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Abstract—Time-frequency analysis is an initial step in the 

design of invariant representations for any type of time series 

signals. Time-frequency analysis has been studied and developed 

widely for decades, but accurate analysis using deep learning 

neural networks has only been presented in the last few years. In 

this paper, a comprehensive survey of deep learning neural 

network architectures for time-frequency analysis is presented 

and compares the networks with previous approaches to time-

frequency analysis based on feature extraction and other 

machine learning algorithms. The results highlight the 

improvements achieved by deep learning networks, critically 

review the application of deep learning for time-frequency 

analysis and provide a holistic overview of current works in the 

literature. Finally, this work facilitates discussions regarding 

research opportunities with deep learning algorithms in future 

researches. 
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I. INTRODUCTION 

Time-frequency analysis has been considered for pattern 
recognition and fault diagnosis. It is usually known as an 
initial step for signal preprocessing. It provides a suitable tool 
for analyzing signals in many fields of engineering, 
biomedicine, finance and speech [1]–[7]. Recently, the 
importance of discovering powerful signal processing tools 
has become essential to the analysis of signals. The first time-
frequency representation was addressed in the early 
development of quantum mechanics by H. Weyl, E. Wigner, 
and J. von Neumann in approximately 1930 [8]. Since then, 
there have been numerous implementations of time-frequency 
representation to address signal processing. The early time-
frequency analysis system was based on handcrafted 
techniques. These systems were followed by time-frequency 
analysis systems based on feature-extraction and machine 
learning [9]–[11].  Unfortunately, according to a scientist’s 
point of view, preprocessing and feature extraction in any time 
series signal is not an easy task. There are a number of feature 
sets that can be extracted from time-frequency domains. 
Determining the ideal features from such domains requires 
time for examination and investigation [4], [12]. Furthermore, 
identify a particular pattern or s of a time-frequency 
representation is usually unknown [13]. Therefore, effective 
and reliable tools need to be considered to solve the task. In 
recent years, studies have been performed to find alternative 
tools to analyze and identify the pattern directly from a time-
frequency image. Starting with the [14] paper, they extracted 

time-frequency images from the sound signals and used them 
as input to a deep learning network architecture for 
classification. Since then, various deep learning network 
architectures have been proposed, typically based on some 
form of convolutional neural network (CNN) [10], [11], [13], 
[15], [16]. In these studies, the CNNs obtain better results than 
traditional machine learning. Such approaches are attractive 
since they typically do not need domain knowledge expertise. 
In fact, CNNs rival human accuracies for the same tasks [17], 
[18]. 

Recently, deep learning has proved to be successful in all 
areas of science, such as successes in image recognition [19], 
handwriting, manufacturing [13], disease diagnosis [15], [20], 
[21] and speech processing [22]. The results of these studies 
have proven the benefits of CNNs in image and signal 
analysis, which emphasize that CNNs have the capability of 
addressing diagnosis and classification tasks. Therefore, in the 
literature, deep learning networks have received considerable 
attention from researchers; especially, the convolutional 
neural network. CNNs are able to address data directly 
without requiring complex preprocessing steps. CNN models 
are advantageous because of their high levels of expert 
information processing and can propose much more effective 
models for complex high dimensional datasets. Therefore, it is 
important to highlight recent advances techniques of time-
frequency analysis, especially recent deep learning 
architectures, which have outperformed state-of-the-art 
approaches. 

This paper introduces a comprehensive survey of current 
applications to train a deep learning network in the time-
frequency domain in order to classify or diagnose patterns. It 
will contrast these techniques and compare them among the 
traditional machine learning applications. To the best of 
knowledge, this is the first survey that focuses on the use of 
deep learning with time-frequency analysis and compares it to 
previous feature-based systems. 

The main aim of this survey is two-fold. First, it 
documents the background knowledge about how the time-
frequency domain has been used to address signal processing 
in the past few years. 

Second, it critically reviews the application of deep 
learning with the time-frequency domain and offers a general 
overview of the existing literature. In the process of achieving 
these aims of the paper, the following research questions 
should be addressed 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 12, 2018 

487 | P a g e  

www.ijacsa.thesai.org 

 Can deep learning be used to classify time-frequency 
representations of signals? 

 Does the deep learning network alter the results of a 
time-frequency analysis? 

 If so, which time-frequency representation of the signal 
yields the best results? 

First, a discussion of the time-frequency representation 
types and the challenges raised for analyzing the time-
frequency domain are presented in section 2. A brief 
discerption of deep learning networks, especially the CNN, is 
introduced in section 3. Then, the selection criterion and 
methodology for selecting which systems to review are 
explained in section 4. A literature review is highlighted in 
section 4, and a brief discussion is addressed in section 5. 

II. BACKGROUND 

A. Time-Frequency 

The time-frequency approach can provide suitable outputs 
for the discovery of complex, high-dimensional and 
nonstationary properties. Time-frequency characterization 
simultaneously represents a signal in both the time and 
frequency domain. The most popular visual representations of 
the time-frequency domain are spectrograms and scalograms. 
This type of representation methods are able to extract 
particular patterns, for example, the professional extraction of 
sensitive fault patterns [1]. In medical applications, this type 
of representation can help to identify an abnormal pattern in 
biomedical signals. Their success is reported in a number of 
applications [2]–[7]. Time-frequency methods were also 
integrated with other advanced algorithms, such as neural 
networks [5] and support vector machines [8]. In the next 
sections, a brief introduction is provided about the three types 
of time-frequency representations. 

1) Spectrograms:- a spectrogram is generated using the 

short-time Fourier transform (STFT). The axis on STFT 

shows time and frequency, and the color scale of the 

spectrogram image represents the amplitude of the frequency. 

The basis for the STFT representation is known as a series of 

sinusoids. 

2) Scalograms:- scalograms are a generated by using the 

wavelet transform (WT). WTs are a linear time-frequency 

representation. The basis for the WT representation is a 

wavelet basis function, which depends on the frequency 

resolution. The signal is decomposed with different 

resolutions at different time and frequency scales by scaling 

and translating the wavelet function. 

There are many wavelets types such as the Gaussian, 
Morlet, Shannon, Meyer, Laplace, Hermit, or the Mexican Hat 
wavelets. There are differences between each type in both 
simple and complex functions. There have been many studies 
to address the effectiveness of each wavelet type. Currently, 
there is not a clear technique for finding the most suitable 
wavelet. 

3) Hilbert-Huang transform:- the Hilbert-Huang 

transform (HHT) is considered an adaptive nonparametric 

representation. It is different from the previous methods such 

as STFT and WT, which are based on set of basic functions. In 

contrast, HHT does not need to make assumptions on the basis 

of the data. It just uses the empirical mode decomposition 

(EMD) to decompose the signal into a set of elemental signals 

named intrinsic mode functions (IMFs). The HHT 

methodology is depicted in Figure 3. 

The HHT involves two steps, namely, EMD of the time 
series signal and the Hilbert spectrum construction. HHTs are 
particularly useful for localizing the properties of arbitrary 
signals. For more explanation, see [9]. 

The HHT does not divide the signal at fixed frequency 
components, but the frequency of the different components 
(IMFs) adapts to the signal. Therefore, there is no reduction of 
the frequency resolution by dividing the data into sections, 
which gives HHT a higher time-frequency resolution than 
spectrograms and scalograms. 

B. Challenges of Analyzing Time-Frequency Domain 

Despite numerous applications using time-frequency 
representations, analyzing signals have some limitations [10]. 
Signals usually suffer from several causes of extensive noise, 
including recording devices, power interference and baseline 
drift [11]. Hence, the analysis of these signals requires 
addressing noise and filtering signals. 

On the other hand, the features extracted from time-
frequency representations need appropriate techniques. Some 
features can be insufficient to describe the time-frequency 
domain and will lead to in information loss. In fact, feature 
selection and extraction expressively need expert knowledge. 
Furthermore, analyzing time-frequency images to detect 
features or patterns cannot be accomplished by examining 
images one by one [1]. Actually, it is very unrealistic to 
identify a large number of time-frequency images by manual 
methods. To intelligently and automatically identify the 
features from many time-frequency images, the prevalent deep 
learning networks show professional serviceability. 

Deep learning is a promising technique for large-scale data 
analytics[12]. In the literature, they have been used in 
biomedical signal analysis such as EEG [13], ECG [11], [14]–
[16] and EMG [17], [18]. 

Deep learning networks achieved remarkable result 
compared with the traditional hand-crafted features. 
Moreover, once a large size of datasets is available, CNNs are 
a good method and usually beat human agreement rates. The 
appearance of deep learning networks has made the analysis 
of the signals simpler than before. 

III. DEEP LEARNING NETWORK (DNN) 

DNN is a branch of machine learning tools that has shown 
significant success in various fields in medicine, business, 
industry sectors, etc. It attempts to model data hierarchically 
and classifies patterns using multiple nonlinear processing 
layers. There are several variants of deep learning such as 
autoencoders, deep belief networks, deep Boltzmann 
machines, convolutional neural networks and recurrent neural 
networks. Since current works have established the success of 

https://www.hindawi.com/journals/sv/2017/5067651/fig5/
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CNN deep learning models in the application of time 
frequency analysis, the concentration of this paper is limited to 
reviewing the past literatures related to CNN models. 

A. Convolutional Neural Network (CNN) 

The most successful model of DNN is convolutional 
neural networks (CNNs). Despite, the CNN was first 
designated by LeCun et al. in 1998[39]. The golden age of 
deep learning revolution started when Krizhenvsky et al. [19] 
won the ImageNet competition by a considerable margin. 
Since then, only convolutional neural networks have won this 
ImageNet competition [20], [21]. 

The differentiation between CNN and the simple 
multilayer network (MLP) is that MLPs only use input and 
output layers, and, at most, a single hidden layer, whereas in 
the DNNs there are a number of layers, including input and 
output layers [22]. Fig. 1 shows the difference between a 
simple MLP and a CNN. Each block in the CNN model holds 
a number of layers. 

The CNN contains one or more convolutional and max 
pooling layers followed by one or more fully connected layers, 
which perform as the classification layer. Different CNNs 
employ various algorithms in the convolution layer and 
subsample layer and different network structures. Finally, the 
fully connected layers are at the end of the network. In the 
fully connected layer, weights are no longer shared with the 
conventional layer. These layers are similar to MLPs, where in 
the final layer, a SoftMax function is used to generate a 
distribution over classes. 

 

Fig. 1. The Differences in Architecture between a Simple MLP and a CNN. 

The significant features of CNNs are that the tasks of 
preprocessing and feature extraction are not essential in 
CNNs. In contrast, CNN can automatically identify more 
complex features because of the number of conventional 
layers it contains. Furthermore, they are self-learned networks 
without the need for supervision [35]. This function of DNNs 
supports the ability of the network to handle large, high-
dimensional data that contain a large number of features [36]. 
This is a beneficial feature of CNNs that reduces the liability 
during training and helps to select the best features that 
discriminate classes in the dataset. 

IV. METHODOLOGY 

A. Search Strategy and Selection Process 

A database search through online databases such as 
Google, Google Scholar, and IEEE Explore were used as 
recommended by [23]. In addition, online databases such as 

Elsevier, ScienceDirect and ACM, which are the most popular 
sources for finding scientific papers, were searched. The query 
terms included time-frequency, DNN based on time-frequency 
analysis, DNN in signals or time series classification and 
analysis, etc.  also articles that implemented these systems for 
different languages or domains are included. In total, 154 
articles were reviewed and 83 articles were selected for the 
survey. 

B. Literature Sources 

The investigation of the applications of DNN with the 
time-frequency domain was addressed, and articles published 
in the domain were analyzed. 

Most of the selected articles were collected from the 
publishers, as presented in Table 1, so that the integrity of this 
review paper is not compromised. However, there is an 
extensive variety of other sources that are also suitable for this 
survey. 

TABLE I. THE MAIN SOURCES OF THE SELECTED ARTICLES 

Publisher 

IEEE 

Elsevier  

bioRxiv 

Bioengineering  

Springer 

Hindawi 

C. Data Collection Process 

The data collection process involved extensive research of 
papers that addressed the applications of DNN with time-
frequency analysis. These papers were downloaded and 
studied for collecting suitable information on the subject. The 
type of results in this paper are qualitative, and the main 
motivation is to provide a survey of the applications of DNNs 
and attempt to answer the research questions listed in the 
introduction section. Overall, the data collection process 
comprised three main phases 

Phase 1: Searching for papers in reliable journals. This 
phase was completed using some keywords. 

Phase 2: Papers are selected and categorized in order to 
serve the aim of the survey. Then, the qualified papers are 
examined critically. 

Phase 3: Qualitative data were collected and notes were 
taken to briefly present the data in the results section of this 
paper. Data were gathered regarding the type of time-
frequency domain methods employed. 

V. LITERATURE REVIEW 

The extensive investigation of the application of DNNs 
with time-frequency images showed that most of the papers 
and studies were published after 2016, as represented in Table 
2. Most of the papers used the conventional neural network to 
address this type of image. The next three sections will briefly 
introduce the applications on DNNs. 
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TABLE II. THE PUBLISHED PAPERS ON THE APPLICATION OF CNNS ON 

EEG, ECG AND EMG 

References 
Signals and types of 

representation  
Deep learning Result 

[24] EEG, spectrogram CNN 74% accuracy 

[24] EEG , scalogram CNN F1-score 81% 

[25] EEG spectrogram CNN 96% accuracy 

[26] ECG, spectrogram DNN 97.5% accuracy 

[27] ECG, Spectrogram 16 CNN 90% sensitivity  

[28] EEG, spectrogram VGG15 89% accuracy 

[29] 
facial videos, 

Spectrogram 
VGG15 RMSE was 4.27  

[30] Gait signals, scalogram CNN 97.06% accuracy 

[31] EMG,  spectrograms CNN 
69.23 % 
accuracy 

[32] 
ECG, Spectrogram and 

Hilbert spectrum  
CNN 98.3% accuracy 

[33] EEG, spectrogram CNN 96.16% accuracy 

[34] PPG scalogram GoogLeNet 92.55% F1 

[35] PCG scalogram VGG16+SVM 56.2% MAcc 

[18] EMG spectrum RCNN 90.6 % in R2 

[36] EEG spectrograms CNN 80% accuracy 

[35] PCG, scalogram image VGG16 56.2 % accuracy 

[37] 
EEG, EOG, EMG 
Spectrogram, 

scalogram 

CNN 95% accuracy 

[38] 
Sound  

log-mel spectrogram 
CNN EER was 2.7% 

[39] Sound spectrogram CNN 71% accuracy 

[40] Sound, spectrograms  VGG 85.36 accuracy 

[41] 
Sound, spectrograms, 

scalogram 
CNN  

74.66 % 

accuracy 

[42] Sound, spectrogram CNN AUC is 0.970  

[43] 
Fault diagnosis 

Scalogram  
CNN 96% accuracy 

[44] 
Fault diagnosis, 

spectrograms 
CNN 98%-99% 

[45] 
Fault diagnosis 

spectrograms 
DNN 95.68% accuracy 

[46] 
Fault diagnosis 
Spectrogram 

CNN 
93.61 % 
accuracy 

[47] 

Fault diagnosis 

Spectrogram, 
scalogram and Hilbert-

Huang.   

CNN 

81.4%, 99.7% 

and 75.7% 

respectively. 

[10] 
Fault diagnosis, 

scalogram 

PSPP with 

CNN 
99.11% accuracy 

[1] 
Fault diagnosis 

Spectrogram 
DCNN 96.78% accuracy 

 

Fig. 2. The Number of Papers used (Spectrogram, Hilbert-Hyang and 

Scalogram ) Type. 

 

Fig. 3. The Numbers of Papers used Applied the Deep Learning with Time-

Frequency Domain on Medical Signals. 

 
Fig. 4. The Numbers of Papers used Applied the Dnns with Time-Frequency 

Domain For Fault Diagnosis. 

From Fig. 2, it can be noticed that spectrogram has been 
considered in numbers of studies compared with other type of 
time-frequency methods. In term of the years of publications. 
From Fig. 3 and 4, it can be observed that, from 2016 until 
2018, considerable effort was undertaken to study and embed 
the conventional neural network into approaches using these 
types of data. From the analyzing of different articles , VGG 
has been selected five times from 31 articles where 
GoogLeNEt was used only in two papers. 

A. Application of CNNs for Fault Diagnosis 

Vibration signals are extensively used to diagnose rotating 
machinery. Researchers attempted to develop automatic and 
intelligent fault diagnosis tools based on CNN. They extracted 
the time-frequency representation of vibration signals and fed 
them directly into a CNN to classify the different kinds of 
fault features of the rotating machinery. For example, Wang et 
al. [52] investigate the use of scalogram images as an input to 
a CNN to predict faults in a set of vibrational data. They used 
a series of 32 × 32 scalogram images. The highest result they 
achieved was 96% accuracy. 
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Lee et al. [53] explored corrupted signals with noise by 
using a CNN. A short-time Fourier transform was used to 
generate images from The MFPT data and the Case Western 
dataset. The trained CNN was able to detect patterns in signals 
with 98% and 99%. 

Janssens et al. [55] incorporated shallow CNNs with the 
amplitudes of the discrete Fourier transform vector of the raw 
signal as an input. Pooling, or subsampling, layers were not 
used. Liu et al.[54] used spectrograms as input vectors into 
sparse and stacked autoencoders. They attempted to recognize 
the faults from the normal, inner-race fault, outer-race fault, 
and rolling bearing parts of fault bearings. The experimental 
result obtained a good recognition performance on four fault 
modes with 95.68% accuracy. 

Verstraete et al. [18] used a CNN based on time-frequency 
image analysis for fault diagnosis of rolling element bearings. 
The CNN consisted of two consecutive convolutional layers 
without a pooling layer between them. For CNN image inputs, 
three types of time-frequency transformations are used: short-
time Fourier transform spectrogram and wavelet transform 
(WT) scalogram and Hilbert-Huang transformation (HHT). 
Their accuracy was 81.4%, 99.7% and 75.7% respectively. 

Other study [25] used the Morlet wavelet method to 
discompose vibration signals of rotating machinery. They used 
the Pythagorean spatial pyramid pooling (PSPP) layers in the 
front of the CNN. Hence, the features extracted by the PSPP 
layer were passed into the convolutional layers for more 
feature extraction. The evaluation of this model was carried 
out on two datasets of constant rotating speed signals and 
variable rotating speed signals. The experiment showed that 
PSPP CNN was able to achieve 99.11% accuracy. 

Another more recent approach in the same manner was 
proposed in [13]. Xin et al., developed a new CNN to detect 
different kinds of fault features from the time-frequency 
representation. The vibration signals were collected from 
bearings and gears. While the gearbox datasets contain 
different kinds of faults under the operating conditions, the 
bearing signals datasets have different fault locations and 
diameters under several working loads. Those signals are 
separated into several segments and the time-frequency 
images are generated by using STFT. These images are treated 
by the sparse autoencoder method with a linear decoding to 
expand the sparsity. The proposed DCNN achieved the 
highest accuracy, with 96.78% compared with the CNN at 
89.72% and the LSSVM at 78.33% [13]. 

B. Application of CNNs for Sound Signals 

CNN implementations are becoming more common 
models in the ASC research domain, where Weiping et al., 
[50] attempted to use the DCNN for the acoustic scene 
classification. A CNN model is presented which is similar to 
the VGG style. They use two types of spectrograms; the first 
was a generated STFT from raw audio frames, and the second 
was a CQT spectrogram. The highest result achieved by using 
the STFT spectrograms images was 0.8536, and the one using 
the CQT spectrograms images was 0.8052. Weiping et al. 
conclude that the performance of the CNN could be improved 

by fine tuning the parameters, normalizing the spectrograms in 
the training of the DCNN and utilizing the temporal feature. 

To better describe sounds that are quite different from 
speech, Espi et al., [49] used high resolution spectrogram 
images. These images were directly used as input to a CNN. 

However, Thomas et al. [14] used the log-mel spectrogram 
with its delta and acceleration coefficients to train a CNN. The 
CNN was evaluated in terms of the SAD accuracy on noisy 
radio recorded by the Linguistic Data Consortium (LDC) for 
the DARPA RATS program. Most of the RATS data gained 
by retransmitting existing audio collections, such as the 
DARPA EARS Levantine/English Fisher communication 
telephone speech (CTS) corpus, are broadcast over eight radio 
channels. In addition, telephone recordings in Arabic 
Levantine, Pashto and Urdu provided an extensive variety of 
radio channel broadcast effects. 

Other studies conducted to address the efficiency of fusing 
the mel-scaled short-time Fourier transform spectrogram to 
train a CNN in [18] determined that using a CNN with the log-
mel filter bank energy extracted from the mel-scaled STFT 
spectrogram outperformed other classifiers. The conclusion of 
this result was that the log-mel filter bank energy feature 
possesses fewer coefficients per frame compared to the linear-
scaled STFT spectrogram and mel-scaled STFT spectrogram, 
resulting in a decreased requirement of the parameters of the 
CNN architecture. In [16], it was asserted that representing 
audio as images using mel-scaled STFT spectrograms 
achieved better performance than that achieved with linear-
scaled STFT spectrograms, the constant-Q transform (CQT) 
spectrogram and the continuous wavelet transform scalogram 
when used as inputs to CNNs for audio classification tasks. 
The dataset was the ESC-50 dataset, which contains 2000 
short (5 second) environmental recordings divided equally 
into 50 classes. Classes were extracted from five groups, 
namely, human nonspeech sounds, animals, natural 
soundscapes and water sounds, exterior/urban noises and 
interior/domestic sounds. Four frequency-time representations 
were extracted, namely, linear-scaled STFT spectrogram, Mel-
scaled STFT spectrogram, CQT spectrogram, CWT scalogram 
and MFCC spectrogram. The highest result was obtained by 
using the mel-scaled STFT spectrogram images, achieving 
74.66±3.39 accuracy. 

Another novel approach for sound classification of free-
flying mosquitoes was proposed by [51]. Their motivation was 
to detect the existence of a mosquito from its sound signature. 
A CNN was trained on a wavelet spectrogram. They showed 
that the CNN performance was better than traditional machine 
learning classifiers. The result of the ROC analysis was 0.970. 
The authors concluded that the CNN result was remarkable 
when compared with traditional feature extraction methods. 

C. Application of CNNs for Biomedical Signals 

CNN approaches with time-frequency analysis have also 
been utilized for medical applications. They were employed to 
serve as decision makers to detect abnormalities in biomedical 
signals. For example, Hsu et al., [42] used spectrogram images 
to train a CNN for heart rate estimation based on facial videos. 
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they have used the GG15 CNN.  They claimed that their 
approach was a novel work that used a DNN network on real-
time pulse estimation. They developed a pulse database, 
named the pulse from face (PFF), and used it to train the 
CNN. 

In [40], spectrogram images were employed to train a 
CNN for automatic AF detection. The 16-layer CNN was used 
and achieved 82% accuracy. The CNN recognized normal 
rhythm, AF and other rhythms with an accuracy of 90%, 82% 
and 75%, respectively. The conversion of ECG signals to 
time-frequency images has improved the CNN’s ability to 
automatically perform ECG signal classification, and further, 
it can also possibly aid robust patient diagnosis. 

In this study [39], the time-frequency representations for 
the heartbeat signal was obtained by using an adapted 
frequency slice wavelet transform (MFSWT). Features were 
automatically extracted by the stacked denoising autoencoder 
(SDA) from the time-frequency image. The DNN classifier 
was used to identify different pattern on heartbeats. The 
experiments were applied on the MIT-BIH arrhythmia 
database. The proposed method gained an accuracy of 97.5%. 

Other study [46] investigated if CNNs are able to provide 
better performance for hypertension risk stratification 
compared with the traditional signal processing methods. 
Liang et al., used photoplethysmography (PPG) signals for 
this investigation. The signals were treated by the continuous 
wavelet transform via the Morse method to create scalogram 
images. These images were used to train a pretrained 
GoogLeNet. The signals included 121 samples from the 
Multiparameter Intelligent Monitoring in Intensive Care 
(MIMIC) Database, and each had arterial blood pressure 
(ABP) and photoplethysmography (PPG) signals. The 
classification will be based on blood pressure levels which 
were normotension (NT), prehypertension (PHT), and 
hypertension (HT) classes. The experiment was run for the 
following three trials: NT vs. PHT, NT vs. HT, and (NT + 
PHT) vs. HT. For the purpose of fitting GoogLeNet, each 
subject signal was divided into 24 five-second windows. 
Therefore, 2904 scalogram images were extracted from 2904 
signal segments. The F-score obtained to classify NT vs PHT 
was 80.52%, whereas the approach achieved 92.55% for 
classifying NT vs HT. The results showed that using a 
pretrained CNN with scalogram images achieved higher 
accuracy than that achieved with traditional feature extraction 
methods. 

In [47], the authors examined the ability to train the 
pretrained VGG16 with scalogram images to classify 
phonocardiogram (PCG) signals for normal/ abnormal heart 
sounds. First, the PCG files are segmented into chunks of 
equal length. Scalogram images are generated using the Morse 
wavelet transformation. The experimental results showed that 
the CNN model achieved the highest accuracy at 56.2%, 
whereas the traditional feature processing with a support 
vector machine achieved 46.9% accuracy. In total, 3240 PCG 
signals were collected from 947 pathological patients and 
healthy subjects. 

Gurve and Krishnan [56] employed a CNN on EEG data 
for classification of the eye state. The spectrogram of the EEG 

signal is created and fed into a CNN with the NMF features. 
The implementation of this approach has achieved a good 
result of 96.16% compared to existing methods for eye state 
detection. 

Eltvik [15] has also applied CNN to analyze the time-
frequency domain from EEG signals. He used three types of 
time-frequency domains. The evaluation of this method 
involved testing it on two different datasets. The first was an 
artificial dataset created by simulating a nonstationary and 
noisy method. The second dataset was real EEG signals made 
available through the BCI Competition III. It was composed 
1,400 EEG signals involving a duration of 3.5 seconds, where 
each subject was asked to imagine movement in either the 
right hand or in the left foot. The main task is to identify if the 
subject was imagining during the experiment. Four different 
CNN architectures were evaluated using k-fold cross-
validation with each of the three representations. The resulting 
spectrogram and Hilbert spectrum representation of the 
synthetic data achieved accuracies of 98.3% and 88.19%, 
respectively. In contrast, the scalogram representation 
obtained a very poor result of 59.29%. In the real data case, 
the highest accuracy achieved when classifying the EEG 
spectrograms was 72.50%. For Hilbert spectra, it was 58.00%, 
and for scalograms, it was 55.93%. 

Ruffini et al. [44] explain how to use a CNN for the REM 
sleep behavior disorder (RBD) prognosis and diagnosis from 
an EEG. The EEG data were recorded from 121 idiopathic 
RBD patients and 91 healthy controls. The signals were taken 
after a few minutes of being in an eyes-closed resting state. 
After 2 to 4 years of EEG collecting, 19 of these patients were 
found to develop Parkinson disease PD and 12 of them had 
dementia with Lewy bodies, whereas the rest remained 
idiopathic RBD. Ruffin et al. used a CNN trained with stacked 
multichannel spectrograms. The performance of a DCNN 
network reached 80% classification accuracy to classify 
healthy and PD subjects. 

Yuan and Cao [38] attempted to analyze EEGs via 
spectrogram images by using a CNN. Their motivation was to 
prove the clinical brain death diagnosis. In this paper Caffe 
network  [57]was used to design a CNN. The EEG signals 
were acquired from the patients with brain damage. The EEG 
datasets contained 36 patients, including 19 coma subjects and 
17 brain-dead subjects. Spectrogram images were generated 
from these signals using STFT. In addition, in order to 
increase the number of created images, six channels of the 
EEG signals were used to create spectrogram images. In 
addition, every window of STFT overlapped 20% with the 
adjacent windows. One hundred spectrogram images were 
extracted from the EEG data. Based on the experimental 
result, the CNN was able to distinguish between the coma and 
brain-dead classes with 96% and 94% accuracy, respectively. 

Other researchers shed a light onto how CNNs are able to 
discriminate sleep stages. For example, [41] used the time-
frequency domain of EEG signals in order to classify sleep 
stages. To reduce the bias and variance in spectrogram 
images, multitaper spectral estimation was utilized. The 
dataset included signals collected from 20 young healthy 
subjects. VGGNet was used with to extracted features by 
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employ VGG-FE. VGG-FE achieved the highest accuracy 
with 89%, where most of sleep stages correctly detected slow 
wave sleep with (89%), rapid eye movement stage (81%), 
wake stage (78%) and N2 (75%) sensitivity. However, the N1 
stage was incorrectly classified with 44% sensitivity. 

An analogous study was directed using a CNN for sleep 
stage detection based on EEGs [37]. In this study, EEGs of 20 
healthy young adults were recorded for evaluation. Morlet 
wavelets were used to produce a time-frequency 
representation. They achieved a high mean F1-score of 81%, 
where the accuracy over all sleep stages was 74%. 

Andreotti et al. [48] proposed a simple CNN architecture 
that is trained from scratch using a large publicly available 
database. They provide EEG, EOG and EMG signals as an 
input to the CNN. The guided gradient-weighted class 
activation maps were used for visualizing this network’s 
weights. A large publicly available dataset comprising single 
night PSG recordings of 200 healthy participants with (STFT). 
They generated time-frequency transforms for each epoch and 
modality of the signals. The continuous wavelet transforms 
(CWT) with a Morlet basis function was used to extract time-
frequency images. 

Another study was constructed to identify the human gait 
using the time-frequency representation with a CNN of human 
gait cycles. For example, [43] used the same approach to 
detect joint 2-dimensional (2D) spectral and temporal patterns 
of gait cycles. The signals were acquired from 10 subjects. 
Each signal was obtained from five inertial sensors that were 
worn and placed at the lower-back, right hand wrist, the chest, 
right knee, and right ankle. The experimental results were 
91% subject identification accuracy. In this study, they 
conducted another experiment to improve the gait 
identification generalization performance by using two 
methods for an input level and decision score level 
multisensor combination. The performance improved and the 
accuracy reached 93.36% and 97.06%, respectively. 

Another study attempted to improve CNN performance by 
combining it with an RNN in order to extract the movement 
pattern of the upper limb from EMG signals. Xia et al., 2018 
[21]. The EMG signals were collected from eight subjects. 
These signals were recorded in six sessions for each subject 
and were converted to time-frequency spectrum images and 
used to train a one-dimensional CNN. The CNN included two 
recurrent layers in order to develop an RCNN. The 
experimental result proved that the CNN with the RNN 
achieved higher accuracy compared with that obtained by 
using CNNs alone. The authors claimed that these 
combinations can help to represent the features of EMG 
signals in the time and frequency domain in a better way. 
Based on their experimental results, the RCNN model can 
estimate limb movement with sufficient accuracy, and it was 
able to extract the features in the frequency domain and was 
robust against noises. 

In this study [48] , the authors proposed the use of the 
CWT to represent the breathing cycles using scalogram 
images. The experiment attempted to identify the presence of 
wheezes and or crackles in breath. The CNN was trained to 
distinguish the scalograms from different classes. The result 

showed that the model achieved 84% and 87% accuracy of the 
class of crackles and wheezes, respectively. 

VI. DISCUSSION 

The main motivation of this paper was to review various 
studies and papers that addressed the application of the DNN 
with the time-frequency representation. After analyzing more 
than 70 articles, 31 were further examined, and the results of 
each article were addressed. First, a number of findings were 
identified, and most of the studies were published during the 
last three years. In addition, convolutional neural networks, 
especially CNN that were pretrained, were the most 
commonly utilized. Furthermore, spectrogram and scalogram 
images were the most regularly used to train CNNs. 

It can be observed that there is a large variety in the type 
of CNN applications that are used to learn patterns and 
features from the time-frequency domain automatically. All of 
the studies have investigated the ability of this approach in 
medical and manufacturing applications. Each of these studies 
has confirmed that CNN can extract the optimal information 
in order to address the required task. Most of these articles’ 
results are comparable to state-of-the-art methods. CNNs are 
proven to be highly successful in analyzing any signal. 
Previously, reported studies mainly addressed medical signal 
analysis and diagnosis with the application of expert-designed 
features. 

For example, a CNN using the time-frequency domain of 
the presented signals has already been shown to be 
competitive to traditional approaches. Traditional approaches 
usually extract a set of features from single or multiple 
channel signals based on human expertise. Therefore, this 
could be a difficulty for nondomain experts. Furthermore, 
traditional feature extraction methods are not capable of 
utilizing correlation information between different channels. 
CNNs are very powerful for learning features directly from 
the time-frequency domain without the need for signal 
processing and feature extraction methods [49]. 

Several significant points can be drawn from this survey. 
Most of the articles obtained their best result without any 
human intervention. Furthermore, they did not need to have 
domain knowledge for the analysis of signals. Based on the 
results of each article, deep learning can be considered as a 
sound basis for further optimization toward a competitive, 
fully automated feature extraction method to analyze signals. 
The potential of directly training a CNN using the time-
frequency domain rather than only  the time or  the frequency 
domain, for example, in sound signals studies, has been 
claimed to be related to the time-frequency domain’s very 
detail-rich but sufficiently sparse features that address 
complex characterization with overlapping sounds [49]. 

Another important point of this survey was the selection of 
the STFT-based images to train the CNN, However, studies 
confirmed that using sclogram is the usually obtained a good 
result. They motivated by the fact that the scalogram could 
better represent the nonstationary aspect of any type of signal 
unlike the STFT. In fact, wavelets are known to provide a 
robust time-frequency representation for different type of 
signals as they are localized both in time and frequency. 
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Therefore, their time–frequency domain information is rich 
and various [46]. Furthermore, [25] asserted that the wavelet 
transform is a time-frequency domain analysis tool that offers 
the best local features of the signal. Because of this, it is 
frequently used in denoising, feature extraction, and fault 
diagnosis. Hence, scalogram as input to the CNN can more 
accurately represent the nature of signals, which improves 
CNN feature encoding. 

VII. CONCLUSION 

This paper is presented to describe the background 
knowledge of how deep learning has been considered for the 
field of signal analysis and how it has transformed that field. 
Then, the state-of-art applications of CNN deep learning 
models for different types of tasks are identified. Finally, 35 
articles from the literature that are related to the field of the 
study are considered, most of which were recently published 
since 2016. These articles from the literature are critically 
studied to provide a general overview on the performance of 
deep learning models with a time-frequency representation for 
signal analysis. From the reviews of the outcomes from these 
studies, it can be concluded that deep learning is able to learn 
features and patterns directly from time-frequency images. 
Thus, the brief nature of this survey can make a small but 
meaningful contribution to the current literature. In addition, it 
can provide insight on research challenges and future 
opportunities in the field of signal analysis. Moreover, CNN 
models generally outperform feature-engineered models. 
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