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Abstract—Detecting power line insulator automatically and 

analyzing their defects are vital processes in maintaining power 

distribution systems. In this work, a rotation invariant texture 

pattern named rotation invariant local directional pattern (RI-

LDP) is proposed for representing insulator image. For this at 

first, local directional pattern (LDP) is applied on image which 

can encode local texture pattern into an eight bit binary code by 

analyzing magnitude of edge response in eight different 

directions. Finally this LDP code is made robust to rotation by 

meticulously rearranging the generated another binary code 

which named as rotation invariant local directional pattern (RI-

LDP). Insulator detection is carried out where this RI-LDP based 

histogram act as a feature vector and support vector machine 

(SVM) plays the role of the classifier. The detected insulator 

image region is further analyzed for possible defect 

identification. For this, an automatic extraction method of the 

individual insulator caps is proposed. The defect in segmented 

insulators is analyzed using LDP texture feature on individual 

cap region. We evaluated the proposed method using two sets of 

493 real-world insulator images captured from a ground vehicle. 

The proposed insulator detector shows comparable performance 

to state-of-the-arts and our defect analysis method outperforms 

existing methods. 

Keywords—Insulator detection; insulator defect analysis; local 

direction pattern (LDP); rotation invariant local directional pattern 

(RI-LDP); support vector machine (SVM) 

I. INTRODUCTION 

A moment without electricity cannot be imagined by our 
modern-day life. We, the citizen of modern-day society cannot 
imagine a moment without electricity. It is so much endemic to 
our every day exertion that the uninterrupted distribution of 
electricity is must. The possibility of uninterrupted distribution 
of electricity is associated with number of factors including 
problem free power line channel. That’s why regular inspection 
and maintenance of power line distribution system is required. 
Among the number of components in power line distribution 
systems, insulator is one of the key components for stable 
power supply. According to the statistical data of the national 
power company, the breakdown of insulator is the most 
frequent cause of the failure of power system [1]. Therefore, 
rigorous insulator inspection for defect identification is 
necessary to ensure an uninterrupted power distribution. Until 
recently, the insulator inspection relies mostly on manual labor 
by climbing the pole which is dangerous and time-consuming 
[2]. However, advancement of vision based object detection 
technology promotes automatic insulator monitoring system 

which can detect the position of insulator and identify possible 
defect in the detected insulator [3] from captured images and/or 
videos. 

A large number of insulator localization and defect 
identification works are done on aerial images and/or videos. 
Some of them utilize local image descriptor for recognizing 
insulators from clutter background. One of them is proposed by 
Oberweger et al. [4] where a circular descriptor generated by 
local gradient information. They utilize a unique voting scheme 
for accurate localization of insulator caps. On the other hand 
Liao and An [5] describe a local interest point by both gradient 
and gray level feature. They also utilize multiple circular image 
patches to describe a local interest point. This multiscale and 
multifeature (MSMF) descriptor is also able to handle some 
degree of rotation variation. Some researchers used 
characteristic shape features of insulators for the detection. In 
[6] insulator structure is modeled using Haar-like feature to 
enable rapid feature extraction. They generate a 3D insulator 
model which minimizes the scarcity of positive samples. 
Vertical projection curve is derived from video sequence by 
Bingfeng Li et al. [7] for SVM based insulator detection. Wang 
et al. [3] propose a Gabor based feature extraction method for 
insulator recognition. False positive which appears due to 
clutter background is discarded by morphological operation. 
Tiantian et al. [8] utilized local textured feature local binary 
pattern (LBP) and fuse it with histogram of oriented gradient 
(HOG) feature for insulator detection from aerial videos. Zhao 
et al [9] detect insulator using infrared images by taking 
advantage of high-level discriminative Convolution Neural 
Networks.   

Even though there are a number of proposed systems for 
automatic insulator detection from aerial images, the high price 
and low stability make them less practical. Moreover, aerial 
vehicles are more susceptible to ill weather conditions (e.g., 
strong wind). Therefore, most of the systems utilize ground 
vehicles for insulator detection and subsequent defect analysis. 
Edge histogram descriptor (EHD) feature along with Kalman 
filter is used by Li et al. [1] to recognize the insulator. Jabid et 
al. proposed local textured based insulator detection [10]. A 
SVM based insulator condition analysis using wavelet 
transformation feature is proposed by Murthy et al. [11]. They 
also illustrate suitability of wavelet transformation based 
feature for identifying good insulator from bad ones using 
hidden Markov model in [12]. 
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Developing a successful insulator monitoring system is a 
challenging problem due to the large variations of the 
appearance of insulator caused by scale, viewpoint, color, and 
occlusion (example insulator images are shown in Fig. 1). 
Cluttered backgrounds also increase the complexity of the 
problem and often increase the computational load and 
decrease the success rate in detection. Regarding the viewpoint, 
arbitrary in-plane and out-of-plane rotational angles make the 
detection problem highly challenging. Most of the existing 
insulator detection methods address only a subset of the 
variations without having the capability to handle all of them. 

 

 
Fig. 1. Real life insulator appearance in different orientation. 

In this work, an insulator monitoring system is proposed 
which can detect the insulators from images captured through 
the ground vehicle and subsequently analyze for potential 
defect. As the proposed insulator detection system utilizing a 
novel rotation invariant texture feature namely rotation 
invariant local directional pattern (RI-LDP), it can handle 
highly cluttered images with insulators appeared in arbitrary 
orientation. Image pyramid based multiscale detection 
approach is used to overcome the scale variation. The proposed 
method utilizes a novel rotation invariant texture encoding 
method to describe image which helps better detection of 
insulator region even if insulator appeared in arbitrary 
orientation. 

The main strength of proposed encoding is two folds: firstly 
it describes local image texture by comparing relative strength 
of eight directional gradients. As gradient provides relatively 
robust information in adverse imaging situation, hence the 
proposed code inherently becomes more stable than other 
intensity based feature. Secondly, to make the feature robust to 
rotation, the code is rearranged according to direction of 
highest gradient direction. The effectiveness of the proposed 
RI-LDP is substantiated by the higher detection accuracy when 
classification is carried out utilizing support machine (SVM) 
classifier. Furthermore, we an automatic insulator defect 
analysis system is proposed which can automatically partition 
each cap of an insulator from its core and subsequently analyze 
each cap for the defect. Our defect analysis system can identify 
defected insulators and can categorize them into five common 
defects, i.e., Cracks, Contamination, Whitening, Bullet 
Damage, and Alligatoring effects. 
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Fig. 2. Flowcharts of the proposed rotation invariant local directional based 

insulator detection and defect identification. 

II. INSULATOR DETECTION USING ROTATION INVARIANT 

LOCAL DIRECTIONAL PATTERN (RI-LDP) 

We can locate power line insulators in different size, shape, 
and/or texture. However there are also some trivialities. Every 
insulator contains a repeating patterned called cap. Number of 
caps may vary significantly which made the insulator length 
variable. Insulators are made of ceramic and/or glass which 
make sure low textured appearance. However, these low 
textured insulators mostly appear in clutter background which 
made it difficult the recognition. The aspect ratios of insulators 
vary in a certain range as long as the images are taken within 
tolerable viewing angle. All these properties may entice 
researcher to see the insulator detection problem as a 
generalize object detection using local texture feature [13]. 
However, in reality the insulators appear in varying orientation 
which makes the detection process complex. The rotation 
variation can be handled by explicitly normalizing the rotated 
object or using a rotation invariant feature. In this work, a 
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rotation invariant local featured named rotation invariant local 
directional pattern (RI-LDP) is proposed which enables the 
detector to detect insulator caps even if those are not in same 
orientation. However, this rotation invariance is not sufficient 
to detect the whole string of insulator caps as a single insulator. 
Therefore, we propose a novel post processing method which 
finally combines series of insulator caps as a single insulator. 
The overall step of the proposed method is shown in Fig. 2. In 
the following sub-sections, the basic LDP code generation 
process is briefly described, and then the proposed rotation 
invariant (RI-LDP) is explained in details. 
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Fig. 3. Eight different Kirsch edge masks.  
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Fig. 4.  (a) Eight directional edge response positions; (b) LDP binary bit 

positions. 

A. Local Directional Pattern (LDP) 

Local Directional Patten (LDP) is a local texture pattern 
which efficiently describes spatial structure of a tiny image 
patch. Typically, a local texture is calculated by analyzing 
image pixel value and/or gradient direction of a tiny image 
region. However, LDP utilizes the gradient magnitude of 
different direction and by analyzing all directional responses 
generates an eight bit binary number to describe the image 
patch [14], [15]. One of the main strength of LDP is utilization 
of edge responses instead of image pixel as edge responses are 
typically more robust in adverse imaging situation.  Therefore, 
local image primitive like dark pot, corner, junction, edge, 
bright spot etc. can be encoded by LDP with lesser influence of 
external impurity. LDP can be generated for any pixel by 
analyzing a 3x3 images region centering at that code pixel. For 

this, eight directional edge responses values { }, 0,1,..., 7im i 

are computed by Kirsch masks iM  in eight different 

orientations centered on its position. The eight different masks 
are shown in Fig. 3. 

The relative magnitudes of response values carry 
noteworthy information. The higher magnitude in a particular 
direction ensures prominent texture in that direction. However, 
the relatively lower magnitudes also carry some important 
information. Therefore, we are interested to know the k most 

prominent directions in order to generate the LDP. Here, the 

top k directional bit responses ib  are set to 1. The remaining 

(8-k) bits of 8-bit LDP pattern is set to 0. Finally, the LDP code 
is derived by (1). Fig. 4 shows the mask response and LDP bit 
positions, and Fig. 5 shows an exemplary LDP code with k=3. 
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Fig. 5. Example of LDP code generation with k=3. 
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Fig. 6. Modified edge responses value after rotation of the image. (a) Original 

image along with eight edge response values, (b) Rotated image along with 
changed edge responses values. 
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where, km is the k-th highest value among all eight 

directional response values. LDP texture code provides similar 
pattern in adverse imaging situation like change in illumination 
and/or noise presence [16] because inherently directional 
response magnitudes are more stable than intensity values. 

LDP based descriptor is calculated after computing LDP 

code for each pixel ( , )r c of the input image I of size M N . 

LDP descriptor generation process is motivated by other 
texture based feature descriptor where histogram of individual 
feature plays the role of image descriptor [17], [18]. In 
accordance, we also generate a LDP histogram H using for 
describing that image. The equation of this histogram 
generation is shown with (3) and (4).  
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where,  is the all possible LDP code. The number of 

possible LDP code varies as our choice of k value and can be 

expressed by
8 8!

!(8 )!
kC

k k



.  

B. Rotation Invariant Local Directional Pattern (RI-LDP) 

Change in rotation appearance of an image affects the pixel 
value of the image. Though the spatial distribution of image 
pixels is modified, the relative appearance of pixels is not 
affected by mere rotation (see Fig. 6). The image clearly 
exhibits that the edge direction of the object is altered due to 
alteration of the image orientation. Consequently, direction of 
highest gradient magnitude will be modified and that will lead 
to a completely different LDP code. As the content of the 
image is same but appeared in different orientation, we require 
a steady LDP code to achieve rotation invariant detection. For 
achieving this, we analyzed the gradient magnitude of all 
directions and found that though the direction of highest 
magnitude changes, but the relative position of other lower 
rank magnitude with highest one is unchanged. This trend is 
explained using a small image patch shown in Fig. 6. In 
Fig. 6(a), it shows an image along with eight directional 
gradient magnitudes. This image is rotated by 90

0
 in a 

counterclockwise direction and modified gradient magnitudes 
in Fig. 6(b). By observing these two set of gradient magnitude, 
we found that the relative position of gradient magnitude is 
preserved, it just shifted by the corresponding image rotation 
value. In this example it shifted two places in rightward 
direction which agreed 90

0
 clockwise rotations. In addition to 

that, it is well known fact that image rotation in spatial domain 
is equivalent to circular shift in feature vector [19]. Based on 
these observations we proposed a simple method for achieving 
the rotation invariant LDP code. The proposed method 
performs the circular shift operation to the original LDP code 
until the bit representing the most prominent edge response is 
aligned with the least significant bit b0 as shown in Fig. 7. 

For example, if the 8 directional responses of a pixel is 
given by the set {3, 5, 2, 2, 8, 4, 3, 2}, which stars with m0, 
then the original LDP code is 00110010. The rotation invariant 
code for the pixel can be obtained by shifting the directional 
response as {8, 4, 3, 2, 3, 5, 2, 2}. The resulting code is 
00100011. This rotation normalization method tries to evaluate 
the objects with different rotational appearance by aligning the 
inherent texture pattern along with the most prominent texture 
property and then compare. This rotation invariant LDP code 
which is denoted by RI-LDP can be generated with (5). 

RI-LDP = ROR(LDP, d − 1)    (5) 

where d is the bit position of the strongest edge response 
and ROR defined circular shift of the bit pattern. 

Rotation Invariant LDP Binary Code  = 00110001 

Rotation Invariant LDP Decimal Code  = 49 
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Fig. 7. Steps of rotation invariant LDP code generation. 

The LDP operator can produces at most
8

kC  different code, 

because out of eight bit data k bit must be set 1. However, 
when circular shift on the LDP code is applied, the left most bit 
certainly become 1. Aftermath, out of remaining seven bit data 
(k-1) bit need be set 1. That’s why number of possible rotation 

invariant LDP code reduces to
7

1kC  . In consequence rotation 

invariant LDP descriptor will be a histogram with 
7

1kC  bins in 

comparison of 
8

kC  bin in original LDP. This LDP histogram 

based descriptor is then used to classify between insulator 
region and non-insulator region of an image within a sliding 
window framework. The two class classification is carried out 
using support vector machine (SVM). 

C. Support Vector Machine (SVM) 

Support vector machine (SVM) is one of the most popular 
machine learning techniques. SVM which is proposed by 
Vapnik et al. [20] is shown effectiveness as supervised pattern 
recognition. During classification, SVM try to separate a given 
set of labeled data with the best hyperplane by transforming it 
into higher dimension. SVM choose the hyperplane when the 
distance from hyperplane to the closest data point of each class 
is maximized. Feature vector for any image processing 
problem is non-linear; hence SVM apply complex but easy to 
implementable kernel without using potentially infinite 
dimensional feature vector. The hyperplane found by the SVM 
in the high dimensional feature space corresponds to a 
nonlinear boundary in the input space.  

The choice of appropriate kernel and different parameter 
associate to the selected kernel is very critical during 
classification performance using SVM. In literature, we found 
that linear, polynomial and radial basis function (RBF) kernels 
are the most frequently used during image based object 
detection. The choice of inappropriate kernel parameter can 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 2, 2018 

269 | P a g e  

www.ijacsa.thesai.org 

leads to very poor classification accuracy. Hence grid-search 
approach is applied for selecting the parameters [21]. The 
parameter of specific kernel that produces best classification 
accuracy is picked. 

Typical SVM based object detection requires number of 
training samples grouped into two sets – one is positive sample 
and other one is negative sample. These two sets are used to 
train a binary classifier which can subsequently predict where 
an unknown sample belongs. However, to make the training 
computationally viable, only a subset of possible sample data is 
used. D. King [22] proposed Maximum Margin Object 
Detection (MMOD) method which tries to optimize the 
classifier using all the candidate windows available in the 
image. In this work, dlib’s [23] structural SVM based 
algorithm is used which enables us to train on all the sub-
windows in every image. 

III. INSULATOR DEFECT ANALYSIS 

We proposed an insulator defect analysis system which can 
evaluate detected insulator region for identifying the potential 
defect. There are different kinds of defects which deteriorate 
the effectiveness of the insulators. Some of those defects 
modify the electrical property of the insulator rather than 
appearance. These types of defect are out of our vision-based 
identification system’s scope. Rather we only focused on the 
defects which alter the appearance of the insulators like change 
the color, shape and/or texture. Some of those defects affect 
core region while some others affect in the cap region. In 
addition to that sometimes defects may appear in some caps 
while others remain in good condition. Hence, each cap should 
be individually segmented from the core region. After that, we 
can analyze each caps or core region for identifying the 
defects. Hence, the defect analysis work can be separated into 
two parts: 1) insulator partitioning, 2) defect identification. 

A. Insulator Partitioning 

Individual caps are detected by detecting elliptical regions 
on the detected insulator region followed by clustering based 
on orientation and size of the ellipses. At first, elliptical shaped 
regions in the insulator are detected by a method proposed by 
Fornaciari [24]. All the detected elliptical shaped arcs are 
labeled into four groups and estimate the ellipse parameters 
using the decomposed parameter space. At first, edge pixels are 
classified in two main directions (i.e., positive and negative) 
according to their gradient phases.  Edge pixels with the same 
gradient phases are grouped together and classified as an arc 
according to their convexity. 

This method is capable to detect those ellipses whose arcs 
are visible and can be detected in at least three quadrants. 
Consequently, this method looks for combinations of three 
arcs, called triplets, each belonging to a different quadrant. A 
selected triplet forms a candidate ellipse. As from the triplet 
information, we may already know its center; we estimate the 
remaining three parameters in a decomposed Hough space 
requiring three 1D accumulators. Candidate ellipses are then 
validated according to the fitness of the estimation with the 
actual edge pixels. 

 
Original Image 

 
Detected Ellipse 

Fig. 8. Detected ellipse from the insulator region. 

 
Fig. 9. Detected ellipse after selecting ellipses of largest group. 

 
Fig. 10. Separately detected each insulator. 

However, due to possible clutter in the image some non-cap 
region can be detected as an ellipse (see Fig. 8). We have to 
eliminate those non-caps region and keep only the true cap 
regions. To achieve this, we cluster the ellipses based on their 
orientation and size and ellipses belongs to the largest cluster 
are retained. Sometimes, multiple ellipses can be detected 
around a single cap as shown in Fig. 9. We keep only one 
ellipse if there are multiple overlap ellipses depending on the 
ellipse parameters of the other ellipses of the same group. The 
result after this step is shown in Fig. 10. 

B. Defect Identification 

After partitioning insulator, each cap is analyzed for defect 
identification. A number of different defects may appear in the 
insulators. In this work, we attempt to identify defects which 
alter appearance i.e. color, shape and/or texture of the insulator. 
Defects which change only physical property of the insulator 
but not appearance is out of scope this research work. 
Therefore, in this work we consider the following defects: 
1) whitening; 2) aligatoring effect; 3) bullet damage; 
4) contamination; and 5) crack. 

All of the above mentioned defects change the cap's surface 
area which is normally smooth. Therefore, we can identify 
whether any cap is altered by the analyzing local texture of the 
cap's region. In this respect, we calculate the LDP histogram 
from each of the cap region for identifying whether cap is 
affected by any of these defects. This calculated LDP 
histogram is then feed into a multi-class classifier for identify 
specific defect. However, due to lack of availability of defected 
sample, sophisticated classifier like SVM or CNN is not 
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utilized rather simple nearest-neighbor classifier is used in 
classify the defect type. As our proposed LDP descriptor is 
histogram based feature, we need to calculate similarity or 
dissimilarity between two histograms. For this we can choose 
any one from Histogram intersection, Log-likelihood statistics 

and/or Chi square statistics (χ2
). In this work Chi square 

statistics is used for comparing two histograms.  
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IV. EXPERIMENTAL RESULT 

In this section, insulator detection and defect identification 
results are presented and discussed. As there is no publicly 
available dataset for insulator detection, we develop our own 
evaluation dataset with two different image resolutions. Low- 
resolution dataset contains 298 images where in total 1470 
insulators appeared in those images. However, the high-
resolution dataset contains 395 images (2592×1944 pixels) 
with 722 labeled insulators. The segmented ground-truth 
information is generated by manually tagging the insulators. 

A. Result of Insulator Detection 

The performance of the insulator detector is evaluated by 
finding detection accuracy of the marked insulators. As 
insulator appears in arbitrary orientation in the dataset, each 
insulator is marked by a rotated rectangle. To decide whether 
detected window is correct detection or not, well-known Pascal 
scores [25] has been used. Pascal score is calculated from the 
overlap of our generated bounding box Bcl to the ground-truth 

Bgt by
( )

( , )
( )

cl gt

cl gt

cl gt

area B B
P B B

area B B
 . An object is 

considered detected if ( , ) 0.5cl gtP B B   

a) Detection in Low-Resolution Images: Our objective 

is to maximize the number of correct detections and minimize 

the number of false detections. The two used evaluation 

metrics are precision, the fraction of correct detections to the 

total number of detections made by our detector, and recall, 

the fraction of correctly detected objects to the number of 

annotated objects. Our detector provides a score for each 

detection, and with average detection score, we achieved 

recall rate 51.29% with 81.82% precision in low-resolution 

image dataset. But in low-resolution images, our objective is 

detecting correct insulators more even if it provides some false 

detection. Because those false alarms can be eliminated by 

later steps in high resolution. By lowering detection threshold, 

we can relax the detection criteria which in turn increase recall 

rate in the expense of precision. The result is shown in 

Table III by varying detection threshold. With detection 

threshold -0.3, our system can detect more than 80% of 

insulators from low-resolution images. Some of the insulators 

which are not detected appeared close to already detected 

insulators. Therefore, when the second camera zoomed in 

towards the detected insulators the missed insulators will also 

appear in high-resolution images. Consequently, those missed 

insulators can be detected in high-resolution. 

b) Detection in High Resolution Images: In high-

resolution image, the objective is same as low resolution i.e., 

to maximize the number of correct detections and minimize 

the number of false detections. However in high-resolution, 

we cannot tolerate high false alarm as we do not have any 

further steps which will eliminate those. With average 

detection score, the proposed system achieved recall rate 

95.74% with 89.94% precision. Table I shows recall and 

precision rate of the proposed method and other comparable 

method. It clearly demonstrate the suitability of the proposed 

method over other state of the art techniques. Table I shows 

that recall rate of the proposed method is just behind the 

method of Oberweger et al. However, the precision rate is 

much higher than that of Oberweger et al. 

TABLE I.  PRECISION AND RECALL CURVE OF PROPOSED METHOD AND  

OTHER METHODS 

Method Recall Precision 

Oberweger et al [4] 98% 33% 

Liao and An [5] 91% 87% 

Wu and An [2] 86.47% 85.59% 

Proposed Method 95.74% 89.94% 
 

For further analyze the performance of proposed method, 
we compare precision recall (PR) curve. As our detector 
provides a score for each detection, we can vary this score to 
elaborate the trade-off between recall and precision metrics. 
Fig. 11 exhibits the precision recall curve of our method and 
Oberweger’s method which exhibits the superiority of the 
proposed system. 

 

Fig. 11. Precision-recall curve for insulator detection. 

By further scrutinizing the detected insulator images, we 
found that some of the insulators are considered as not detected 
due to low overlap value. In our evaluation, the required Pascal 
criterion was 0.5 which is very strict due to the fact that we use 
rotated bounding boxes. However the originally Pascal 
criterion is intended for axis aligned bounding box. 
Subjectively speaking, an overlap score of 0.5 fits the insulator 
very well, whereas a lower threshold might be good enough for 
visually consider as a true detection. Therefore, lowering 
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Pascal criterion may improve our detection performance in 
expense of some loss in precision and the result with varying 
overlap threshold is shown in Table II. 

TABLE II.  INSULATOR DETECTION RESULT WITH VARYING PASCAL 

OVERLAP THRESHOLD 

Overlap Threshold Recall Precision 

0.50 95.74% 89.94% 

0.40 94.79% 89.39% 

0.30 94.94% 89.22% 

B. Result of Insulator Defect Analysis 

A proper insulator partitioning is essential for effective 
defect analysis. By insulator portioning, we mean separation of 
each cap from one another so that we can analyze each cap 
independently. Therefore we first evaluate the insulator 
partitioning and then the defect identification itself. 

1) Result of Insulator Partitioning: For the evaluation of 

insulator portioning, we compare number of caps correctly 

segmented (Nsg) by proposed method with ground truth 

number of visible caps (Ngt)in the insulator image. As 

evaluation criterion of correct cap segmentation, we compare 

ground truth cap area with segmented cap area with Pascal 

score. If Pascal score is above 0.8 then we consider the cap as 

a correct detection. Finally, an insulator is considered as 

correctly partitioned if the following condition is true. 

( ) 1sg gtabs N N 
 

The appearance of insulators varies a lot due to image 
viewing angle. The appearance of caps can be near frontal to 
almost side view. We group the insulator images in three 
categories depending on the viewing angle of the image. 

 Group1: Viewing angle of the insulators are almost 
frontal. 

 Group 2: Viewing angle of the insulators varies from 
~10

0
 to ~50

0
. 

 Group 3: Viewing angle of the insulators are more than 
50

0
. 

It is almost impossible to segment the caps from insulator 
of group1 as caps are not individually visible. However, the 
core part is visible in this orientation. So we detect core region 
when images are captured in this orientation. When the 
viewing angle increased from near frontal, the cap region 
becomes separable. Therefore, we partition each insulator of 
these two groups and result of partitioning is shown in 
Table III.  

TABLE III.  PERFORMANCE OF INSULATOR PARTITIONING 

Group No 

Number of 

Insulator 

Images 

Number of Insulator 

Correctly Partitioned 

Partition 

Accuracy 

Group 2 76 73 96.05% 

Group 3 17 8 47.05% 

2) Result of Defect Identification: To the best of our 

knowledge, there is currently no publicly available dataset for 

insulator defect identification. Hence, we use our own 

insulator database to analyze the defect identification 

performance. There are five defected insulator images for each 

type of defect. Furthermore, we add another 20 non-defected 

images to the database. Accordingly, there are 45 images in 

our defect identification database with six caps in each 

insulator making total 6x45 = 270 insulator cap. Out of these 

270 caps, 20x6 = 120 caps are in good condition and other 250 

(25x6) contains one of those five defects. The overall defect 

identification result is shown in Table IV.  So far, we have 

discussed the average defect identification accuracy of five 

different defects. To get a better picture of the identification 

accuracy of individual defect types, the confusion matrix is 

shown in Table V. 

TABLE IV.  PERFORMANCE OF INSULATOR DEFECT IDENTIFICATION 

Number of Caps 
Number of Caps 

correctly classified 

Defect identification 

accuracy 

270 244 90.37% 

TABLE V.  CONFUSION MATRIX OF 6-CLASS DEFECT CLASSIFICATION 

 White. Alliga. Bullet. Contam. Crack 
No 

Def. 

Whitening 28 0 0 0 1 1 

Alligatoring 2 26 0 0 2 0 

Bullet 0 1 25 0 3 1 

Contamination 0 1 0 28 0 1 

Crack 0 2 1 0 27 0 

No Defect 1 0 0 4 5 110 

V. CONCLUSION 

In this work, we have presented a rotation invariant local 
directional feature showing encoding scheme for representing 
texture of insulator image. The proposed rotation invariant 
local directional pattern (RI-LDP) feature shows efficacy in 
detecting rotated insulator. We also show the effectiveness of 
the proposed method in the low-resolution image which allows 
us coarse to fine detection approach. Experimental results 
illustrate that suitability of the proposed method over other 
state-of-the-art methods. After successful detection and 
segmentation of the insulators from images with the cluttered 
background, their condition is analyzed by a gradient based 
feature named local directional pattern (LDP). The insulators 
are partitioned into the individual cap for better defect 
identification. The results of defect identification show that 
almost all defective insulators can be separated from the good 
insulator. Thus the proposed insulator analysis system would 
improve the reliability of power supply and the requirement of 
technical manpower can also be substantially reduced as non-
technical persons can be employed for acquiring images and 
feeding to the system for analysis. 
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