
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

26 | P a g e

www.ijacsa.thesai.org

Modeling of the Consensus in the Allocation of

Resources in Distributed Systems

Federico Agostini
1
, David L. La Red Martínez

2
, Julio C. Acosta

3

Faculty of Exact and Natural Sciences and Surveying, North-eastern National University

Corrientes, Argentina

Abstract—When it comes to processes distributed in process

nodes that access critical resources shared in the modality of

distributed mutual exclusion, it is important to know how these

are managed and the order in which the demand for resources is

resolved by the processes. Being in a shared environment, it is

necessary to comply with certain rules, for instance, access to

resources must be achieved through mutual exclusion. In this

work, through an aggregation operator, a consensus mechanism

is proposed to establish the order of allocation of resources to the

processes. The consensus is understood as the agreement that

must be achieved for the allocation of all the resources requested

by each process. To model this consensus, it must be taken into

account that the processes can form group of processes or be

independent, the state of the nodes where each of them is located,

the computational load, the number of processes, the priorities of

the processes, CPU usage, use of main memory, virtual memory,

etc. These characteristics allow the evaluation of the conditions to

agree on the order in which allocations of resources to processes

will be made.

Keywords—Aggregation operators; communication between

groups of processes; mutual exclusion; operating systems;

processor scheduling

I. INTRODUCTION

The proliferation of computer systems, many of them
distributed in different nodes with multiple processes that
cooperate for the achievement of a particular function,
requires decision models that allows groups of processes to
use shared resources that can only be accessed in the modality
of mutual exclusion.

The traditional solutions for this problem are found in [1]
and [2], both papers describe the main synchronization
algorithms in distributed systems. The author in [3] presents
an efficient and fault tolerant solution for the problem of
distributed mutual exclusion. The authors in [4], [5] and [6]
present algorithms to manage the mutual exclusion in
computer networks. In [7] are detailed the main algorithms for
distributed processes management, distributed global states
and distributed mutual exclusion.

The allocation of resources in processes should be
performed taking into account the priorities of the processes
and also the state in terms of workload of the computational
nodes in which the processes are executed.

Also, solutions (which may be considered traditional) have
been proposed for different types of distributed systems in [8],
[9], [10], [11] and [12]. Other works that focused on ensuring
mutual exclusion have been presented in [13] and [14]. An

interesting distributed solution based on permissions is
presented in [15] and a solution based on process priorities can
be found in [16].

In this paper, a new aggregation operator will be presented
specifically for solving the aforementioned problem. This falls
under the category of OWA (Ordered Weighted Averaging)
operators, more specifically Neat OWA. The use of
aggregation operators in decision models has been widely
studied. For example, [17], develops methodologies that solve
problems in the presence of multiple attributes and criteria and
in [18] the way to obtain a priority vector is collectively
studied, which is created from different formats of expression
of the preferences of decision makers. The model can reduce
the complexity of decision-making and avoid the loss of
information when the different formats are transformed into a
single format of expression of preferences. In addition, [19]
presents the main mathematical properties and behavioural
measures related to the aggregation operators. A review of
aggregation operators, especially those of the OWA family, is
presented in [20], [21] and [22]. OWA operators applied to
multicriteria decision making are presented and analysed in
[23], and [24] analyse the OWA operators and their
applications in the decision making process. In turn, in [25] a
complex and dynamic problem of group decision making with
multiple attributes is defined and a resolution method is
proposed, which uses a consensus process for groups of
attributes, alternatives and preferences, resulting in a decision
model for problems of the real world.

This study will present a variant of an innovative method
for the management of shared resources in distributed
systems, based on [26] and [27], in which an aggregation
operator is developed to assign resources in distributed
systems. Here, we establish a consensus model that favours
the sequential access of the processes to all the requested
resources. The premises, data structures and the operator
mentioned in [26] and [27], are used as a starting point to
create a new operator in the scenario described next.

This paper, which presents an innovative method for the
management of shared resources in distributed systems is
structured as follows: Section 2 explains the data structures
that the proposed operator will use, Section 3 describes the
aggregation operator, in Section 4 a detailed example of this is
shown, then the Conclusions and the Future lines of work are
presented, and then the Acknowledgments, the References and
the appendix are shown.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 9, No. 12, 2018

27 | P a g e

www.ijacsa.thesai.org

II. DATA STRUCTURES TO BE USED

The proposed scenario considers the following conditions:
In first place, the processes must have access to shared
resources in the mutual exclusion modality. In second place,
they must be able to form groups of processes (independent
processes are considered as unitary groups). In third place, the
processes must not require synchronization (that is, to be
active in their respective processors at the same time) and they
must have strict consensus requirements in order to gain
access to the resources (an agreement is required in order to
consecutively allocate the resources requested by a process,
that is, once the resources allocation sequence is started, it
cannot be interrupted to allocate resources to other processes,
until the active process releases the resources).

These are groups of processes that are distributed in
process nodes that access critical resources. These resources
are shared in the form of distributed mutual exclusion and it
must be decided, according to the demand for resources by the
processes, what the priorities to allocate the resources to the
processes that require them will be (only the resources that are
available to be assigned in the processes will be taken into
account, that is, those not yet allocated in certain processes).

 The access permission to the shared resources of a node
will not only depend on whether the nodes are using
them or not, but on the aggregation value of the
preferences (priorities) of the different nodes regarding
granting access to shared resources (alternatives) as
well.

 The opinions (priorities) of the different nodes
regarding granting access to shared resources
(alternatives) will depend on the consideration of the
value of variables that represent the state of each one of
the different nodes. Each node must express its
priorities for assigning the different shared resources
according to the resource requirements of each process
(which may be part of a group of processes).

These available shared resources hosted on different nodes
of the distributed system may be required by the processes
(clustered or independent) running on the nodes.

Possible states of each process:

 Independent process.

 Process belonging to a group of processes.

 Possible state of each one of the nodes:

 Number of processes.

 Priorities of the processes.

 CPU usage.

 Main memory usage.

 Use of virtual memory.

 Additional memory required for each resource
requested by each process (depending on the
availability of the data).

 Additional estimated processor load required for each
resource requested by each process (depending on data
availability).

 Additional estimated input / output load required for
each resource requested by each process (depending on
data availability).

 Status of each one of the shared resources in the
distributed mutual exclusion mode in the node:

 Assigned to a local or remote process.

 Available.

 Predisposition (nodal priority) to grant access to each of
the r shared resources in the mode of distributed mutual
exclusion (will result from the consideration of the
variables representing the node status, the priority of the
processes and the additional computational load, which
would mean allocating the resource to the requesting
process).

 Current load of the node, which can be calculated as the
average CPU, memory and input / output usage
percentages at any given time (these load indicators
may vary depending on the case, some may be added or
changed); the current load categories, for example,
High, Medium and Low, should also be defined, with
value ranges for each category being indicated.

The scenario proposed in this study considers resources
and processes in distributed operating systems, applied to the
telecommunications environment, but without being limited to
any specific communications protocol, meaning that it is a
generic scheme. It is considered that the application of the
proposed method would result in an increase in the traffic of
control information, but the overall performance of the system
would improve by allocating resources to the processes
according to a holistic and cognitive decision-making scheme
that also guarantees mutual exclusion in access to shared
resources.

Fig. 1 shows the resources requests by the processes, the
resources already assigned and the nodes in which they are
located.

Fig. 1. Resources and Processes at Nodes in Distributed Systems.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 9, No. 12, 2018

28 | P a g e

www.ijacsa.thesai.org

III. DESCRIPTION OF THE AGGREGATION OPERATOR

The proposed operator consists of the following steps:

1) Calculation of the current computational load of the

nodes.

2) Establishment of the categories of computational load

and the vectors of weights associated with them.

3) Calculation of the priorities or preferences of the

processes considering the state of the node (in each node for

each process).

4) Calculation of the priorities or preferences of the

processes to access the available shared resources. (calculated

in the centralized manager of shared resources) and

determination of the allocation order and to which process the

resources will be allocated.

Each one of the steps of Fig. 2 is described in [26] and
[27].

In Fig. 2, there is a list of the necessary steps to obtain the
final global priorities to assign the resources (DSAF,
Distributed Systems Assignment Function).

Fig. 2. Steps to Obtain the DSAF, ODSAF and CDSAF Functions.

TABLE I. CONCATENATION OF THE ORDERED ASSIGNMENT TABLES

(ODSAF) OF EACH ONE OF THE ITERATIONS CORRESPONDING TO THE

GENERAL METHOD

ODSAF Iterations

1st iteration
Rows from 1 to n

n= number of rows of the ODSAF first iteration

2nd iteration
Rows from n+1 to m
m = number of rows of the ODSAF second iteration

last iteration m = number of rows of the ODSAF second iteration

The order or priority of allocation of the resources and the
process to which each resource is assigned (ODSAF, Ordered
Distributed System Assignment Function) can be seen in
Table 1.

The last step is to repeat the procedure but removing the
already made allocations from the resources requests (CDSAF,
Concatenated Distribution Systems Assignment Function), as
shown in Fig. 3.

Fig. 3. Steps to Obtain the DSAF, ODSAF and CDSAF with their

Corresponding Iterations.

The CDSAF table is obtained from the concatenation of
the ODSAF tables of each iteration, as shown in Table 1.

a) Final global priority of the process

Once the CDSAF table is completed (Table 1), the final
global priorities of the processes will be calculated in order to
access all of its resources, and the order in which each one
will be allocated will be established, receiving all the
requested resources. For this, the CDSAF table will be
considered, the priorities of all the resource/process
assignments will be added for each process, and they will be
divided by the number of assignments of that process. The
process with the higher final global priority will be the first
one to get the requested resources. This constitutes what will
be called the Final Global Priority of the Process (FGPP), as
shown in Fig. 4.

FGPPi = i = 1,…,h
∑

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 9, No. 12, 2018

29 | P a g e

www.ijacsa.thesai.org

Fig. 4. Calculation of the FGPP of each process.

Fig. 5. An example of the calculation of the OFGPP of each process.

h= total number of processes in the system (summation of
processes of the nodes); j=number of resources allocated to
the i process.

The elements of the FGPP vector must be ordered from
highest to lowest to obtain the global priority order of
allocation of resources to processes, as shown in Fig. 5.

Ordered Final Global Priority of the Process (OFGPP)

j= cardinality of FGPP (number of processes in the
system)

OFGPPi= Max (not ordered FGPPi) i= 1, …, j

not ordered = FGPPi OFGPP

1st: OFGPP1 = Max (FGPPi) i= 1, …, j

2nd: OFGPP2 = Max (not ordered FGPPi) i= 1, …, j

last: OFGPPj = Max (not ordered FGPPi) i= 1, …, j

b) Ordered concatenated distributed system assignment

function (ocdsaf)

Fig. 6. Steps to go from the CDSAF to the OCDSAF.

The OCDSAF will establish the order of the final global
priority allocation of processes to access its resources, and the
order in which each one will be allocated, getting all the
requested resources. For this, the CDSAF and OFGPP tables
will be considered, as shown in Fig. 6.

The cardinalities (number of allocation of resources to
each process) obtained from each one of the processes of the
OFGPP vector in the CDASF table will be calculated.

CPi = process cardinality (OFGPPi) in CDSAF.

Then, each one of the allocations of resources to processes
in the CDSAF table of each one of the OFGPP vector
processes will be obtained. The total number of allocations for
each process will be determined by the cardinality calculated
in the previous step, as shown in Fig. 7.

In Fig 7, the first step is to calculate the priority of the
process pek, considering all rounds at CDSAF. The second step
is to obtain the position in the OFGPP vector according to the
calculated priority. The third step is to find all the assignments
of the pek process in the CDSAF and place them in the
OCDSAF in the order in which the pek process appears in the
OFGPP. The representation of resources rij indicate the
resources (whose first sub-index represents the node where it
is and the second sub-index represents the resource number
itself) that are assigned to the pek process (whose first sub-
index represents the node where it is and the second sub-index
represents the process number itself) in each round. Although
the resources have the same sub-indexes, they are not
necessarily the same resources, but they can represent
different resources that are assigned several times in the
different rounds, but always to the same pek process. The
location in the FASDCO table will depend on the location in
the PGFPO vector.

Fig. 7. Calculation of Priorities for the Pek Process with the Highest Priority

in PGFPO.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 9, No. 12, 2018

30 | P a g e

www.ijacsa.thesai.org

OCDSAF1 = first allocation of the CDSAF for the (OFGPP1)

process

OCDSAFcp1 = last allocation of the CDSAF for the (OFGPP1)

process

OCDSAFcp1+1 = first allocation of the CDSAF for the

(OFGPP2) process

OCDSAFcp1+cp2 = last allocation of the CDSAF for the

(OFGPP2) process

OCDSAFcp1+cp2+…+cpk-1+1 = first allocation of the CDSAF for

the (OFGPPk) process

OCDSAFcp1+cp2+…+cpk = last allocation of the CDSAF for the

(OFGPPk) process

OCDSAFcp1+cp2+…+cpn-1+1 = first allocation of the CDSAF for

the (OFGPPn) process

OCDSAFcp1+cp2+…+cpn = last allocation of the CDSAF for the

(OFGPPn) process

c) Considerations for aggregation operations

The characteristics of the aggregation operations described
allow to consider that the proposed method belongs to the
family of aggregation operators Neat-OWA, which are
characterized as follows:

The definition of OWA operators indicates

 1 2

1

, , ,
n

n j j

j

f a a a w b

 (1)

Where bj is the jth highest value of the an, with the
restriction for weights to satisfy

 1,0iw
 (2)

n

i

iw
1

1

 (3)

For the Neat OWA operator family, the weights will be
calculated according to the elements that are added, or more
exactly to the values to be orderly added, the bj, maintaining
conditions (2) and (3). In this case the weights are wi=fi

(b1,…,bn), defining the operator:

1 1(,...) (,...,)·n i n i

i

F a a f b b b
 (4)

This family, in which the weights depend on the
aggregation, do not require to meet all properties of OWA
operators.

In addition, in order to be able to assert that an aggregation
operator is neat, the final aggregation value needs to be
independent of the order of the values. A=(a1,…,an) being the
entries to add, B=(b1,…,bn) being the ordered entries and
C=(c1,…,cn)= Perm(a1,…,an) being a permutation of the
entries. An OWA operator is defined as neat if

It produces the same result for any assignment C = B

 1 2

1

, , ,
n

n i i

i

F a a a w b

 (5)

One of the characteristics to be pointed out by Neat OWA
operators is that the values to be added do not need to be
sorted out for their process. This implies that the formulation
of a neat operator can be defined by the arguments instead of
the orderly elements.

In the proposed aggregation operator, the weights are
calculated according to context values. From this context,
arise the values to be aggregated.

IV. EXAMPLE AND DISCUSSION OF RESULTS

This section will explain in detail an example of
application of the proposed aggregation operator. This
example takes as a starting point the ordered DSAF vector
from [26] and [27], and these steps are shown in Fig. 2.

The example seen in [26] shows the following
calculations:

 The priorities or preferences of the processes to access
the available shared resources.

 The vector of final weights that will be used in the final
aggregation process to determine the order or priority of
access to the resources.

The greatest of these products made for the different
processes in relation to the same resource, will indicate which
one of the processes will get access to the resource.

The summation of all these products in relation to the same
resource will indicate the priority that said resource will have
in order to be assigned. This constitutes the Distributed
System Assignment Function (DSAF) that can be seen in
Table 2.

The final order of allocation of the resources and the
recipient processes is obtained by ordering Table 2, as shown
in Table 3.

TABLE II. FINAL GLOBAL PRIORITIES FOR ALLOCATING THE RESOURCES

(DSAF) IN THE FIRST ITERATION

Resources Priority Assignment

r11 0.35120968 r11 to p37

r12 0.47306452 r12 to p37

r13 0.32862903 r13 to p13

r21 0.33000000 r21 to p37

r22 0.34403226 r22 to p34

r23 0.24919355 r23 to p11

r24 0.18951613 r24 to p34

r31 0.37048387 r31 to p34

r32 0.30322581 r32 to p34

r33 0.46798387 r33 to p23

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 9, No. 12, 2018

31 | P a g e

www.ijacsa.thesai.org

TABLE III. ORDER OR FINAL PRIORITY OF ASSIGNMENT OF RESOURCES

AND PROCESS TO WHICH IS ALLOCATED EACH RESOURCE (ODSAF) IN THE

FIRST ITERATION

Ordered Final Global Priority Assignment

0.47306452 r12 to p37

0.46798387 r33 to p23

0.37048387 r31 to p34

0.35120968 r11 to p37

0.34403226 r22 to p34

0.33000000 r21 to p37

0.32862903 r13 to p13

0.30322581 r32 to p34

0.24919355 r23 to p11

0.18951613 r24 to p34

The next step is to repeat the procedure, but removing the
requests of already made allocations; it must be noted that the
assigned resources will be available once they are released by
the processes, and can therefore be allocated to other
processes.

In this way, all the resources requests from all the
processes will be answered, considering mutual exclusion and
priorities of the processes, nodal priorities and final priorities,
according to the scenario presented in [26] and [27].

The scenario presented next, starts from the concatenation
of the ordered assignment of each one of the iterations
corresponding to the above mentioned scenario.

The CDSAF table will be obtained from the concatenation
of the ODSAF table of each iteration, as shown in Table 4.

TABLE IV. ORDER OR FINAL PRIORITY OF ASSIGNMENT OF RESOURCES

AND PROCESS TO WHICH IS ALLOCATED EACH RESOURCE IN ALL ITERATIONS

(CDSAF)

Ordered Final Priority Assignment Round

0.47306452 r12 al p37 1

0.46798387 r33 al p23 1

0.37048387 r31 al p34 1

0.35120968 r11 al p37 1

0.34403226 r22 al p34 1

0.33000000 r21 al p37 1

0.32862903 r13 al p13 1

0.30322581 r32 al p34 1

0.24919355 r23 al p11 1

0.18951613 r24 al p34 1

0.40653226 r33 al p34 2

0.39951613 r12 al p34 2

0.30346774 r31 al p13 2

0.28153226 r11 al p11 2

0.27024194 r22 al p11 2

0.26274194 r21 al p25 2

0.25701613 r13 al p34 2

0.23790323 r32 al p37 2

0.17322581 r23 al p34 2

0.13435484 r24 al p11 2

0.34677419 r33 al p13 3

0.33443548 r12 al p23 3

0.24250000 r31 al p21 3

0.22330645 r22 al p13 3

0.21233871 r11 al p13 3

0.19983871 r21 al p13 3

0.18612903 r13 al p31 3

0.17524194 r32 al p13 3

0.10790323 r23 al p21 3

0.09516129 r24 al p23 3

0.28725806 r33 al p37 4

0.27637097 r12 al p13 4

0.19637097 r31 al p23 4

0.17975806 r22 al p12 4

0.15725806 r21 al p12 4

0.14314516 r11 al p12 4

0.13629032 r13 al p21 4

0.11717742 r32 al p23 4

0.07096774 r23 al p32 4

0.06298387 r24 al p35 4

0.22798387 r33 al p12 5

0.22459677 r12 al p11 5

0.15185484 r31 al p31 5

0.13846774 r22 al p21 5

0.11596774 r21 al p22 5

0.09709677 r13 al p32 5

0.08991935 r11 al p32 5

0.06685484 r32 al p36 5

0.04403226 r23 al p33 5

0.04112903 r24 al p36 5

0.18282258 r33 al p31 6

0.17669355 r12 al p12 6

0.11411290 r31 al p12 6

0.09943548 r22 al p22 6

0.07741935 r21 al p11 6

0.06983871 r13 al p36 6

0.06604839 r11 al p36 6

0.04322581 r32 al p35 6

0.02056452 r23 al p24 6

0.02024194 r24 al p24 6

0.14056452 r33 al p21 7

0.13669355 r12 al p21 7

0.07669355 r31 al p22 7

0.05443548 r22 al p35 7

0.04354839 r13 al p35 7

0.04306452 r21 al p33 7

0.04266129 r11 al p33 7

0.02104839 r32 al p33 7

0.10975806 r12 al p33 8

0.09862903 r33 al p22 8

0.04782258 r31 al p36 8

0.03306452 r22 al p33 8

0.02145161 r21 al p36 8

0.02104839 r13 al p33 8

0.02032258 r11 al p24 8

0.08443548 r12 al p36 9

0.06588710 r33 al p33 9

0.02217742 r31 al p35 9

0.01217742 r22 al p36 9

0.06032258 r12 al p24 10

0.04250000 r33 al p35 10

0.03798387 r12 al p32 10

0.01959677 r33 al p36 10

0.01693548 r12 al p35 11

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 9, No. 12, 2018

32 | P a g e

www.ijacsa.thesai.org

TABLE V. FINAL GLOBAL PRIORITY ORDERED BY PROCESS

Final Global Priority Resources Process Round

0.24919355 r23 p11 1

0.28153226 r11 p11 2

0.27024194 r22 p11 2

0.13435484 r24 p11 2

0.22459677 r12 p11 5

0.07741935 r21 p11 6

0.17975806 r22 p12 4

0.15725806 r21 p12 4

0.14314516 r11 p12 4

0.22798387 r33 p12 5

0.17669355 r12 p12 6

0.11411290 r31 p12 6

0.32862903 r13 p13 1

0.30346774 r31 p13 2

0.34677419 r33 p13 3

0.22330645 r22 p13 3

0.21233871 r11 p13 3

0.19983871 r21 p13 3

0.17524194 r32 p13 3

0.27637097 r12 p13 4

0.24250000 r31 p21 3

0.10790323 r23 p21 3

0.13629032 r13 p21 4

0.13846774 r22 p21 5

0.14056452 r33 p21 7

0.13669355 r12 p21 7

0.11596774 r21 p22 5

0.09943548 r22 p22 6

0.07669355 r31 p22 7

0.09862903 r33 p22 8

0.46798387 r33 p23 1

0.33443548 r12 p23 3

0.09516129 r24 p23 3

0.19637097 r31 p23 4

0.11717742 r32 p23 4

0.02056452 r23 p24 6

0.02024194 r24 p24 6

0.02032258 r11 p24 8

0.06032258 r12 p24 10

0.26274194 r21 p25 2

0.18612903 r13 p31 3

0.15185484 r31 p31 5

0.18282258 r33 p31 6

0.07096774 r23 p32 4

0.09709677 r13 p32 5

0.08991935 r11 p32 5

0.03798387 r12 p32 10

0.04403226 r23 p33 5

0.04306452 r21 p33 7

0.04266129 r11 p33 7

0.02104839 r32 p33 7

0.10975806 r12 p33 8

0.03306452 r22 p33 8

0.02104839 r13 p33 8

0.06588710 r33 p33 9

0.37048387 r31 p34 1

0.34403226 r22 p34 1

0.30322581 r32 p34 1

0.18951613 r24 p34 1

0.40653226 r33 p34 2

0.39951613 r12 p34 2

0.25701613 r13 p34 2

0.17322581 r23 p34 2

0.06298387 r24 p35 4

0.04322581 r32 p35 6

0.05443548 r22 p35 7

0.04354839 r13 p35 7

0.02217742 r31 p35 9

0.04250000 r33 p35 10

0.01693548 r12 p35 11

0.06685484 r32 p36 5

0.04112903 r24 p36 5

0.06983871 r13 p36 6

0.06604839 r11 p36 6

0.04782258 r31 p36 8

0.02145161 r21 p36 8

0.08443548 r12 p36 9

0.01217742 r22 p36 9

0.01959677 r33 p36 10

0.47306452 r12 p37 1

0.35120968 r11 p37 1

0.33000000 r21 p37 1

0.23790323 r32 p37 2

0.28725806 r33 p37 4

Once the CDSAF table is completed, the Final Global
Priorities of the Process (FGPP) will be calculated:

FGPP1 = (0.24919355 + 0.28153226 + 0.27024194 +

0.13435484 + 0.22459677 + 0.07741935) / 6

FGPP2 = (0.17975806 + 0.15725806 + 0.14314516 +

0.22798387 + 0.17669355 + 0.11411290) / 6

FGPP3 = (0.32862903 + 0.30346774 + 0.34677419 +

0.22330645 + 0.21233871 + 0.19983871 + 0.17524194 +

0.27637097) / 7

FGPP4 = (0.24250000 + 0.10790323 + 0.13629032 +

0.13846774 + 0.14056452 + 0.13669355) / 6

FGPP5 = (0.11596774 + 0.09943548 + 0.07669355 +

0.09862903) / 4

FGPP6 = (0.46798387 + 0.33443548 + 0.09516129 +

0.19637097 + 0.11717742) / 5

FGPP7 = (0.02056452 + 0.02024194 + 0.02032258 +

0.06032258) / 4

FGPP8 = 0.26274194 / 1

FGPP9 = (0.18612903 + 0.15185484 + 0.18282258) / 3

FGPP10 = (0.07096774 + 0.09709677 + 0.08991935 +

0.03798387) / 4

FGPP11 = (0.04403226 + 0.04306452 + 0.04266129 +

0.02104839 + 0.10975806 + 0.03306452 + 0.02104839 +

0.06588710) / 8

FGPP12 = (0.37048387 + 0.34403226 + 0.30322581 +

0.18951613 + 0.40653226 + 0.39951613 + 0.25701613 +

0.17322581) / 8

FGPP13 = (0.06298387 + 0.04322581 + 0.05443548 +

0.04354839 + 0.02217742 + 0.04250000 + 0.01693548) / 7

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 9, No. 12, 2018

33 | P a g e

www.ijacsa.thesai.org

FGPP14 = (0.06685484 + 0.04112903 + 0.06983871 +

0.06604839 + 0.04782258 + 0.02145161 + 0.08443548 +

0.01217742 + 0.01959677) / 9

FGPP15 = (0.47306452 + 0.35120968 + 0.33000000 +

0.23790323 + 0.28725806) / 5

The CDSAF table ordered by process, as shown in
Table 5.

By calculating the FGPP for all the processes, as shown in
Table 5, a vector will be obtained, as shown in Table 6.

The elements of the FGPP vector must be ordered from
highest to lowest, in order to obtain the global priority order of
allocation of resources to processes, as can be seen in Table 7.

TABLE VI. FINAL GLOBAL PRIORITY OF THE PROCESS (FGPP)

Ordered Final Global Priority Assignment

0.20622312 p11

0.16649193 p12

0.25824597 p13

0.15040323 p21

0.09768145 p22

0.24222581 p23

0.03036291 p24

0.26274194 p25

0.17360215 p31

0.07399193 p32

0.04757057 p33

0.30544355 p34

0.04082949 p35

0.04770609 p36

0.33588710 p37

TABLE VII. ORDERED FINAL GLOBAL PRIORITY OF THE PROCESS

(OFGPP)

Ordered Final Global Priority Process

0.33588710 p37

0.30544355 p34

0.26274194 p25

0.25824597 p13

0.24222581 p23

0.20622312 p11

0.17360215 p31

0.16649193 p12

0.15040323 p21

0.09768145 p22

0.07399193 p32

0.04770609 p36

0.04757057 p33

0.04082949 p35

0.03036291 p24

The cardinalities (number of allocation of resources to
each process) obtained from each one of the OFGPP vector
processes in the CDSAF table will be calculated.

CP37= process cardinality(OFGPP1) in CDSAF = 5

CP34= process cardinality(OFGPP2) in CDSAF = 8

CP25= process cardinality(OFGPP3) in CDSAF = 1

CP13= process cardinality(OFGPP4) in CDSAF = 8

CP23= process cardinality(OFGPP5) in CDSAF = 5

CP11= process cardinality(OFGPP6) in CDSAF = 6

CP31= process cardinality(OFGPP7) in CDSAF = 3

CP12= process cardinality(OFGPP8) in CDSAF = 6

CP21= process cardinality(OFGPP9) in CDSAF = 6

CP22= process cardinality(OFGPP10) in CDSAF = 4

CP32= process cardinality(OFGPP11) in CDSAF = 4

CP36= process cardinality(OFGPP12) in CDSAF = 9

CP33= process cardinality(OFGPP13) in CDSAF = 8

CP35= process cardinality(OFGPP14) in CDSAF = 7

CP24= process cardinality(OFGPP15) in CDSAF = 4

Then, each one of the allocation of resources to processes
in the CDSAF table of each process of OFGPP vector must
be obtained. The total number of elements for each process
will be determined by the cardinality calculated in the
previous step.

OCDSAF1 = first element of the CDSAF for the process

(OFGPP1)

OCDSAF5 = last element of the CDSAF for the process

(OFGPP1)

OCDSAF5+1 = first element of the CDSAF for the (OFGPP2)

OCDSAF5+8 = last element of the CDSAF for the (OFGPP2)

process

OCDSAF5+8+1 = the element of the CDSAF for the (OFGPP3)

OCDSAF5+8+1+1 = first element of the CDSAF for the

(OFGPP4) process

OCDSAF5+8+1+8 = last element of the CDSAF for the

(OFGPP4) process

OCDSAF5+8+1+8+1 = first element of the CDSAF for the

(OFGPP5) process

OCDSAF5+8+1+8+5 = last element of the CDSAF for the

(OFGPP5) process

OCDSAF5+8+1+8+5+1 = first element of the CDSAF for the

(OFGPP6) process

OCDSAF5+8+1+8+5+6 = last element of the CDSAF for the

(OFGPP6) process

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 9, No. 12, 2018

34 | P a g e

www.ijacsa.thesai.org

OCDSAF5+8+1+8+5+6+1 = first element of the CDSAF for the

(OFGPP7) process

OCDSAF5+8+1+8+5+6+3 = last element of the CDSAF for the

(OFGPP7) process

OCDSAF5+8+1+8+5+6+3+1 = first element of the CDSAF for the

(OFGPP8) process

OCDSAF5+8+1+8+5+6+3+6 = last element of the CDSAF for the

(OFGPP8) process

OCDSAF5+8+1+8+5+6+3+6+1 = first element of the CDSAF for

the (OFGPP9) process

OCDSAF5+8+1+8+5+6+3+6+6 = last element of the CDSAF for

the (OFGPP9) process

OCDSAF5+8+1+8+5+6+3+6+6+1 = first element of the CDSAF for

the (OFGPP10) process

OCDSAF5+8+1+8+5+6+3+6+6+4 = last element of the CDSAF for

the (OFGPP10) process

OCDSAF5+8+1+8+5+6+3+6+6+4+1 = first element of the CDSAF

for the (OFGPP11) process

OCDSAF5+8+1+8+5+6+3+6+6+4+4 = last element of the CDSAF

for the (OFGPP11) process

OCDSAF5+8+1+8+5+6+3+6+6+4+4+1 = first element of the CDSAF

for the (OFGPP12) process

OCDSAF5+8+1+8+5+6+3+6+6+4+4+9 = last element of the CDSAF

for the (OFGPP12) process

OCDSAF5+8+1+8+5+6+3+6+6+4+4+9+1 = first element of the

CDSAF for the (OFGPP13) process

OCDSAF5+8+1+8+5+6+3+6+6+4+4+9+8 = last element of the

CDSAF for the (OFGPP13) process

OCDSAF5+8+1+8+5+6+3+6+6+4+4+9+8+1 = first element of the

CDSAF for the (OFGPP14) process

OCDSAF5+8+1+8+5+6+3+6+6+4+4+9+8+7 = last element of the

CDSAF for the (OFGPP14) process

OCDSAF5+8+1+8+5+6+3+6+6+4+4+9+8+7+1 = first element of the

CDSAF for the (OFGPP15) process

OCDSAF5+8+1+8+5+6+3+6+6+4+4+9+8+7+4 = last element of the

CDSAF for the (OFGPP15) process.

Table 8 shows the order of all the resource allocations for
each process, which one is the first process with greater global
priority, and is the one to which the resources are assigned
first. The complete table continues for each one of the requests
for each process (OCDSAF).

TABLE VIII. FINAL ORDER OF ALLOCATION OF EACH ONE OF THE

RESOURCES TO EACH OF ONE PROCESSES OF THE (OCDSAF)

Priority Resource Process Round

0.4730645 r12 p37 1

0.3512097 r11 p37 1

0.3300000 r21 p37 1

0.2379032 r32 p37 2

0.2872581 r33 p37 4

0.3704839 r31 p34 1

0.3440323 r22 p34 1

0.3032258 r32 p34 1

0.1895161 r24 p34 1

0.4065323 r33 p34 2

0.3995161 r12 p34 2

0.2570161 r13 p34 2

0.1732258 r23 p34 2

0.2627419 r21 p25 2

0.3286290 r13 p13 1

0.3034677 r31 p13 2

0.3467742 r33 p13 3

0.2233065 r22 p13 3

0.2123387 r11 p13 3

0.1998387 r21 p13 3

0.1752419 r32 p13 3

0.2763710 r12 p13 4

0.4679839 r33 p23 1

0.3344355 r12 p23 3

0.0951613 r24 p23 3

0.1963710 r31 p23 4

0.1171774 r32 p23 4

0.2491936 r23 p11 1

0.2815323 r11 p11 2

0.2702419 r22 p11 2

0.1343548 r24 p11 2

0.2245968 r12 p11 5

0.0774194 r21 p11 6

0.1861290 r13 p31 3

0.1518548 r31 p31 5

0.1828226 r33 p31 6

0.1797581 r22 p12 4

0.1572581 r21 p12 4

0.1431452 r11 p12 4

0.2279839 r33 p12 5

0.1766936 r12 p12 6

0.1141129 r31 p12 6

0.2425000 r31 p21 3

0.1079032 r23 p21 3

0.1362903 r13 p21 4

0.1384677 r22 p21 5

0.1405645 r33 p21 7

0.1366936 r12 p21 7

0.1159677 r21 p22 5

0.0994355 r22 p22 6

0.0766936 r31 p22 7

0.0986290 r33 p22 8

0.0709677 r23 p32 4

0.0970968 r13 p32 5

0.0899194 r11 p32 5

0.0379839 r12 p32 10

0.0668548 r32 p36 5

0.0411290 r24 p36 5

0.0698387 r13 p36 6

0.0660484 r11 p36 6

0.0478226 r31 p36 8

0.0214516 r21 p36 8

0.0844355 r12 p36 9

0.0121774 r22 p36 9

0.0195968 r33 p36 10

0.0440323 r23 p33 5

0.0430645 r21 p33 7

0.0426613 r11 p33 7

0.0210484 r32 p33 7

0.1097581 r12 p33 8

0.0330645 r22 p33 8

0.0210484 r13 p33 8

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 9, No. 12, 2018

35 | P a g e

www.ijacsa.thesai.org

0.0658871 r33 p33 9

0.0629839 r24 p35 4

0.0432258 r32 p35 6

0.0544355 r22 p35 7

0.0435484 r13 p35 7

0.0221774 r31 p35 9

0.0425000 r33 p35 10

0.0169355 r12 p35 11

0.0205645 r23 p24 6

0.0202419 r24 p24 6

0.0203226 r11 p24 8

0.0603226 r12 p24 10

In this way, all the requests of resources from all the
processes were answered, considering the mutual exclusion
and the priorities of the processes, the nodal priorities and the
final priorities, taking into account the strict consensus
requirements established for this scenario.

V. EVALUATION

The data structure mentioned above and the aggregation
method used are not fully covered by traditional methods.

This work considers the global average of priorities that
each process has over all the resources of all its assignments in
the different rounds, but for the final global allocation, it
respects the same order of allocation of each resource in the
different rounds in which they were assigned in the general
scenario. That is, the choice of which process will be granted
resources, is established with the global average of priorities
in all assignments, but the order in which those assignments
are to be made, respects the one in the table FASD, for each
process.

The proposed model manages to establish a consensus that
allows processes to access all their resources sequentially and
that these cannot be removed until the process that holds them
releases them. The order of assignment will be determined by
the overall average priority of all the assignments. The
distributed system regulates and constantly updates the local
state of each node, the decisions of access to resources modify
these states so it must be readjusted repeatedly, guaranteeing
mutual exclusion and reordering new priorities. The method
must be repeated whenever there are processes that require
shared resources.

VI. CONCLUSIONS

The proposed model includes, as a particular case, a
method that consists in considering the global priority of the
processes, instead of a group of state variables of each node.
As the processes are executed in different processors using all
their resources, there is no conflict in running several
processes in the same processor. In this scenario, no account is
taken of the amount of time each process will use in a
processor of a particular node. Nor is the amount of time in
which each resource will be assigned to a particular process
Another notable feature of the proposal is its ease of
implementation in the environment of a centralized
administrator of shared resources of a distributed system.

VII. FUTURE LINES OF RESEARCH

It is considered to develop decision models from the
cognitive point of view for decision making in groups of

processes, contemplating the principles of cybernetics of
second order, in the context of complex systems of self-
regulation, which transcend the traditional approach of
computer science considering the possibility of imputation of
missing data, for example, as a consequence of problems in
communications between processes, and fuzzyfication of
variables to support situations where it is not possible or
convenient to express exact values.

In addition, the aim is to investigate the impact on data
traffic of applying the proposed method and comparing it with
other classical methods. To this end, a simulator will be
developed in which the different possible scenarios will be
considered to allow the system to predict, compare and
optimise the behaviour of its simulated processes in a very
short time without the cost or risk of carrying them out,
making it possible to represent the processes, resources and
nodes in a dynamic model.

Another possible line of research considers aspects related
to security in the execution of processes, access to resources
and communication between nodes.

ACKNOWLEDGMENT

This work has been supported by the Project: “Decision
models and aggregation operators for process management in
distributed systems”, code 16F001 of the Northeastern
National University (Argentina).

REFERENCES

[1] S. Tanenbaum, Sistemas Operativos Distribuidos. Prentice - Hall
Hispanoamericana S.A., México, 1996.

[2] A. S. Tanenbaum, Sistemas Operativos Modernos. 3ra. Edición.
Pearson Educación S. A., México, 2009.

[3] D. Agrawal, A. El Abbadi, “An Efficient and Fault-Tolerant Solution of
Distributed Mutual Exclusion”. ACM Trans. on Computer Systems.
Vol. 9, pp. 1-20, USA, 1991.

[4] G. Ricart, A. K. Agrawala, “An Optimal Algorithm for Mutual
Exclusion in Computer Networks”. Commun. of the ACM. Vol. 24, pp.
9-17, 1981.

[5] G. Cao, M. Singhal, “A Delay-Optimal Quorum-Based Mutual
Exclusion Algorithm for Distributed Systems”. IEEE Transactions on

Parallel and Distributed Systems. Vol. 12, no. 12, pp. 1256-1268.
USA, 2001.

[6] S. Lodha, A. Kshemkalyani, “A Fair Distributed Mutual Exclusion
Algorithm”. IEEE Trans. Parallel and Distributed Systems. Vol. 11,
no. 6, pp. 537-549, USA, 2000.

[7] W. Stallings, Sistemas Operativos. 5ta. Edición. Pearson Educación
S.A., España, 2005.

[8] G. Andrews, Foundation of Multithreaded, Parallel, and Distributed
Programming. Reading, MA: Addison-Wesley. USA, 2000.

[9] R. Guerraoui, L. Rodrigues, Introduction to Reliable Distributed
Programming. Berlin, Springer-Verlag, 2006.

[10] N. Lynch, Distributed Algorithms. Morgan Kauffman, San Mateo, CA,
USA, 1996.

[11] G. Tel, Introduction to Distributed Algorithms. Cambridge University
Press, 2nd ed. Cambridge, UK, 2000.

[12] H. Attiya, J. Welch, Distributed Computing Fundamentals,

Simulations, and Advanced Topics, John Wiley, 2nd ed., New York,
USA, 2004.

[13] P. Saxena, J. Rai, “A Survey of Permission-based Distributed Mutual
Exclusion Algorithms”. Computer Standards and Interfaces, vol.
(25)2, pp 159-181, 2003.

[14] M. Velazquez, “A Survey of Distributed Mutual Exclusion Algorithms”.
Technical Report CS-93-116, University of Colorado at Boulder, 1993.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 9, No. 12, 2018

36 | P a g e

www.ijacsa.thesai.org

[15] S.-D. Lin, Q. Lian, M. Chen, Z. Zhang, “A Practical Distributed Mutual
Exclusion Protocol in Dynamic Peer-to-Peer Systems”. Proc. Third

International Workshop on Peer-to-Peer Systems, vol. 3279 of Lect.
Notes Compo Sc., (La Jolla, CA). Springer-Verlag, Berlin, 2004.

[16] L. Sha, R. Rajkumar, J. P. Lehoczky, “Priority inheritance protocols: An
approach to real-time synchronization”. Computers, IEEE
Transactions on, vol. 39(9), pp1175–1185, 1990.

[17] S. Greco, B. Matarazzo, R. Slowinski, “Rough sets methodology for
sorting problems in presence of multiple attributes and criteria”,
European Journal of Operational Research, 2002, 138, pp. 247-259.

[18] X. Chao, G. Kou, Y. Peng, “An optimization model integrating different
preference formats”, 6th International Conference on Computers
Communications and Control (ICCCC), 2016, pp. 228 - 231.

[19] D. L. La Red Martínez, J. C. Acosta, “Aggregation Operators Review -
Mathematical Properties and Behavioral Measures”, International

Journal of Intelligent Systems and Applications (IJISA), Hong Kong,
2015, 7, (10), pp. 63-76.

[20] D. L. La Red Martínez, N. Pinto, “Brief Review of Aggregation
Operators”, Wulfenia Journal, Austria, 2015, 22, (4), pp. 114-137.

[21] R. Yager, “On Ordered Weighted Averaging Aggregation Operators in
Multi-Criteria Decision Making”, IEEE Trans. On Systems, Man and
Cybernetics, 1988, 18, (1), pp. 183-190.

[22] R. Yager, “Families of OWA Operators. Fuzzy Sets and Systems”,
1993, 59, (2), pp. 125-148.

[23] R. Yager, Kacprzyk J.: “The Ordered Weighted Averaging Operators”,
Theory and Applications, Kluwer Academic Publishers, USA, 1997.

[24] R. Yager, Pasi, G.: “Modelling Majority Opinion in Multi-Agent
Decision Making”, International Conference on Information

Processing and Management of Uncertainty in Knowledge-Based
Systems, 2002.

[25] Y. Dong, Zhang, H., Herrera-Viedma, E., “E. Consensus reaching model
in the complex and dynamic MAGDM problem”, Knowledge Based
Systems, Elsevier, 2016, 106, pp. 206-219.

[26] D. L. La Red Martínez, “Aggregation Operator for Assignment of
Resources in Distributed Systems.” International Journal of

Advanced Computer Science and Applications (IJACSA). The
Science and Information (SAI) Organization, England, U.K, 2017, 8,
(10), pp. 406-419, ISSN N° 2156-5570.

[27] D. L. La Red Martínez, J. C. Acosta, F. Agostini, “Assignment of
Resources in Distributed Systems”. 9th International Multi-

Conference on Complexity, Informatics and Cybernetics (IMCIC
2018), Orlando, USA, 2018.

