
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

scaleBF: A High Scalable Membership Filter using
3D Bloom Filter

Ripon Patgiri1, Sabuzima Nayak2, Samir Kumar Borgohain3
Dept of Computer Science & Engineering
National Institute of Technology Silchar

Assam-788010, India

Abstract—Bloom Filter is extensively deployed data structure
in various applications and research domain since its inception.
Bloom Filter is able to reduce the space consumption in an order
of magnitude. Thus, Bloom Filter is used to keep information of
a very large scale data. There are numerous variants of Bloom
Filters available, however, scalability is a serious dilemma of
Bloom Filter for years. To solve this dilemma, there are also
diverse variants of Bloom Filter. However, the time complexity
and space complexity become the key issue again. In this paper,
we present a novel Bloom Filter to address the scalability issue
without compromising the performance, called scaleBF. scaleBF
deploys many 3D Bloom Filter to filter the set of items. In
this paper, we theoretically compare the contemporary Bloom
Filter for scalability and scaleBF outperforms in terms of time
complexity.

Keywords—Bloom filter; membership filter; scalable bloom
filter, duplicate key filter; hashing; data structure, membership
query.

I. INTRODUCTION

Burton Howard Bloom introduces a data structure on
approximate membership query in 1970 [1], hence, it is named
as Bloom Filter. Bloom Filter is an extensively experimented to
enhance a system’s performance since its inception. Moreover,
Bloom Filter is also applied numerous areas, namely, Big Data,
Cloud Computing, Networking, Security [2], Database, IoT,
Bioinformatics, Biometrics, and Distributed system. However,
Bloom Filter is inapplicable in hard real-time system, and
password management system [3] due to accuracy issues.
Applications of Bloom Filter take the lion’s share in Com-
puter Networking which includes Named Data Networking
(NDN), Content-Centric Networking (CCN), Software-defined
Network (SDN), Domain Name System (DNS), and Computer
Security. The Bloom Filter reduces space consumption in
an order of magnitude as compared to a conventional hash
algorithm. However, Bloom Filter cannot stand itself. Bloom
Filter is used as enhancer of a system. For example, BigTable
uses Bloom Filter to reduce the number of disk accesses
which improves the performance drastically [4]. Similarly, in
Cassandra [5].

A. Motivation

Several variants of Bloom Filters have been developed
to address some issues [6]. However, most of the Bloom
Filters are developed to address scalability issue. Guanlin Lu
et al. [7] proposes a Forest-structured Bloom Filter (FBF). The
FBF is a combination of RAM and flash memory. Similarly,
Debnath et al. [8] develops a very high scalable Bloom Filter

based on RAM and flash memory. BloomStore is also another
highly scalable Bloom Filter [9]. However, these solutions
are hierarchical, and thus, lookup and insertion cost is very
high. It takes O(logn) time complexity in insertion and lookup
operations as demonstrated in Table I.

B. Contribution

To address scalability issues, we propose a novel scal-
able Bloom Filter, called scaleBF. scaleBF is a very simple
data structure yet powerful. scaleBF increases its scalability
without compromising the performance. scaleBF takes O(1)
time complexity in lookup and insertion operations, which is
compared in Table I. scaleBF uses chaining hash data structure
for implementing the scalability. Also, scaleBF deploys 3DBF
[12] to inherit the performance and low memory consumption.

Table I depicts the most scalable Bloom Filters. Bloom-
Flash [8], and FBF [7] uses hierarchical structures to indexed
the Bloom Filters. BloomStore [9] uses linear chain data
structure (not open hashing data structure) to store the Bloom
Filters in Flash memory. Moreover, BloomStore is designed
to perform parallel lookup operation. On the contrary, scaleBF
uses chaining hash data structures to achieve higher scalability
without compromising the performances. TB2F [10] deploys
tree-bitmaps and Bloom Filter, and used for name lookup in
Content-Centric Network (CCN). The input is split into a T-
segment of fixed size and a B-Segment of variable size. The
T-segment key is inserted into bitmap-trie, and the B-segment
is inserted into Bloom Filter. However, maintaining trie data
structure is costly in terms of space as well as time. On
the other hand, Bloofi [11] uses tree structured Bloom Filter
which cuases costly in insertion and lookup. The scalability of
BloomFlash [8], FBF [7], BloomStore [9], scaleBF is higher
than TB2F and Bloofi [11].

C. Organization

The article is organized as follows- Section II presents the
proposed system, called scaleBF. The architecture of scaleBF
is demonstrated in Section II. Section III presents a theoretical
analysis on scaleBF. Also, every aspect of scaleBF is analyzed
in Section III. Article discusses cons of scaleBF in Section IV.
Finally, the article is concluded in Section V.

II. SCALEBF: THE PROPOSED SYSTEM

A. 3D Bloom Filter (3DBF)

The 3-Dimensional Bloom Filter (3DBF) is similar to
conventional Bloom Filter except array structure [12]. The

www.ijacsa.thesai.org 548 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

TABLE I. COMPARISON OF VARIOUS SCALABLE BLOOM FILTER

Name Types Insertion Lookup Scalability Platform Algorithm
BloomFlash [8] Hierarchical Logarithmic Logarithmic High RAM & Flash Serial
FBF [7] Hierarchical Logarithmic Logarithmic High RAM & Flash Serial
BloomStore [9] Linear Chaining Constant Constant High RAM & Flash Parallel
TB2F [10] Hierarchical Logarithmic Logarithmic Medium RAM Parallel
Bloofi [11] Hierarchical Logarithmic Logarithmic Medium RAM Serial
scaleBF 3D Constant Constant High RAM Serial

3DBF uses 3D arrays and it is a static Bloom Filter in nature.
The static Bloom Filter does not change the size at run time.
Also, static Bloom Filter does not readjust with ever growing
data. However, a new 3DBF is created to address the scalability
issue.

3
D
B
F

X

Y

Z

Insert(key, X, Y, Z)

Fig. 1. 3DBF architecture

Figure 1 depicts the architecture of 3DBF. The 3D Bloom
Filter uses four modulus operator using prime numbers instead
of hashing a key into k different places. These modulus reduces
the false positive probability. Thus, 3DBF is independent from
number of hash functions k. Let, BX,Y,Z bet the 3DBF where
X, Y and Z be the dimension of the filter. The dimensions
are prime numbers, otherwise, false positive increases. Let,
Bi,j,k be a cell of the 3DBF. The cell stores long int which
occupies 64 − bits. Let us insert a key κ. The 3DBF uses
Murmur hashing [13] to generate a hash-value of input item
κ. Let, h be the generated hash-value by Murmur hashing.
Now, i = h%X, j = h%Y, k = h%Z, and ρ = h%63, where
ρ is the bit position of the cell Bi,j,k. 3DBF sets a bit using
Equation (1)-

Bi,j,k ← Bi,j,k OR (1 << ρ) (1)

where OR is bitwise OR operator. Equation (1) is invoked
to insert an input item into 3DBF. The lookup operation
requires similar calculation. Equation (2) is invoked to perform
the lookup operation in a 3DBF.

Flag ← (Bi,j,k ⊕ (1 << ρ))AND(1 << ρ) (2)

If Flag is assigned by ‘1’, then 3DBF returns true,
otherwise, it returns false. Each item requires a single bit
in 3DBF as disclosed in Equation (1), and each cell has
63 − bits. Therefore, 3DBF consumes the lowest memory as
compared to other variants of Bloom Filter. Moreover, 3DBF
features detection of the fullness of the filter. 3DBF defines
the criticality factor to consider whether the filter is full or not
[12].

B. Insertion operation in scaleBF

scaleBF deploys chaining mechanism of conventional hash-
ing data structure for highly scalable. scaleBF deploys many
3DBFs.

1) Insertion of Bloom Filter: A Bloom Filter is formed by
three 3DBFs. Each Bloom Filter is formed by three 3DBF.
However, Bloom Filter can be formed by augmenting more
3DBF, but we have chosen three for simpler illustration. Each
key is inserted into three 3DBF. Let, η be the chain size, and
input item κ to be inserted. There are η chains in scaleBF. A
new Bloom Filter (three 3DBF) is inserted into the chain if
the Bloom Filter (three 3DBF) in particular chain is full.

2) Insertion of a Key: Insertion of the key is performed
using Equation (1) and hashes the key into the particular chain.
If a Bloom Filter (three 3DBF) size is full, then move to the
last Bloom Filter (three 3DBF). Insert the key using Equation
(1). A key is hashed into particular slot of the chain. There
are many Bloom Filters in the particular slot linked with each
other as shown in Figure 2. If first three Bloom Filter is full,
then create and link three 3DBF as demonstrated in the figure.

C. Lookup operation in scaleBF

Figure 3 depicts the lookup operations of the scaleBF. A
key is hashed into particular chain and lookup all Bloom Filters
sequentially. As a comparison, three 3DBF is searched. If the
first three Bloom Filter returns true, then the key is member
of Bloom Filter. Otherwise, move forward to the next three
3DBF, and so on.

III. ANALYSIS

There is no significant difference between 3DBF and
conventional Bloom Filter analysis of number bits consumed,
except k = 1 in 3DBF. Therefore, scaleBF is analyzed through
the conventional Bloom Filter. Let, m be the size of Bloom
Filter, n be the number of entries, and k = 1 be the number
of hash function, then the probability of a bit to be ‘0’ is(

1− 1

m

)n

Therefore, probability of total bit to be ‘1’ is(
1−

(
1− 1

m

)n)
Since, scaleBF uses 3DBF, thus, m = X ×Y ×Z × 63. F.

Grandi [14] present a new way to calculate the false positive
probability using δ− transformation. Let, X be the random

www.ijacsa.thesai.org 549 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

.

.

.

Key

H1() H2() H3()

Fig. 2. Insertion of an input item and increment of filter size using conventional chaining in scaleBF.

variable to represent the total number of ‘1’ in the Bloom
Filter, then

E[X] = m

(
1−

(
1− 1

m

)n)
The probability of false positive is conditioned to a number

by X = x, then

Pr(FP |X = x) =
(x
m

)
Therefore, false positive probability is

FPP =

m∑
x=0

Pr(FP |X = x)Pr(X = x)

FPP =

m∑
x=0

(x
m

)
f(x)

where f(x) is probability mass function of X . F. Grandi
[14] applies δ − transformation to calculate f(x) and

www.ijacsa.thesai.org 550 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

.

.

.
Key

H1() H1()H2() H2()H3() H3()

Fig. 3. Lookup of an input item in scaleBF.

presents FPP as follows-

FPP =

m∑
x=0

(x
m

)(m
x

) x∑
j=0

(−1)j
(
x

j

)(
x− j
m

)n

(3)

Equation 3 is calculation of false positive probability of
a 3DBF. scaleBF deploys three 3DBF. Therefore, the false
positive probability of a Bloom Filter having three 3DBF is

FPP =

3∏
p=1

 m∑
x=0

(x
m

)(m
x

) x∑
j=0

(−1)j
(
x

j

)(
x− j
m

)n

(4)

Let, there are n Bloom Filter (three 3DBF each), and their
false positive probabilities are FPPi, where i = 1, 2, 3, . . . , n.
From Equation (4), the average false positive probability of
scaleBF is

FPPavg =

∑m
i=1 FPPi

n
(5)

Equation (5) presents the false positive probability of
scaleBF.

A. Scalability

Scalability is the key barrier to the modern Bloom Filter.
There are numerous Bloom Filter that addresses the scalability

www.ijacsa.thesai.org 551 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

issue. However, scalable Bloom Filters are developed based
on reordering, hierarchical and forest structure. scaleBF uses
simple hashing scheme to enhance the scalability of Bloom
Filter. The chaining is the most used hashing data structure.
However, chaining has linear search in the worst case, i.e.,
O(n) time complexity. In other words, all keys are hashed
into single chain location. However, it is once in a blue moon
in real-world. Besides, most of the chain remains unused.
Therefore, the chaining size must be a prime number to avoid
the above situation.

Undoubtedly, the scalability is achieved using chaining data
structure in scaleBF. The RAM size of the system also plays
a vital role in scaleBF. 3DBF allocates memory dynamically
which requires few memory blocks be contiguous to satisfy the
request by the most modern programming language. Therefore,
there is less worry about the unavailability of memory blocks.
However, scaleBF does not guarantee the availability of the
memory.

Let, P be the slot size and Q be the number of chains to
be stored in chaining. The load factor α = Q

P , where P is a
prime number, and Q is the total Bloom Filter to be inserted.
Therefore,

Q =

T∑
i=1

mi

3
(6)

where mi is the size of ith 3DBF. Then, the load factor
becomes

α =

∑T
i=1

mi

3

P
(7)

The total available bits in scaleBF are

τ ×X × Y × Z ×
(∑T

i=1
mi

3

)
P

(8)

where τ is the threshold that depends on the requirements,
X, Y , and Z are the dimensions. The τ is calculated by
1, 2, 3, . . . , β and β be the number of bits per cell in a 3DBF
[12]. For high accuracy, τ is set to 1. However, τ = β defines
that false positive is insignificance.

B. Time and Space Complexity

The time complexity is also a key barrier in the scalable
Bloom Filter. Hierarchical Bloom Filter or Forest Structured
Bloom Filter takes O(logn) time complexity in lookup and
insertion operation. Other variants of scalable Bloom Filters
also decrease the performance. scaleBF uses O(1) time com-
plexity to lookup and insertion operation on an average case.
However, the worst case time complexity is O(n) and it is
impractical.

Let, a key κ to be inserted into scaleBF. The κ is hashed
into a particular slot of chain and insert into the key κ in
desired Bloom Filter (three 3DBF). If the first Bloom Filter
is full, then move to the next and so on. Let, the maximum,
the size of a particular chain is C. scaleBF uses prime number
P to evenly distribute the keys as disclosed in Equation (7).
Thus, the size of C is small. Let us, there are 70% slots empty
even if prime number P . That is, 30% slots are filled. Then,
each slot has at least 30% of Q which is also very small.

However, the P is a prime number, and thus, the distribution
is fair enough to fill each slot. Thus, C is very small and the
total time complexity is O(1) on an average. Similarly, lookup
cost also O(1) on an average case.

C. Performance

scaleBF also inherits the performance of 3DBF [12]. The
insertion and lookup cost depends on the cost of Equation (1)
and (2). Equation (1) and (2) uses Murmur hashing [13], which
is known as a very fast string hashing. The computational
complexity of Murmur hashing is O(1), since, the length
of a string is constant and small. Therefore, the Equation
(1) and (2) also cost O(1) time complexity. 3DBF enhances
the performance by reducing the total number of complex
arithmetic operations. Thus, scaleBF increase its scalability
without compromising the performance.

IV. DISCUSSION

scaleBF provides impressively very high scalability. How-
ever, the initial cost of memory consumption can be high.
For instance, insert a key which mapped to the slot 3 of
chaining, and creates new three 3DBF. Another insertion key
also triggers creation of new three 3DBF which is mapped
into a slot, say 2. Thus, the initial cost of memory is high.
However, scaleBF is ideal for very large scale membership fil-
tering. Moreover, scaleBF also ideal solution of large memory
allocation due to dynamic memory allocation system. scaleBF
also depends on the size of 3DBF.

V. CONCLUSION

Deduplication requires very high scalable Bloom Filter,
since, deduplication processes trillions of keys. Moreover,
there are diverse applications of high scalable Bloom Filter,
for instance, DNA Assembly. In this paper, we have presented
a very high scalable Bloom Filter without comprising the
performances. In addition, scaleBF also provides insertion and
lookup cost of O(1). scaleBF outperforms Bloofi [11], Bloom-
Flash [8], FBF [7], and TB2F [10] in terms of computational
time complexity while maintaining higher scalability. However,
the scaleBF does not support deletion of an item. Thus, there is
no false negative. Interestingly, scaleBF can be applied many
research areas to boost up the performance and scalability, and
its applicability not limited to NDN, but also Big Data, Cloud
Computing, Database, Distriubuted System, IoT, and Computer
Networking.

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[2] R. Patgiri, S. Nayak, and S. K. Borgohain, “Preventing ddos using
bloom filter: A survey,” EAI Endorsed Transactions on Scalable In-
formation Systems, 2018.

[3] A. Broder and M. Mitzenmacher, “Network applications of bloom
filters: A survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Trans. Comput.
Syst., vol. 26, no. 2, pp. 4:1–4:26, 2008.

www.ijacsa.thesai.org 552 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

[5] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
2010.

[6] R. Patgiri, S. Nayak, and S. K. Borgohain, “Shed more light on bloom
filter’s variants,” in Proceedings of the 2018 International Conference
on Information and Knowledge Engineering. CSREA Press, 2018, pp.
14–21.

[7] G. Lu, B. Debnath, and D. H. C. Du, “A forest-structured bloom filter
with flash memory,” in 2011 IEEE 27th Symposium on Mass Storage
Systems and Technologies (MSST), 2011, pp. 1–6.

[8] B. Debnath, S. Sengupta, J. Li, D. J. Lilja, and D. H. C. Du, “Bloom-
flash: Bloom filter on flash-based storage,” in 2011 31st International
Conference on Distributed Computing Systems, 2011, pp. 635–644.

[9] G. Lu, Y. J. Nam, and D. H. C. Du, “Bloomstore: Bloom-filter based
memory-efficient key-value store for indexing of data deduplication on

flash,” in 2012 IEEE 28th Symposium on Mass Storage Systems and
Technologies (MSST), 2012, pp. 1–11.

[10] W. Quan, C. Xu, A. V. Vasilakos, J. Guan, H. Zhang, and L. A.
Grieco, “Tb2f: Tree-bitmap and bloom-filter for a scalable and efficient
name lookup in content-centric networking,” in 2014 IFIP Networking
Conference(IFIP NETWORKING), vol. 00, 2014, pp. 1–9.

[11] A. Crainiceanu and D. Lemire, “Bloofi: Multidimensional bloom fil-
ters,” Information Systems, vol. 54, pp. 311 – 324, 2015.

[12] R. Patgiri, S. Nayak, and S. K. Borgohain, “rDBF: A r-dimensional
bloom filter for massive scale membership query,” Journal of Network
and Computer Applications, vol. Personal communication.

[13] A. Appleby, “Murmurhash,” Retrieved on August 2018 from
https://sites.google.com/site/murmurhash/, 2018.

[14] F. Grandi, “On the analysis of bloom filters,” Information Processing
Letters, vol. 129, pp. 35 – 39, 2018.

www.ijacsa.thesai.org 553 | P a g e

