, “Analysis of empirical software effort
estimation models,” International Journal of Computer Science And
Information Security, vol. 7, no. 3, 2010.

[6] F. Brooks Jr, “Three great challenges for half-century-old computer
science,” Journal of the ACM, vol. 50, no. 1, pp. 25–26, 2003.

[7] M. Jørgensen and D. Sjøberg, “The impact of customer expectation on
software development effort estimates,” International Journal of Project
Management, vol. 22, no. 4, pp. 317–325, 2004.

[8] S. W. I. Kuan, “Factors on software effort estimation,” International
Journal of Software Engineering & Applications, vol. 8, no. 1, pp.
23–32, 2017.

[9] A. Trendowicz, J. Münch, and R. Jeffery, “State of the practice in
software effort estimation: a survey and literature review,” Software
Engineering Techniques, vol. 4980, pp. 232–245, 2011.

[10] B. Boehm, “Software engineering economics,” IEEE Transactions on
Software Engineering, vol. 10, pp. 4–21, 1984.

[11] B. Boehm, C. Abts, and S. Chulani, “Software development cost
estimation approaches-a survey,” Annals of Software Engineering,
vol. 10, no. 1-4, pp. 177–205, 2000.

[12] A. Trendowicz and R. Jeffery, Software Project Effort Estimation:
Foundations and Best Practice Guidelines for Success. Switzerland:
Springer International Publishing, 2014.

[13] L. H. Putnam and W. Myers, Measures for excellence: reliable software
on time, within budget. Prentice Hall Professional Technical Reference,
1991.

[14] J. Capers, Applied software measurement. McGraw-Hill, 1996.
[15] R. Park, “The central equations of the price software cost model,” in

4th COCOMO Users Group Meeting, 1988.
[16] R. Jensen, “An improved macrolevel software development resource

estimation model,” in 5th ISPA Conference, 1983, pp. 88–92.

[17] G. Adens and R. Armstrong, “Objectmetrix process,” UK:TASSC, Tech.
Rep., 2008.

[18] G. Adens, “Interpreting and calibrating metrics,” UK:TASSC, Tech.
Rep., 2009.

[19] G. Karner, “Resource estimation for objectory projects,” Objective
Systems SF AB, vol. 17, 1993.

[20] R. Clemmons, “Project estimation with use case points,” The Journal
of Defense Software Engineering, pp. 18–22, 2006.

[21] G. Banerjee, “Use case estimation framework,” in Annual IPML
Conference. Citeseer, 2004, pp. 1–12.

[22] B. Anda, H. Dreiem, D. Sjøberg, and M. Jørgensen, “Estimating
software development effort based on use cases - experiences from
industry,” The Unified Modeling Language. Modeling Languages,
Concepts, and Tools, vol. 2185, pp. 487–502, 2001.

[23] B. Anda, “Comparing effort estimates based on use case points with
expert estimates,” Empirical Assessment in Software Engineering (EASE
2002), Keele, UK, 2002.

[24] E. Carroll, “Estimating software based on use case points,” in 20th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, San Diego, CA, USA, 2005, pp.
257–265.

[25] S. Nageswaran, “Test effort estimation using use case points,” in Quality
Week 2001, San Francisco, California, USA, 2001.

[26] M. R. Braz and S. R. Vergilio, “Software effort estimation based
on use cases,” in 30th Annual International Computer Software and
Applications Conference, COMPSAC’06., vol. 1. IEEE, 2006, pp.
221–228.

[27] S. Diev, “Use cases modeling and software estimation: applying use
case points,” ACM SIGSOFT Software Engineering Notes, vol. 31, no. 6,
pp. 1–4, 2006.

[28] W. Fan, Y. Xiaohu, Z. Xiaochun, and C. Lu, “Extended use case points
method for software cost estimation,” in International Conference on
Computational Intelligence and Software Engineering. IEEE, 2009,
pp. 1–5.

[29] M. M. Kirmani and A. Wahid, “Revised use case point (re-ucp) model
for software effort estimation,” International Journal of Advanced
Computer Science and Applications, vol. 6, no. 3, pp. 65–71, 2015.

[30] P. Mohagheghi, B. Anda, and R. Conradi, “Effort estimation of use cases
for incremental large-scale software development,” in 27th International
Conference on Software Engineering. IEEE, 2005, pp. 303–311.

[31] N. Nunes, L. Constantine, and R. Kazman, “iucp: Estimating
interactive-software project size with enhanced use-case points,” IEEE
software, vol. 28, no. 4, pp. 64–73, 2011.

[32] M. Ochodek, J. Nawrocki, and K. Kwarciak, “Simplifying effort
estimation based on use case points,” Information and Software
Technology, vol. 53, no. 3, pp. 200–213, 2011.

[33] K. Periyasamy and A. Ghode, “Cost estimation using extended use case
point (e-ucp) model,” in International Conference on Computational
Intelligence and Software Engineering. IEEE, 2009, pp. 1–5.

[34] G. Robiolo, C. Badano, and R. Orosco, “Transactions and paths: two
use case based metrics which improve the early effort estimation,” in
3rd International Symposium on Empirical Software Engineering and
Measurement, ESEM. IEEE, 2009, pp. 422–425.

[35] A. Srivastava, S. Singh, and S. Q. Abbas, “Advancement of ucp with
end user development factor: Aucp,” International Journal of Software
Engineering & Applications (IJSEA), vol. 6, no. 2, pp. 1–10, 2015.

[36] Ç. Gencel, L. Buglione, O. Demirors, and P. Efe, “A case study on
the evaluation of cosmic-ffp and use case points,” in 3rd Software
Measurement European Forum, Rome, Italy, 2006.

[37] Z. Mansor, S. Yahya, and N. H. H. Arshad, “Review on traditional
and agile cost estimation success factor in software development
project,” International Journal of New Computer Architectures and their
Applications (IJNCAA), vol. 1, no. 4, pp. 942–952, 2011.

[38] S. Kusumoto, F. Matukawa, K. Inoue, S. Hanabusa, and Y. Maegawa,
“Estimating effort by use case points: Method, tool and case study,” in
10th International Symposium on Software Metrics, Washington, USA,
2004, pp. 292–299.

[39] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern language:

www.ijacsa.thesai.org 630 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

towns, buildings, construction. Oxford University Press, USA, 1977,
vol. 2.

[40] M. Grand, Java enterprise design patterns. Wiley, 2002.
[41] P. Kuchana, Software architecture design patterns in Java. CRC Press,

2004.
[42] C. Lasater, Design patterns. Jones & Bartlett Learning, 2006.
[43] Z. C. Ani, S. Basri, and A. Sarlan, “A framework for designing

ucp-based effort estimation,” Advanced Science Letters, vol. 24, no. 2,
pp. 995–998, 2018.

[44] K. Lano, J. L. Fiadeiro, and L. Andrade, Software design using Java 2.
New York: Springer, 2002.

[45] D. Garmus and D. Herron, “Estimating software earlier and more
accurately,” Journal of Defense Software Engineering, vol. 15, no. 6,
pp. 18–21, 2002.

[46] A. Kaur, S. Singh, D. K. Kahlon, and P. S. Sandhu, “Empirical analysis
of ck & mood metric suit,” Int. Journal of Innovation, Management and
Technology, vol. 1, no. 5, pp. 447–452, 2010.

[47] M. Genero, M. Piattini, and C. Calero, “A survey of metrics for uml
class diagrams,” Journal of Object Technology, vol. 4, no. 9, pp. 59–92,
2005.

[48] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, pp.
476–493, 1994.

[49] K. Johari and A. Kaur, “Validation of object oriented metrics using open
source software system: an empirical study,” ACM SIGSOFT Software
Engineering Notes, vol. 37, no. 1, pp. 1–4, 2012.

[50] T. Honglei, S. Wei, and Z. Yanan, “The research on software metrics
and software complexity metrics,” in International Forum on Computer
Science-Technology and Applications, IFCSTA’09., vol. 1. IEEE, 2009,
pp. 131–136.

[51] S. Srivastava and R. Kumar, “Indirect method to measure software
quality using ck-oo suite,” in International Conference on Intelligent
Systems and Signal Processing (ISSP). IEEE, 2013, pp. 47–51.

[52] R. Subramanyam and M. Krishnan, “Empirical analysis of ck metrics
for object-oriented design complexity: Implications for software
defects,” IEEE Transactions on Software Engineering, vol. 29, no. 4,
pp. 297–310, 2003.

[53] D. P. Darcy and C. F. Kemerer, “Oo metrics in practice,” Software,
IEEE, vol. 22, no. 6, pp. 17–19, 2005.

[54] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of
object-oriented design metrics as quality indicators,” IEEE Transactions
on Software Engineering, vol. 22, no. 10, pp. 751–761, 1996.

[55] L. Cheikhi, R. E. Al-Qutaish, A. Idri, and A. Sellami, “Chidamber and
kemerer object-oriented measures: Analysis of their design from the

metrology perspective,” International Journal of Software Engineering
& Its Applications, vol. 8, no. 2, 2014.

[56] N. I. Churcher, M. J. Shepperd, S. Chidamber, and C. Kemerer,
“Comments on” a metrics suite for object oriented design,” IEEE
Transactions on Software Engineering, vol. 21, no. 3, pp. 263–265,
1995.

[57] M. Hitz and B. Montazeri, “Chidamber and kemerer’s metrics
suite: a measurement theory perspective,” Transactions on Software
Engineering, vol. 22, no. 4, pp. 267–271, 1996.

[58] G. Succi, W. Pedrycz, S. Djokic, P. Zuliani, and B. Russo, “An
empirical exploration of the distributions of the chidamber and kemerer
object-oriented metrics suite,” Empirical Software Engineering, vol. 10,
no. 1, pp. 81–104, 2005.

[59] K. Qian, X. Fu, L. Tao, and C.-w. Xu, Software architecture and design
illuminated. Boston: Jones & Bartlett Learning, 2010.

[60] J. F. Dooley, Software Development, Design and Coding: With Patterns,
Debugging, Unit Testing, and Refactoring (2nd ed.). [e-book].
Retrieved from https://www.apress.com.: Apress, 2017.

[61] A. Dingle, Software Essentials: Design and Construction. Boca Raton:
Chapman and Hall/CRC, 2014.

[62] M. Jureczko and D. Spinellis, Using Object-Oriented Design Metrics
to Predict Software Defects, ser. Monographs of System Dependability.
Wroclaw, Poland: Oficyna Wydawnicza Politechniki Wroclawskiej,
2010, vol. Models and Methodology of System Dependability, pp.
69–81.

[63] S. Lammers, Programmers at work. Redmond, WA: Harper & Row
Publishers, Inc., 1986.

[64] U. Kulkarni, Y. Kalshetty, and V. Arde, “Validation of ck metrics for
object oriented design measurement,” in 3rd International Conference
on Emerging Trends in Engineering and Technology (ICETET). IEEE,
2010, pp. 646–651.

[65] R. Shatnawi, “A quantitative investigation of the acceptable risk levels
of object-oriented metrics in open-source systems,” IEEE Transactions
on software engineering, vol. 36, no. 2, pp. 216–225, 2010.

[66] M. Sarker, “An overview of object oriented design metrics,” Master’s
thesis, Department of Computer Science, Umeå University, Sweden,
2005.

[67] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes, and H. C.
Almeida, “Identifying thresholds for object-oriented software metrics,”
Journal of Systems and Software, vol. 85, no. 2, pp. 244–257, 2012.

[68] T. G. Filó, M. Bigonha, and K. Ferreira, “A catalogue of thresholds
for object-oriented software metrics,” in The First International
Conferences on Advanced and Thrends in Software Engineering, 2015,
pp. 48–55.

www.ijacsa.thesai.org 631 | P a g e


