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Abstract—In the development of the embedded systems a very 

important role is played by the real-time operating system 

(RTOS). They provide basic services for multitasking on small 

microcontrollers and the support to implement the deadlines 

imposed by critical systems. The RTOS used can have important 

consequences in the performance of the embedded system. In 

order to eliminate the overhead generated by RTOS, the RTOS 

primitives have begun to be implemented in hardware. Such a 

solution is the nMPRA architecture (Multi Pipeline Register 

Architecture - n degree of multiplication) that implements in 

hardware of all primitives of an RTOS. This article makes a 

comparison between software RTOS and nMPRA systems in 

terms of response time to an external event. For comparison, we 

use three of the most commonly used RTOS in developing 

embedded systems: FreeRTOS, uC/OS-III and Keil RTX. These 

RTOSs are executed on a microcontroller that works at the same 

frequency as the implementations of the nMPRA architecture on 

a FPGA system. 
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I. INTRODUCTION 

Real-time operating systems (RTOSs) [1] are very 
important at the development of software applications for 
embedded systems. They allow the modular design and 
development of the software application and ensure the 
deadlines imposed by the critical systems. Two very important 
features of these operating systems are the predictability and 
the reliability. The RTOS systems are very important in 
developing software applications for embedded systems 
because they provide basic services such as multitasking 
services for synchronization and communication between tasks 
[2]. Usually, these RTOSs are used for microcontrollers 
(MCUs) or processors that do not use virtual memory and that 
have limited code and data memory [3]. 

In the selecting of an RTOS for embedded application 
development, several parameters are considered. For critical 
applications, there are very important the reliability, 
predictability and the responsive time to the internal or external 
events (Worst Case Execution Time – WCET). It should be 
specified that the response time depends on the implementation 
mode in RTOS but is closely related to the frequency of 
operation of the MCU and the way of the assignment of the 
priorities to these events. In addition to these parameters, 
licensing costs, code and data memory requirements, RTOS 

overhead and the expertise/experience in using an RTOS used 
in previous projects are considered [4]. 

In an embedded market survey published in 2017, 67% of 
the embedded projects in progress in 2017 use a form of 
operating system (RTOS, kernel, software executive). Those 
who do not use an operating system have specified that they do 
not need it because the applications being very simple and 
there are not real time application. This study shows a growing 
trend in the utilization of the open source operating systems 
and a downward trend in the utilization of the commercial 
operating systems from 2012 to 2017. The main reason for 
choosing a commercial operating system is the real-time 
capabilities [5]. 

The most used operating systems in the ongoing projects in 
2017 are Embedded Linux (22%), FreeRTOS (20%), OS 
developed in house (19%), Android (13%), Debian (13%), 
Ubuntu (11%), Window Embedded 7 (8%), Texas Instruments 
RTOS (5%), Texas Instruments (DSP/BIOS), Micrium 
(uC/OS-III) Windows 7 Compact or earlier (5%), Keil (RTX) 
(4%), Micrium (uC/OS-II) (4%), Wind River (VxWorks) (4%). 
It can be noticed that for small microcontrollers, with low code 
and data memory and without virtual memory that can be used 
to  develop hard real-time applications (such as those based on 
ARM Cortex Mx or ARM Cortex Rx), the most used RTOS 
are FreeRTOS, Texas Instruments RTOS, Micrium uC/OS-III 
and uC/OS-II. On the systems that use microprocessors virtual 
memory systems (such as those based on ARM Cortex Ax), it 
is possible to develop only the soft real-time applications, 
which are of the best effort type [5]. 

Typically, embedded applications are a combination of 
hard real time and soft real time tasks. In order to help the 
embedded software developers, MCU manufacturers have 
begun to provide solutions with one or more MCUs for hard 
real time tasks (for example ARM Cortex M0) and one or more 
MCUs or microprocessors (such as ARM Cortex A9) for soft 
real time application. Examples of such solutions are Sitara 
System on Chip from Texas Instruments or i.MX 7 Series 
Application Processors from NXP [6][7]. 

Since the development of FPGA systems, solutions for the 
implementation of RTOS in hardware have begun to be 
designed and developed in order to eliminate the overhead 
generated by the software RTOSs. These systems are 
experimental, not being widely adopted by the embedded 
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developers. An example of such system is the nMPRA 
architecture presented in [8]. 

This paper presents a comparison of the performances 
obtained by the real time operating systems implemented in the 
software (FreeRTOS, Keil RTX and uC/ OS-III) and the 
nMPRA architecture that implements in hardware the 
primitives of a real-time operating system [8]. The comparison 
is performed in terms of the response time of the task with the 
highest priority at the trigger of an event expected by this task. 

Further, this paper is structured as follows: Section II 
presents a brief description about software RTOSs; Section III 
presents some solutions for RTOS primitives implemented in 
hardware, and in Section IV are presented the experimental 
results achieved. The conclusions are drawn in Section V. 

II. SOFTWARE IMPLEMENTATION OF THE RTOSS 

RTOSs are operating systems specially designed for 
embedded applications with real time requirements. For this 
reason, the overhead generated by the kernel execution is very 
important because it can interfere with response time to 
external events. Within these systems, the interrupts handling 
play an important role. In almost all RTOS interrupts are 
handled outside the kernel, the task being able to synchronize 
or receive messages from interrupt service routines [9]. 

According to the market study presented in, the most used 
RTOS for small microcontrollers is FreeRTOS. This is open 
source, providing basic services for multitasking, 
synchronization, and inter-task communication based on a 
preemptive kernel with static priorities. An analysis of the 
performances of this RTOS is presented in [12], where the 
evolution of FreeRTOS is followed over the course of 10 years. 
From this study, it can be concluded that FreeRTOS has 
improved its performance in terms real time facilities [5][10] 
[11]. 

Another RTOS widely used is Micrium uC/OS-III. This is a 
commercial RTOS designed to be used in embedded systems 
with hard real time requirements based on a preemptive kernel 
with static priorities. It provides all the services of a 
multitasking system in terms of synchronization and inter-task 
communication. It is provided as sources in ANSI-C being 
ported to a wide range of microcontrollers. His predecessor 
was Micrium uC/OS-II, which is still used in many projects [5] 
[9]. 

A royalty-free real time operating system based on CMSIS-
RTOS API is Keil RTX. This was designed for applications 
based on microcontrollers. In the CMSIS-PACK package for 
Keil MDK is included the RTX kernel, along with source files 
and libraries. Keil RTX delivers benefits like task scheduling, 
multitasking, inter task communication, and shorter ISR system 
management [13]. 

A comparison of these RTOS in terms of time for task 
switching is presented in [3]. These comparisons are made by 
using three types of synchronization objects: events, 
semaphores, and mutex. The best performances are obtained 
for Keil RTX, followed by uC/OS-II and rt-thread. The lowest 
performance is obtained for FreeRTOS (time is approximately 

twice as high as Keil RTX). From these tests, it can be seen 
that the most widely used open source RTOS in embedded 
projects has much lower performance than commercial 
solutions represented by Keil RTX and uC/OS-II. This is 
because licensing costs can be an important criterion in 
selecting an RTOS. 

III. HARDWARE IMPLEMENTATION OF THE RTOSS 

With the development of FPGAs, a new trend has emerged 
through the hardware implementation of the primitives of an 
RTOS. Software RTOS treats interruptions outside the 
executive, interrupting any task running, which means that they 
can lead to missed deadlines when there is more than one 
interruption at the same time. To increase the predictability of 
the RTOS behavior, they can be implemented in hardware. To 
this end, the nMPRA architecture (Multi Pipeline Register 
Architecture - n degree of multiplication) was suggested which, 
together with nHSE (Hardware Scheduler Engine for n tasks), 
are a solution of a microcontroller with RTOS implemented in 
hardware. The nMPRA architecture, together with the nHSE 
module, is an innovative solution with a response time to 
external events of 1-3 processor cycles, which means a 
significant improvement over the software solutions of real-
time operating systems or over those of software / hardware 
hybrids. The nMPRA architecture, defined in [8], uses a 5-
stage implementation MIPS pipeline. This is a very strong 
architecture due to its proprieties, namely: switching between 
tasks is usually carried out in a single machine cycle or in a 
maximum of three machine cycles when working with global 
memory. The system’s reaction to an external event will not 
exceed 1.5 clock cycles if the event is attached to a higher 
priority task than the current task. The pipeline is not the reset; 
as a result, there is no need to restore/save the context, due to 
the multiplication of resources (PC, pipeline registers and 
registry file). It uses a powerful instruction through which a 
task can wait for various types of events (time, mutex, event, 
interrupt, timers for deadlines, etc.). The nMPRA is provided 
with distributed interrupt controller from which the interrupt 
inherits the task priority; it supports a static scheduling and has 
support for the dynamic scheduling of tasks. This architecture 
has been updated continuously [14][15][16]. 

An example of such operating systems is the ReconOS that 
is used for reconfigurable computing. This embedded operating 
system offers OS services for hardware and software 
execution. It provides a standardized interface that permit to 
include hardware accelerators. This solution is hardware-
software co-design of a RTOS [17]. 

Another solution for OS hardware implementation is 
mosartMCU. It is implemented around a 32-bit RISC-V 
microcontroller and implements most of the OS directives in 
hardware. This solution achieves a lower response time for the 
interrupt handling [18]. 

μC /OS-III HW-RTOS is a hardware implementation of the 
μC/OS-III operating system. It implements in hardware the 
primitives of the μC /OS-III with a significant improvement in 
performance in terms of response time to internal and external 
events. It is implemented in R-IN32M3 from Renesas around 
an ARM Cortex M3 MCU [19]. 
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Fig. 1. Time Diagram of Test Applications. 

In [20] the authors present the Real-Time Task Manager 
(RTM) that is an extension for the processor that aims to 
eliminate the overhead of RTOS primitives. This solution 
explore the execution in parallel and in hardware the RTOS 
primitives, function such as scheduling, synchronization 
primitives, and time management.  This solution achieved a 
decrease of the response time by an order of magnitude. 

IV. PERFORMANCE COMPARISON 

For the experimental tests, it used an implementation of the 
nMPRA with four task (sCPU) based on an MIPS processor at 
33MHz on the Xilinx Zynq-7000 SoC ZC706 Evaluation Kit. 
For this reason, a microcontroller with the same operating 
frequency will be used for software operating systems. In this 
case, it has been used the STM32 NUCLEO-L053R system 
that is based on the STM32L053R8 ARM Cortex ™ -M0+ 
MCU, which can be programmed to operate at a frequency of 
32MHz. 

In this case, it is desirable to measure the response time to 
an external event. A button connected to a pin port of the 
microcontroller will generate the external event. This port will 
generate an external interrupt that must be handled by the task 
with the higher priority from the system. The higher priority 
task will remain blocked on the event, and when it goes into 

run state in response to the event, it will pass a port pin to low. 
Fig. 1 presents this mode of operation. It can be noted that the 
task with the highest priority is waiting an event. The event is 
triggered by pressing the test button (the port at which it is 
connected will go from high to low). After a time that depends 
on the operating system and the scheduler operation, the task 
with the highest priority will pass a second test pins port to the 
low. Thus, using a two-probe oscilloscope connected to the two 
ports, the response time to the external event can be measured. 

In order to implement these performance tests, we will use 
three software RTOSs: uC-OS/III, Keil RTX, and FreeRTOS. 
These are the most used RTOSs for small MCU systems 
according to the study presented in [5]. The chosen RTOSs 
systems do not allow the direct attachment of an interrupt to a 
task, the interrupt service routines being executed outside the 
kernel. In the present case, for each RTOS, a multi-task 
application has been developed in which, after the initialization 
part, the task with the higher priority enters in the waiting state 
for an event. In the external interrupt service routine for the 
port that is connected to the test button, the expected event is 
triggered and the scheduler is executed. The scheduler will 
select the task with the higher priority for execution. This task 
will pass to low the second test pin port as soon as it enter in 
execution state. 

 
Fig. 2. Response Time to a External Event. 
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In order to implement this performance test on nMPRA, the 
external interrupt associated with the pin connected to the test 
button is attached to the task with the higher priority. After the 
initialization part, the task with the higher priority will wait the 
occurrence of an attached event (in this case the external 
interrupt). When the button is pressed, the external interrupt is 
triggered and the hardware scheduler will select the task with 
the higher priority for the execution.  This task will pass to low 
the second test pin port as soon as it enters in execution state. 

The results for the four tests (three software RTOSs and 
one hardware RTOS) are shown in Fig. 2. It can be noticed that 
the response time for the hardware RTOS is very small 
compared to software RTOS because the overhead generated 
by a software RTOS has been eliminated. Although hardware 
RTOSs have very good performances, they are not used in the 
industry because they are specialized RTOSs where 
programming is different and the users are very reluctant, 
preferring to use software RTOSs that have demonstrated their 
reliability in previous projects. 

V. CONCLUSIONS 

In this paper, it was presented a comparison between three 
software RTOSs and one hardware RTOS hardware in terms of 
response time to an external event. From this comparison, it 
was observed that the shortest response time is obtained by the 
RTOS implemented in hardware. This happens because the 
hardware implementation eliminates the overhead generated by 
software RTOS. From the tests it can be noticed that the 
weakest performances are obtained by the open source RTOS. 
However, FreeRTOS is the most widely used RTOS in 
embedded projects on small microcontrollers in 2017.  
Although much better performance are obtained with hardware 
implementations, the software RTOSs are still used because 
they are more customized and they were tested in very many 
projects. They can also be executed on a wide range of 
microcontrollers. 
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