
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

42 | P a g e

www.ijacsa.thesai.org

Software vs Hardware Implementations for

Real-Time Operating Systems

Nicoleta Cristina GAITAN
1
, Ioan Ungurean

2

Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava

Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies,

and Distributed Systems for Fabrication and Control (MANSiD)

Suceava, Romania

Abstract—In the development of the embedded systems a very

important role is played by the real-time operating system

(RTOS). They provide basic services for multitasking on small

microcontrollers and the support to implement the deadlines

imposed by critical systems. The RTOS used can have important

consequences in the performance of the embedded system. In

order to eliminate the overhead generated by RTOS, the RTOS

primitives have begun to be implemented in hardware. Such a

solution is the nMPRA architecture (Multi Pipeline Register

Architecture - n degree of multiplication) that implements in

hardware of all primitives of an RTOS. This article makes a

comparison between software RTOS and nMPRA systems in

terms of response time to an external event. For comparison, we

use three of the most commonly used RTOS in developing

embedded systems: FreeRTOS, uC/OS-III and Keil RTX. These

RTOSs are executed on a microcontroller that works at the same

frequency as the implementations of the nMPRA architecture on

a FPGA system.

Keywords—Embedded system; real time operating systems;

microcontrollers; FPGA

I. INTRODUCTION

Real-time operating systems (RTOSs) [1] are very
important at the development of software applications for
embedded systems. They allow the modular design and
development of the software application and ensure the
deadlines imposed by the critical systems. Two very important
features of these operating systems are the predictability and
the reliability. The RTOS systems are very important in
developing software applications for embedded systems
because they provide basic services such as multitasking
services for synchronization and communication between tasks
[2]. Usually, these RTOSs are used for microcontrollers
(MCUs) or processors that do not use virtual memory and that
have limited code and data memory [3].

In the selecting of an RTOS for embedded application
development, several parameters are considered. For critical
applications, there are very important the reliability,
predictability and the responsive time to the internal or external
events (Worst Case Execution Time – WCET). It should be
specified that the response time depends on the implementation
mode in RTOS but is closely related to the frequency of
operation of the MCU and the way of the assignment of the
priorities to these events. In addition to these parameters,
licensing costs, code and data memory requirements, RTOS

overhead and the expertise/experience in using an RTOS used
in previous projects are considered [4].

In an embedded market survey published in 2017, 67% of
the embedded projects in progress in 2017 use a form of
operating system (RTOS, kernel, software executive). Those
who do not use an operating system have specified that they do
not need it because the applications being very simple and
there are not real time application. This study shows a growing
trend in the utilization of the open source operating systems
and a downward trend in the utilization of the commercial
operating systems from 2012 to 2017. The main reason for
choosing a commercial operating system is the real-time
capabilities [5].

The most used operating systems in the ongoing projects in
2017 are Embedded Linux (22%), FreeRTOS (20%), OS
developed in house (19%), Android (13%), Debian (13%),
Ubuntu (11%), Window Embedded 7 (8%), Texas Instruments
RTOS (5%), Texas Instruments (DSP/BIOS), Micrium
(uC/OS-III) Windows 7 Compact or earlier (5%), Keil (RTX)
(4%), Micrium (uC/OS-II) (4%), Wind River (VxWorks) (4%).
It can be noticed that for small microcontrollers, with low code
and data memory and without virtual memory that can be used
to develop hard real-time applications (such as those based on
ARM Cortex Mx or ARM Cortex Rx), the most used RTOS
are FreeRTOS, Texas Instruments RTOS, Micrium uC/OS-III
and uC/OS-II. On the systems that use microprocessors virtual
memory systems (such as those based on ARM Cortex Ax), it
is possible to develop only the soft real-time applications,
which are of the best effort type [5].

Typically, embedded applications are a combination of
hard real time and soft real time tasks. In order to help the
embedded software developers, MCU manufacturers have
begun to provide solutions with one or more MCUs for hard
real time tasks (for example ARM Cortex M0) and one or more
MCUs or microprocessors (such as ARM Cortex A9) for soft
real time application. Examples of such solutions are Sitara
System on Chip from Texas Instruments or i.MX 7 Series
Application Processors from NXP [6][7].

Since the development of FPGA systems, solutions for the
implementation of RTOS in hardware have begun to be
designed and developed in order to eliminate the overhead
generated by the software RTOSs. These systems are
experimental, not being widely adopted by the embedded

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

43 | P a g e

www.ijacsa.thesai.org

developers. An example of such system is the nMPRA
architecture presented in [8].

This paper presents a comparison of the performances
obtained by the real time operating systems implemented in the
software (FreeRTOS, Keil RTX and uC/ OS-III) and the
nMPRA architecture that implements in hardware the
primitives of a real-time operating system [8]. The comparison
is performed in terms of the response time of the task with the
highest priority at the trigger of an event expected by this task.

Further, this paper is structured as follows: Section II
presents a brief description about software RTOSs; Section III
presents some solutions for RTOS primitives implemented in
hardware, and in Section IV are presented the experimental
results achieved. The conclusions are drawn in Section V.

II. SOFTWARE IMPLEMENTATION OF THE RTOSS

RTOSs are operating systems specially designed for
embedded applications with real time requirements. For this
reason, the overhead generated by the kernel execution is very
important because it can interfere with response time to
external events. Within these systems, the interrupts handling
play an important role. In almost all RTOS interrupts are
handled outside the kernel, the task being able to synchronize
or receive messages from interrupt service routines [9].

According to the market study presented in, the most used
RTOS for small microcontrollers is FreeRTOS. This is open
source, providing basic services for multitasking,
synchronization, and inter-task communication based on a
preemptive kernel with static priorities. An analysis of the
performances of this RTOS is presented in [12], where the
evolution of FreeRTOS is followed over the course of 10 years.
From this study, it can be concluded that FreeRTOS has
improved its performance in terms real time facilities [5][10]
[11].

Another RTOS widely used is Micrium uC/OS-III. This is a
commercial RTOS designed to be used in embedded systems
with hard real time requirements based on a preemptive kernel
with static priorities. It provides all the services of a
multitasking system in terms of synchronization and inter-task
communication. It is provided as sources in ANSI-C being
ported to a wide range of microcontrollers. His predecessor
was Micrium uC/OS-II, which is still used in many projects [5]
[9].

A royalty-free real time operating system based on CMSIS-
RTOS API is Keil RTX. This was designed for applications
based on microcontrollers. In the CMSIS-PACK package for
Keil MDK is included the RTX kernel, along with source files
and libraries. Keil RTX delivers benefits like task scheduling,
multitasking, inter task communication, and shorter ISR system
management [13].

A comparison of these RTOS in terms of time for task
switching is presented in [3]. These comparisons are made by
using three types of synchronization objects: events,
semaphores, and mutex. The best performances are obtained
for Keil RTX, followed by uC/OS-II and rt-thread. The lowest
performance is obtained for FreeRTOS (time is approximately

twice as high as Keil RTX). From these tests, it can be seen
that the most widely used open source RTOS in embedded
projects has much lower performance than commercial
solutions represented by Keil RTX and uC/OS-II. This is
because licensing costs can be an important criterion in
selecting an RTOS.

III. HARDWARE IMPLEMENTATION OF THE RTOSS

With the development of FPGAs, a new trend has emerged
through the hardware implementation of the primitives of an
RTOS. Software RTOS treats interruptions outside the
executive, interrupting any task running, which means that they
can lead to missed deadlines when there is more than one
interruption at the same time. To increase the predictability of
the RTOS behavior, they can be implemented in hardware. To
this end, the nMPRA architecture (Multi Pipeline Register
Architecture - n degree of multiplication) was suggested which,
together with nHSE (Hardware Scheduler Engine for n tasks),
are a solution of a microcontroller with RTOS implemented in
hardware. The nMPRA architecture, together with the nHSE
module, is an innovative solution with a response time to
external events of 1-3 processor cycles, which means a
significant improvement over the software solutions of real-
time operating systems or over those of software / hardware
hybrids. The nMPRA architecture, defined in [8], uses a 5-
stage implementation MIPS pipeline. This is a very strong
architecture due to its proprieties, namely: switching between
tasks is usually carried out in a single machine cycle or in a
maximum of three machine cycles when working with global
memory. The system’s reaction to an external event will not
exceed 1.5 clock cycles if the event is attached to a higher
priority task than the current task. The pipeline is not the reset;
as a result, there is no need to restore/save the context, due to
the multiplication of resources (PC, pipeline registers and
registry file). It uses a powerful instruction through which a
task can wait for various types of events (time, mutex, event,
interrupt, timers for deadlines, etc.). The nMPRA is provided
with distributed interrupt controller from which the interrupt
inherits the task priority; it supports a static scheduling and has
support for the dynamic scheduling of tasks. This architecture
has been updated continuously [14][15][16].

An example of such operating systems is the ReconOS that
is used for reconfigurable computing. This embedded operating
system offers OS services for hardware and software
execution. It provides a standardized interface that permit to
include hardware accelerators. This solution is hardware-
software co-design of a RTOS [17].

Another solution for OS hardware implementation is
mosartMCU. It is implemented around a 32-bit RISC-V
microcontroller and implements most of the OS directives in
hardware. This solution achieves a lower response time for the
interrupt handling [18].

μC /OS-III HW-RTOS is a hardware implementation of the
μC/OS-III operating system. It implements in hardware the
primitives of the μC /OS-III with a significant improvement in
performance in terms of response time to internal and external
events. It is implemented in R-IN32M3 from Renesas around
an ARM Cortex M3 MCU [19].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

44 | P a g e

www.ijacsa.thesai.org

Fig. 1. Time Diagram of Test Applications.

In [20] the authors present the Real-Time Task Manager
(RTM) that is an extension for the processor that aims to
eliminate the overhead of RTOS primitives. This solution
explore the execution in parallel and in hardware the RTOS
primitives, function such as scheduling, synchronization
primitives, and time management. This solution achieved a
decrease of the response time by an order of magnitude.

IV. PERFORMANCE COMPARISON

For the experimental tests, it used an implementation of the
nMPRA with four task (sCPU) based on an MIPS processor at
33MHz on the Xilinx Zynq-7000 SoC ZC706 Evaluation Kit.
For this reason, a microcontroller with the same operating
frequency will be used for software operating systems. In this
case, it has been used the STM32 NUCLEO-L053R system
that is based on the STM32L053R8 ARM Cortex ™ -M0+
MCU, which can be programmed to operate at a frequency of
32MHz.

In this case, it is desirable to measure the response time to
an external event. A button connected to a pin port of the
microcontroller will generate the external event. This port will
generate an external interrupt that must be handled by the task
with the higher priority from the system. The higher priority
task will remain blocked on the event, and when it goes into

run state in response to the event, it will pass a port pin to low.
Fig. 1 presents this mode of operation. It can be noted that the
task with the highest priority is waiting an event. The event is
triggered by pressing the test button (the port at which it is
connected will go from high to low). After a time that depends
on the operating system and the scheduler operation, the task
with the highest priority will pass a second test pins port to the
low. Thus, using a two-probe oscilloscope connected to the two
ports, the response time to the external event can be measured.

In order to implement these performance tests, we will use
three software RTOSs: uC-OS/III, Keil RTX, and FreeRTOS.
These are the most used RTOSs for small MCU systems
according to the study presented in [5]. The chosen RTOSs
systems do not allow the direct attachment of an interrupt to a
task, the interrupt service routines being executed outside the
kernel. In the present case, for each RTOS, a multi-task
application has been developed in which, after the initialization
part, the task with the higher priority enters in the waiting state
for an event. In the external interrupt service routine for the
port that is connected to the test button, the expected event is
triggered and the scheduler is executed. The scheduler will
select the task with the higher priority for execution. This task
will pass to low the second test pin port as soon as it enter in
execution state.

Fig. 2. Response Time to a External Event.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

45 | P a g e

www.ijacsa.thesai.org

In order to implement this performance test on nMPRA, the
external interrupt associated with the pin connected to the test
button is attached to the task with the higher priority. After the
initialization part, the task with the higher priority will wait the
occurrence of an attached event (in this case the external
interrupt). When the button is pressed, the external interrupt is
triggered and the hardware scheduler will select the task with
the higher priority for the execution. This task will pass to low
the second test pin port as soon as it enters in execution state.

The results for the four tests (three software RTOSs and
one hardware RTOS) are shown in Fig. 2. It can be noticed that
the response time for the hardware RTOS is very small
compared to software RTOS because the overhead generated
by a software RTOS has been eliminated. Although hardware
RTOSs have very good performances, they are not used in the
industry because they are specialized RTOSs where
programming is different and the users are very reluctant,
preferring to use software RTOSs that have demonstrated their
reliability in previous projects.

V. CONCLUSIONS

In this paper, it was presented a comparison between three
software RTOSs and one hardware RTOS hardware in terms of
response time to an external event. From this comparison, it
was observed that the shortest response time is obtained by the
RTOS implemented in hardware. This happens because the
hardware implementation eliminates the overhead generated by
software RTOS. From the tests it can be noticed that the
weakest performances are obtained by the open source RTOS.
However, FreeRTOS is the most widely used RTOS in
embedded projects on small microcontrollers in 2017.
Although much better performance are obtained with hardware
implementations, the software RTOSs are still used because
they are more customized and they were tested in very many
projects. They can also be executed on a wide range of
microcontrollers.

ACKNOWLEDGMENT

This work was supported by a grant of the Romanian
National Authority for Scientific Research and Innovation,
CNCS/CCCDI-UEFISCDI, Contract no. 220PED⁄2017, PN-
III-P2-2.1-PED-2016-1473, within PNCDI III.

REFERENCES

[1] Zelenova, S.A. and Zelenov, S.V., 2018. Schedulability Analysis for
Strictly Periodic Tasks in RTOS. Programming and Computer Software,
44(3), pp.159-169. https://doi.org/10.1134/S0361768818030076

[2] Wang, K. C. "Models of Embedded Systems." Embedded and Real-
Time Operating Systems. Springer, Cham, 2017. 95-111.

[3] I. Ungurean and N. C. Gaitan, "Performance analysis of tasks
synchronization for real time operating systems," 2018 International
Conference on Development and Application Systems (DAS), Suceava,
2018, pp. 63-66. doi: 10.1109/DAAS.2018.8396072

[4] G. C. Buttazzo. “Hard Real-Time Computing Systems:Predictable
Scheduling Algorithms and Applications”, Springer Science & Business
Media, 2011.

[5] 2017 Embedded Markets Study, Integrating IoT and Advanced
Technology Designs, Application Development & Processing
Environments, https://m.eet.com/media/1246048/2017-embedded-
market-study.pdf

[6] Sitara™ Processors, http://www.ti.com/processors/sitara-
arm/overview.html

[7] i.MX 7 Series Applications Processors: Multicore Arm® Cortex®-A7,
Cortex-M4, https://www.nxp.com/products/processors-and-
microcontrollers/arm-based-processors-and-mcus/i.mx-applications-
processors/i.mx-7-processors:IMX7-SERIES

[8] V. G. Gaitan, N. C. Gaitan and I. Ungurean, "CPU Architecture Based
on a Hardware Scheduler and Independent Pipeline Registers," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23,
no. 9, pp. 1661-1674, Sept. 2015. doi: 10.1109/TVLSI.2014.2346542

[9] LABROSSE, Jean J. uC/OS-III, The Real-Time Kernel, or a High
Performance, Scalable, ROMable, Preemptive, Multitasking Kernel for
Microprocessors, Microcontrollers & DSPs. Micrium Press, 2009,
ISBN:0982337531 9780982337530.

[10] The FreeRTOS™ project website. http://www.freertos.org. Accessed 29
Oct 2018.

[11] FERREIRA, Joao F., et al. Automated verification of the FreeRTOS
scheduler in Hip/Sleek. International Journal on Software Tools for
Technology Transfer, 2014, 16.4: 381-397

[12] GUAN, Fei, et al. Open source FreeRTOS as a case study in real-time
operating system evolution. Journal of Systems and Software, 2016,
118: 19-35.

[13] VIRUTHAMBAL, K., et al. RTOS Based Dynamic Scheduler in Power
Quality Applications. International Journal of Scientific Engineering and
Technology, 2013, 2.6: 554-559.

[14] I. Zagan and V. G. Găitan, "Implementation of nMPRA CPU
architecture based on preemptive hardware scheduler engine and
different scheduling algorithms," in IET Computers & Digital
Techniques, vol. 11, no. 6, pp. 221-230, 11 2017.

[15] I. Zagan, V. G. Gaitan, "Improving the Performances of the nMPRA
Processor using a Custom Interrupt Management Scheduling Policy,"
Advances in Electrical and Computer Engineering, vol.16, no.4, pp.45-
50, 2016, doi:10.4316/AECE.2016.04007

[16] N. C. Gaitan, "Enhanced Interrupt Response Time in the nMPRA based
on Embedded Real Time Microcontrollers," Advances in Electrical and
Computer Engineering, vol.17, no.3, pp.77-84, 2017,
doi:10.4316/AECE.2017.03010

[17] A. Agne et al., "ReconOS: An Operating System Approach for
Reconfigurable Computing," in IEEE Micro, vol. 34, no. 1, pp. 60-71,
Jan.-Feb. 2014. doi: 10.1109/MM.2013.110

[18] F. Mauroner and M. Baunach, "mosartMCU: Multi-core operating-
system-aware real-time microcontroller," 2018 7th Mediterranean
Conference on Embedded Computing (MECO), Budva, 2018, pp. 1-4.
doi: 10.1109/MECO.2018.8406007

[19] Jean J. Labrosse, “Hardware-Accelerated RTOS: µC/OS-III HW-RTOS
and the R-IN32M3”, https://www.micrium.com/hardware-accelerated-
rtos-%C2%B5cos-iii-hw-rtos-and-the-r-in32m3/

[20] P. Kohout, B. Ganesh and B. Jacob, "Hardware support for real-time
operating systems," First IEEE/ACM/IFIP International Conference on
Hardware/ Software Codesign and Systems Synthesis (IEEE Cat.
No.03TH8721), Newport Beach, CA, USA, 2003, pp. 45-51., doi:
10.1109/CODESS.2003.127525

