
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 2, 2018

Efficiency and Performance Analysis of a Sparse and
Powerful Second Order SVM Based on LP and QP

Rezaul Karim, Amit Kumar Kundu
Department of Electrical and Electronic Engineering

Uttara University
Dhaka, Bangladesh

Abstract—Productivity analysis is done on the new algorithm
“Second Order Support Vector Machine (SOSVM)”, which could
be thought as an offshoot of the popular SVM and based on its
conventional QP version as well as the LP one. Our main goal is
to produce a machine which is: 1) sparse & efficient; 2) powerful
(kernel based) but not overfitted; 3) easily realizable. Experiments
on benchmark data shows that to classify a new pattern, the
proposed machine, SOSVM requires samples up to as little as
2.7% of original data set or 4.8% of conventional QP SVM or
48.3% of Vapnik’s LP SVM, which is already sparse. Despite
this heavy test cost reduction, its classification accuracy is very
similar to the most powerful QP SVM while being very simple
to be produced. Moreover, two new terms called “Generalization
Failure Rate (GFR)” and “Machine-Accuracy-Cost (MAC)” are
defined to measure generalization-deficiency and accuracy-cost of
a detector, respectively and used to compare such among different
machines. Results show that our machine possesses GFR up to
as little as 1.4% of the QP SVM or 1.5% of Vapnik’s LP SVM
and MAC up to as little as 2.6% of the QP SVM or 35.9% of
the Vapnik’s sparse LP SVM. Finally, having only two types of
parameters to tune, this machine is straight forward and cheaper
to be produced compared to the most popular & state-of-the-art
machines in this direction. These collectively fulfill the three key
goals that the machine is built for.

Keywords—Generalization failure rate; Kernel machine; LP;
QP; machine accuracy cost; Second Order Support Vector Machine;
sparse

I. INTRODUCTION

Run time optimization of classifiers is a crucial issue for
fast data classification. A prominent example is from Viola
and Jones [1] on face detection based on a cascade of boosted
weak classifiers. This framework is not efficiently applicable to
kernel based classifiers like support vector machines (SVMs)
[2], for instance, because boosting based on such strong clas-
sifiers as components is less effective. In many applications,
the flexibility of such kernel machines is a real advantage.
While SVM based classifiers play the leading role in pattern
classification with highest accuracy, one of its key properties
is that the learned classifier can be expressed in terms of only
a subset of the training patterns, known as support vectors
(SVs). But as the computational load of using such a classifier
to classify a pattern is proportional to the number of SVs,
SV sparsity is extremely important for large datasets. This is
especially the case when the training is done once on powerful
computers that can handle large data but the prediction is
needed to be done multiple times possibly on a small low-
powered devices in real time. This motivates to design kernel

based classifiers maintaining the trade-off between accuracy
and sparsity. Consequently, this problem has come to the center
of main attention in research recently.

In this paper, we have proposed a new sparse algorithm
“Second Order SVM (SOSVM)” and carried out experimental
studies on it as well as standard QP SVM [2] and Vapnik’s LP
SVM [2] to analyze their performance & efficiency on the basis
of computational cost and generalization ability. For simplicity
in discussion, only Gaussian kernel is applied throughout the
whole work. Standard machine learning benchmark data is
used for experiment.

In Section II related works are discussed, in Section III
we re-describe SVMs, in Section IV we explain our approach
whereas Section V is for experiments and we use Section VI
for conclusion and discussion including future work.

II. RELATED WORKS

Related work can be approximately, but not disconnectedly,
classified

• into approaches [3]–[11] to the design of Reduced
SVMs (RSVMs) that demand less computational loads
than standard SVM for classifying a pattern;

• into approaches [7], [12]–[16] that exploit SVMs as
components of a detector with structured architecture
for classification

• into approaches [17]–[20] that develop SVM related
cheaper classifiers, which are different from usual
RSVMs;

• into approaches [21]–[31] that investigate ensemble-
detector by boosting weak classifiers;

• into approaches [32]–[40] that improve one or more
of the three variables cost, efficiency, & accuracy of
a detector by applying different techniques on differ-
ent hypothetical single classifiers using one of them
or combining more of them considering un/balanced
data.

Regarding the first class of approaches, RSVMs demand
only a fraction of kernel evaluations to classify a pattern.
Wavelet approximations of these latter vectors have also been
investigated in [6] for an efficient evaluation of the arguments
to which the kernel function is applied. However, while [4],
[9], [11] proposed some smart iterative algorithms for reduced

www.ijacsa.thesai.org 311 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 2, 2018

SVMs with impressive results, [9] reported a memory run out
from [4], [11] in case of their implementations on large dataset
whereas [9] has a considerable practical variation with heavy
parameter selection from its defined approach. The second
class of approaches, in contrast to the first one, is focusing
on structured SVM-based classification for pattern detection.
Heisele et al. [13] studied a hierarchy of linear SVMs with
a single nonlinear SVM at the end. Thresholds were tuned
for optimizing classification performance and speed, followed
by feature selection. Romdhani et al. [7] proposed a single
chain of SVMs that is optimized also by threshold tuning,
and by approximating a fully nonlinear SVM that has to
be computed beforehand, whereas a decision tree with linear
SVMs is suggested in [12]. Sahbi and Geman [14] presented a
tree-structured hierarchy of SVMs that is optimized by reduced
set technique in [7] and threshold selection, and operates on
application specific partitioning of the space of patterns fol-
lowing different poses. Huo Chen [15] talked about numerical
strategies for optimal cascade and checked three heuristics on
synthetic data using binary SVM on each stage of a cascade.
However, the third class of approaches, being a bit correlated
to the second one as originated from the SVM principle, has
reasonable discrepancy from that as well from the structural
point of view. Maji et al. [17], [20], [36] showed that SVMs
using histogram as well as additive kernels are faster and
outperform linear SVM. Ladicky - Torr [18] proposed a novel
locally linear SVM classifier with smooth decision boundary
and bounded curvature while suggesting a trade-off the number
of anchor points against the expressivity of the classifier in
order to avoid overfitting and speed problem. Xu et al. [19]
introduced a post-processing algorithm that compresses the
learned SVM by further training on the SVs with adding few
extra training parameters. Enthusiastically, the fourth class of
approaches has a bit similarity to the second one from the
construction principle as they both use a cascade like approach.
Xiao et al. [21] used an idea named “Dynamic Cascade” as
Face detector that is trained on large data set by dividing them
into subsets and hence working on them while using “Bayesian
Stump” as weak learners for boosting. Luo H. [22] designed
optimization for cascaded classifier that finds the optimum
thresholds of different stages for a fixed set up. Saberian
et al. [23] introduced a mathematical model for a cascaded
detector relating classification and complexity. Chen et al. [24]
proposed an algorithm for a cascaded detector considering
operational cost, accuracy, and feature extraction cost. Chen
et al. [25] presented a general cascade framework that unifies
detection learning and alignment for face detection. Li Zhang
[26] offered a fast cascaded object detector having fewer stages
and using logistic regression as weak learner, which emphasize
on training efficiency. Raykar et al. [27] proposed a soft
cascade where classifiers accept/reject patterns following prob-
ability distributions induced by the earlier stages’ classifiers.
Considering a fixed order of different stages in the cascade,
they tried to find a trade off between accuracy and feature
acquisition cost. Visentini et al. [28] devised an algorithm that
dynamically builds a cascade of classifiers to speed-up the
Online Boosting technique. The cascade explicitly considers
the computational cost of the involved features to maintain
real-time performance while its classifiers are automatically
in tune balancing speed and accuracy. Saberian et al. [29]
suggested a cascade boosting algorithm, fast cascade boosting
(FCBoost) that minimizes Lagrangian risk while considering

speed and accuracy. They introduced the concept of “neutral
predictors” that robotically determines the cascade configu-
ration such as number of cascade stage and number of weak
learners in each stage. Xu et al. [30] offered a tree of classifiers
to balance the test cost and accuracy while Xu et al. [31]
analyzed the trade-off problem considering one more variable,
feature orientation cost. At last, interestingly, the fifth class of
approaches is quite diverge. Fu et al. [32] discussed a problem
of combining linear SVMs to classify non-linear data set and
claimed experimental results showing that their method can
achieve the efficiency of LSVMs in the prediction phase while
providing a classification performance comparable to nonlinear
SVMs. Cheng- Jhan [33] proposed a pedestrian detector by
cascading AdaBoost and SVM classifiers in different stages. A
classifier for digit recognition was proposed by Maji et al. [34]
that poses reduced operational cost with improved features.
It also claimed to have the best result in all three aspects
like accuracy, train-cost, and test-cost while using histogram-
gradient features and intersection kernel SVM. Gu - Han [35]
designed a Clustered Support Vector Machine (CSVM), by
weighted combination of linear SVMs (LSVM) trained on
the clustered subsets of the training data to separate the data
locally. These combined LSVMs are regularized globally to
leverage the inter cluster information and avoid over-fitting in
each cluster. They derive a data-dependent generalization error
bound for CSVM, which explains the advantage of CSVM
over linear SVM. Sharma et al. [37] offered an approach for
learning non-linear SVM at reduced computational cost in
the test phase and empirically analyzed the tradeoff between
encoder and classifier complexity and strength. Osadchy et al.
[38] proposed a so called hybrid classifier to tackle the problem
with data set having high asymmetry as the large portion of the
pattern space belongs to the negative class; their kernel hybrid
classifier is for further efficiency than SVM while having
similar accuracy [39]. Vedaldi et al. [40] offered a three-stage
classifier combining linear, quasi-linear, and non-linear kernel
SVMs. They showed that increasing the non-linearity of the
kernels increases their discriminative power at the cost of an
increased computational complexity. Nevertheless, their three
stage cascade to overcome the complexity cost has resulted in
quite a ‘heavy’ algorithm in both training and testing.

III. SUPPORT VECTOR MACHINE (SVM)

Support Vector Machines (SVMs) is a state-of-the-art and
popular machine learning technique that has been confirmed
as a very powerful tool for Supervised Classification. In this
part, we re-describe SVM with its two main variants; one
is the standard & most common method using the quadratic
programming (QP), we call it QPSVM, while the other one is
the Vapnik’s linear programming SVM, we call it VLPSVM.
We also make a mild comparison between these two.

A. Quadratic Programming SVM (QPSVM)

Here, we briefly review the basic learning algorithm of
the QP based Support Vector Machine (SVM) using margin
maximization between two classes, which consists in finding
the separating hyperplane that is furthest from the closest
object; a detailed introduction could be found in [2].

Consider a binary classification problem of dataset where
a set of training patterns {

(
xi, yi

)
}Ni=1 with xi ∈ Rd and

www.ijacsa.thesai.org 312 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 2, 2018

yi ∈ {−1, 1} is given. As the objective of the SVM algorithm
is to find the optimal separating hyperplane that skillfully
separates these patterns into two classes, it offers a classifier
using a decision function (for the input pattern x) of the form
f(x) = w · φ(x) + b leading to class(x) = sgn(f(x)) ,
where K(xi, xj) = φ(xi) · φ(xj) is a kernel function and
the parameters w and b are found from a series of calculations
starting from the following QP problem:

min
w,b,ζ

fP (w) =
1

2
‖w‖2 + C

N∑
i=1

ζi (1)

s.t. yi
(
w · φ(xi) + b

)
≥ 1− ζi (2)

ζi ≥ 0; i = 1, 2, ..., N (3)

Where the set of constraints (2) implies that the decision
function should classify correctly all patterns from the given
training set up to some tolerable errors, the slack variables
ζi > 0 hold for margin-outward-deviated patterns (that is,
patterns staying outwards from their class-margins) and C > 0
is a parameter of the classifier that controls the trade off
between two main goals of the objective function in (1): one
is to optimally maximize the margin between the two classes
and another is to minimize the number of misclassifcations on
the training patterns.

Common practice to realize a solution for this problem is to
solve its dual problem, developed by introducing a Lagrangian
and the Lagrangian of the problem form (1)-(3) is

LP (w, b, ζ, α, γ) =
1

2
‖w‖2 + C

N∑
i=1

ζi

−
N∑
i=1

αi

(
yi
(
w · φ(xi) + b

)
− 1 + ζi

)
−

N∑
i=1

γiζi (4)

αi, γi ≥ 0; i = 1, 2, ..., N (5)

where αi are Lagrange multipliers and we get the corre-
sponding dual problem as

max
α

fD(α) = −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjφ(xi) · φ(xj) +
N∑
i=1

αi

(6)

s.t

N∑
i=1

αiyi = 0 (7)

0 ≤ αi ≤ C; i = 1, 2, ..., N (8)

This is also a QP problem and optimum values of its
variable α are used to find the primal variables w, b as
w =

∑
αiyiφ(xi) and b = ys−w·φ(xs) where s is an index of

any pattern for which 0 < αs < C. One of the KKT conditions
for the problem (1)-(3) is αi

(
yi
(
w ·φ(xi)+ b

)
− 1+ ζi

)
= 0

from which for αi 6= 0, we get yi
(
w ·φ(xi)+ b

)
−1+ζi = 0.

These patterns having αi > 0 are support vectors (SVs), which
are usually far less (depending on the data set) in number
compared to the total training set size that proves QPSVM to
be sparse. From these SVs, αi < C (are those having ζi = 0
) patterns lie on the margin of own class whereas αi = C
(are those having ζi > 0) patterns stay outwards from their

corresponding margins. Interestingly, the constraint (7) that is∑N
i=1 αiyi = 0 ensures that in this QPSVM, SVs set must have

members from both classes. In QPSVM model, SVs are the
only training patterns that contribute in designing an optimal
classifier.

B. Vapnik’s LP SVM (VLPSVM)

Here, we concisely go through the linear programming
approach proposed by Vapnik to find a separating hyperplane
that is very similar to that of the QPSVM one but demands
comparatively less computation to classify a pattern. More
elaborate could be found in [2].

Inferring that the classifier has the same form of kernel
expansion using the SVs in the QPSVM, Vapnik used a linear
objective function to minimize the sum of all the coefficients
used in the kernel expansion. Each coefficient is associated
with its corresponding KCV (kernel computing vector) in the
expansion. For better clarification, we name these vectors of
this machine as “Expansion Vector (EV)”, which is similar to
SVs in QPSVM.

Considering that the decision function preserves exactly
the same form of kernel expansion as the QPSVM and
the error constraints of the QPSVM also remain almost the
same, Vapnik proposed this VLPSVM focusing at minimiz-
ing the number of kernel computation by reducing EVs of
the separating hyperplane that has the weight vector wV of
the decision function fV (x) = wV · φ(x) + bV leading to
class(x) = sgn(fV (x)). For this purpose, he formed a linear
objective function using the coefficients of the EVs directly
and coupling the error penalty on top of the error constraints
as below:

min
λ,ξ,bV

N∑
i=1

λi + CV

N∑
i=1

ξi (9)

s.t. yi

(N∑
j=1

λjyjφ(xj) · φ(xi) + bV

)
≥ 1− ξi (10)

λj ≥ 0; j = 1, 2, ..., N (11)
ξi ≥ 0; i = 1, 2, ..., N (12)

Alike the QPSVM, the set of constraints (10) implies that
the decision function should classify correctly all patterns from
the given training set up to some tolerable errors, the slack vari-
ables ξi > 0 hold for absolute-unity-outward-deviated patterns
(that is, training patterns having ClassLabel(xi) · fv(xi) <1)
and CV > 0 is a parameter of the classifier that controls the
trade off between data learning and overfitting.

For this machine, the bias term, bV of the decision function
is an optimization variable of the main problem ((9)-(12)) and
found along with other optimization variables λ and ξ. The
optimum values of λ are used to find the weight vector wV
as wV =

∑
λjyjφ(xj). Training patterns, xj with coefficients

λj > 0 are the EVs, which are usually very much smaller
(depending on the data set) in number compared to the total
training set size showing VLPSVM to be sparser. Unlike
QPSVM, here we have no constraints that forces the machine
to have KCV from both classes.

www.ijacsa.thesai.org 313 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 2, 2018

C. Comparison between VLPSVM & QPSVM

Unlike QPSVM, we directly implement the primal to be
optimized in case of VLPSVM and get the optimal value of the
bias along with the optimal co-efficient set of the expansion
vector. Interestingly, in case of this machine, values of the
absolute-unity-outward-deviation parameters ξi are also found
as a subset of the optimum variable by solving the LP.

Although QPSVM & VLPSVM do not have the same
constraint set fully, part of the constraints they use are almost
the same. For example, they use nearly the same error con-
straint & the non-negative lower bounds of the variables (KCV-
expansion co-efficients α, λ, margin/absolute-unity outward
deviation ζ, ξ).

Both machines are heavily influenced by the error penalty
parameter (on top of kernel parameter) where the QPSVM
introduces this parameter, C through the constraint but the
VLPSVM uses this parameter, CV by directly optimizing the
primal cost function that includes it, which gives it a chance
to have further significance.

For the QPSVM, maximizing the margin and minimizing
the error are the two basic modules in its mathematical
modelling while finding the best trade off between minimizing
the error and minimizing the sum of the KCV coefficients
is the main theme of VLPSVM. To do so, in its mathe-
matical formulation, VLPSVM directly puts the sum of the
non-negative coefficients of KCVs in the objective function
to be minimized that gives a sparser solution. Amazingly,
with this direct involvement of non negative coefficients of
KCVs (by a non-negative summation) in the cost function,
VLPSVM very closely replicates the QPSVM. However, by so
far, compared to the QPSVM, VLPSVM misses many of the
interesting properties that make QPSVM academically richer
such as a concrete and validated theoretical base with the
efficient dual transformation that couples the kernel functions
in the simplest and productive fashion. Still, our experiments
on benchmark data as well as other reports [41] show that
considering classification performance with generalization,
VLPSVM is quite competent like QPSVM while being more
efficient proving LPSVM to be empirically richer and more
productive. Apparently, it appears to be paradoxical to the
basic principle of SVM that a machine with less number of
KCVs poses similar generalization performance to that of a
machine with more KVCs, but the key point here is that the
KCVs in VLPSVM do not have exactly the same topoloical
and geometric interpretation as that in QPSVM despite the fact
that they are being extensively called by the same name (SVs)
in many literature. Further in the same path, unlike QPSVM
(due to its constraint

∑N
i=1 αiyi = 0) there is no condition

in VLPSVM that the KCV set contains training patterns from
both classes, which may help it to reduce the number of KCVs
in the decision function. Furthermore, as L1 norm is usually
more intending to sparser solution compared to L2norm [42],
by formulating an indirect L1 norm in VLPSVM cost function,
it leads to further sparsity compared to QPSVM that uses
the L2 norm for such. Another concern related to the larger
number of KCV of the QPSVM (compared to VLPSVM) is
its KKT condition αi

(
yi
(
w · φ(xi) + b

)
− 1 + ζi

)
= 0 that

forces all the training patterns staying on the class-margin of
own class or outwards to be KCV. That means, some sorts

of training patterns must be included in the KCVs set in the
QPSVM and this becomes specially serious in case of large
and noisy datasets as they contain such overlapping and non-
separable examples with a big portion. On contrary, VLPSVM
has no such condition, which gives it flexibility to chose KCVs
from more scattered pattern space following the demand of the
stochastic and topological property of data-patterns leading to
pick up few but crucial patterns that are perfect to be KCVs for
a very sparse but powerful classifier with strong generalization
capability.

IV. PROPOSED METHOD: SOSVM

While a powerful classifier is essential to handle with the
difficulties from large and noisy data, controlling the classifier-
complexity is also important to achieve better generalization.
Additionally, considering both cost and accuracy, the best clas-
sifier is the most sparse one, having the highest generalization
capability, posing least test error. To serve this purpose, we try
a novel algorithm by applying both QP and LP in a structured
sequence.

As we discussed earlier that although both QPSVM and
LPSVM are sparse, VLPSVM produces sparser solution than
QPSVM while posing very similar accuracy. Still, this sparsity
form VLPSVM is not sufficient for large data set. So, we look
for a machine that is even further sparse and faster but more
generalized and powerful aiming at real-time classification on
very large and complex data.

We know that the sparseness of SVMs heavily depends
on the noise and complexity of the data. When the data set is
very noisy, a good generalized QPSVM may get more outliers,
which will be included into the SVs set in addition to the
patterns that are just on the margins. So, number of SVs will
soar while generalization capability of the machine will also
rise and this SVs set is one of the best representative sets of the
whole data. Moreover, as the SVs set from QPSVM are suf-
ficient to represent the discrimination between the classes, we
consider only this SVs patterns (who also mostly stay around
the discrimination boundary using margin maximization con-
cept) for next manipulation in order to produce our efficient
classifier by further sparsification without losing generalization
ability. We then run LP (in VLPSVM fashion) on this SVs set
as this LP will impose a co-efficient vector carrying weights
of these SVs patterns to minimize the objective function
while maintaining classification accuracy and generalization
potential. Hence, this weight vector will have updated co-
efficient values (from the QPSVM SVs-coefficients) being
further (2nd time) sparse and will promote to an extensive
computational reduction by enabling much smaller number of
KCVs (after throwing a large part of the SVs) to be involved
in the final decision function.

This gives us twofold benefits: one, training set is con-
densed by a pure filtration picking only the significant patterns
that are already bases of a theoretically solid and powerful
classifier and are sole representer of the data. By this, we
also abstain from the computation of novel representatives of
SVs as this relies upon complex optimization problems that
are susceptible to initialization, step sizes, etc. Second, we
take advantage from the sparser, and flexible pattern selecting
capability of VLPSVM for KCV from a scattered and random

www.ijacsa.thesai.org 314 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 2, 2018

Our Algorithm: SOSVM

1: Input: A training set
(
xi, yi

)N
i=1

2: Output: A discriminator fSOSVM (·)
3: Select two of the best pairs of (Penalty parameter,Kernel parameter) ≡
(C, σ), (CV , σV) for two stages
4: Run QPSVM on the training set solving the following following problem:

min
α
f(α) =

1

2

N∑
i=1

N∑
j=1

αiαjyiyjφ(xi) · φ(xj)−
N∑
i=1

αi

s.t

N∑
i=1

αiyi = 0

0 ≤ αi ≤ C; i = 1, 2, ..., N

5: Extract SVs with their labels
(
xl, yl

)M
l=1

from the QPSVM using αi > 0
6: Run LP in VLPSVM fashion on these SVs patterns solving the following following
problem:

min
λ,ξ,bV

M∑
l=1

λl + CV

M∑
i=1

ξl

s.t. yi
(M∑
l=1

λlylφ(xl) · φ(xi) + bV
)
≥ 1− ξi

λl ≥ 0; l = 1, 2, ...,M

ξi ≥ 0; i = 1, 2, ...,M

7: Extract EVs with their labels
(
xm, ym

)P
m=1

using λm > 0 and the bias bV from
the LP
8: wSOSVM ←

∑P
m=1 λmymφ(xm) ; bSOSVM ← bV

9: Return fSOSVM (·) = wSOSVM · φ(·) + bSOSVM

pattern space. Additionally, the sequential training of two
inductive submachines where the second one is denser being
truncated and a function of the first one leads to a resultant final
one higher ordered function. So, our discriminator virtually
plays the functional role of a second ordered decision function,
which echos the name “Second Order SVM (SOSVM)” of our
algorithm while this higher ordered nature better handles the
random and nonlinear behavior of the data.

Patterns having the non-zero co-efficient values from final
output are the KCVs of our SOSVM and we call them
“Machine Vectors(MVs)” whereas the bias of this SOSVM
comes from the solution of the final optimization problem;
these components construct the SOSVM using corresponding
patterns and labels. It is worth mentioning here that while the
optimizations in the two stages are done in sequence, their
supporting parameters are found simultaneously by a joint
search using a modified cross validation technique, which is
in accordance with the overall system as a single machine.

Fig. 1 shows the decision boundary with number of Kernel
computing vectors (KCVs), and training error rates from
QPSVM, VLPSVM, and SOSVM on Banana data set from
machine learning benchmark. Fig. 1(a) shows the decision
boundary for QPSVM with C = 4096 and σ = 2, Fig. 1(b)
shows the decision boundary for VLPSVM with CV = 4
and σV = 1 and the decision boundary for SOSVM with
C = 8, σ = 0.125, CV = 4 and σV = 1 is shown in Fig.
1(c). Banana is a two dimensional data with 400 training
patterns from which QPSVM uses 94 KCVs, VLPSVM uses
14 whereas our SOSVM uses only 11 while posing training
error rates 6.75%, 8.75%, and 8.75%, respectively. Therefore,
to classify a single pattern, SOSVM demands only 11.7%
kernel execution of QPSVM (which is sparse) and 78.6% that

of the VLPSVM (which is sparser) while offering very similar
accuracy!

V. EXPERIMENTS AND RESULTS

A. Key Terms to Analyze Machine’s Perfection

So far, there is a convention to find the test error rate
of a classifier to realize its generalization-quality. In fact, it
tells about the classifier’s performance on test data, which is a
must to know but may not give complete info about machine’s
bridging capability between the training and test data. So, we
define a novel term called “Generalization Failure Rate (GFR)”
that includes machine’s performances on the training set, test
set and their difference. To evaluate the classifier’s deficiency,
GFR is based on the two coupled info: 1) How much the
classifier intends to overfit; and 2) How bad it performs on the
test set.

Further, to terminate the confusion between the useful-
ness of an expensive machine with highest accuracy and a
cheaper machine with acceptable accuracy, another new term
“Machine-Accuracy-Cost(MAC)”, expressing cost per accu-
racy is defined.

1) Generalization Failure Rate (GFR): The main goal
of a classification algorithm is to discover a discriminating
function basing on the training set (input patterns and the
corresponding labels) that will generalize well by classifying
the novel patterns with the least possible errors. However, to
make it real time applicable, the secondary objective is that
the classifier should be as sparse as possible, that is, in case
of basis-vector based machine, it should have as few basis as
possible. But this basis-set (hence its size) radically influences
the machine’s generalization performance.

If this basis-set lead towards a very simple model, it fails
to learn the data-complexity and thus poses poor performance
on both the training and test set by underfitting.

On contrary, if this basis-set lead towards a very com-
plex model, it learns the irrelevant detail and noise in the
training dataset (and weakening the general model) leading
to the decrement of the training error by overfitting and
increment of the test error with generalization-failure. Thus
measuring the generalization quality of a classifier is really
indispensable. However, although both overfitting and un-
derfitting can lead to model’s performance failure, the most
frequent problem in machine learning is overfitting. So, we
start by focusing on it and define a term called “Overfitting
Tendencey(OT)” as the difference between Test Error Rate
and Train Error Rate per Train Error Rate; mathematically,
OT = TestErrorRate−TrainErrorRate

TrainErrorRate . Hence, OT gets higher
for a higher value of TestErrorRate

TrainErrorRate , which increases for
lower Train Error and higher Test Error. Further, to include
the loss done by underfitting, we divide this OT by Test
Accuracy and define the term as the GFR that measures
the overall Generalization deficiency of the model, that is
GFR = OT

TestAccuracy . It is quite clear that GFR gets higher
either by increasing in OT or by decreasing the Test Accuracy
or by both. It is to note that the term “GFR” is defined here
on the assumption that TestErrorRate, TrainErrorRate ∈
(0, 100)% and TestErrorRate > TrainErrorRate, which
is the usual case.

www.ijacsa.thesai.org 315 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 2, 2018

(a) (b) (c)

Fig. 1. Decision boundaries, number of Kernel Computing Vector (KCV), & training error rates from (a) QPSVM, (b) VLPSVM, & (c) SOSVM on Banana
data.

2) Machine-Accuracy-Cost (MAC): In almost all cases, it
is desired to have an efficient machine, that is a machine
with less computational cost but having high performance.
Therefore, we need to build a machine demanding less ker-
nel execution (to classify a test pattern), hence with less
number of Kernel Computing Vectors (Support Vectors or
Basis Vectors or Expansion Vectors or Machine Vectors, how-
ever it is called by different authors for different machines,
we, here, call those “Kernel Computing Vectors(KCVs)” that
involve kernel evaluation) and high test accuracy. To mea-
sure the achievement of such property by a machine, we
define a term “Machine-Accuracy-Cost(MAC)” as MAC =
Number of KCV s(#KCV s)

Test Accuracy(TeA) . So, a machine with the highest
number of KCVs which increases for lower Train Error and hig
lowest test accuracy will have the maximum MAC(which is
never desired), whereas a machine with the lowest number of
KCVs giving the highest test accuracy will have the minimum
MAC (which is always desired).

B. Experimental Set-up and Results

In this section, the experimental results obtained from the
proposed method are presented to show the efficiency of the
SOSVM and to compare with QPSVM and VLPSVM. The ex-
periments were performed on six benchmark machine learning
datasets [43] namely Banana, Diabetics, Heart, Thyroid, Ti-
tanic and Twonorm as listed in Table I. For all three machines
Gaussian kernel is used throughout the whole experiment. In
case of QPSVM and VLPSVM, the penalty parameters C,
CV and the kernel parameters σ, σV are chosen based on the
lowest crossvalidation error rate for each dataset using five-
fold crossvalidation scheme. This two cases are experimented
with C ∈ {2−2, 20, 22, ..., 212} and σ ∈ {2−2, 20, ..., 26}.
For SOSVM, there are C, σ in the first stage and CV , σV in
the second stage. To figure out the best C, σ,CV and σV , a
modified scheme of five-fold crossvalidation is implemented.
In this scheme, 4 folds of randomly chosen training data are
used to feed in the first stage for a particular value of C
and σ. The KCVs from the first stage are used to feed as
training set with a particular value of CV and σV in the second
stage. The returned KCVs of the second stage VLPSVM are
treated as the overall KCVs of SOSVM and this classifier
is used to test the remaining one fold of training data. The
parameters C, σ,CV , σV with the lowest crossvalidation error
rate are chosen as the best ones. This approach is experimented
with C ∈ {2−2, 20, 22, ..., 212}, σ ∈ {2−2, 20, ..., 26}, CV ∈
C×{2−2, 2−1, 20, ..., 25} and σV ∈ σ×{2−2, 2−1, 20, ..., 25}.

To evaluate the quality of the result obtained by the
proposed SOSVM, it is compared with the results obtained
by QPSVM and VLPSVM in Table I. Table I presents the
number of training and testing patterns of different dataset
along with the average number of KCVs and average test error
rate. From this Table, it is observed that the proposed method
(SOSVM) results in a lower number of KCV than QPSVM in
all cases and also lower than VLPSVM in most cases. In case
of QPSVM the average number of KCVs for all the datasets is
154.15 (SD 8.19) whereas for VLPSVM it is 29.08 (SD 8.16).
But in case of our proposed SOSVM the average number of
KCVs is 18.29 (SD 8.34) which is 1/9th of QPSVM and 2/3rd

of VLPSVM. Therefore, it is clear that in most cases SOSVM
results in a reduction in the number of KCVs and in some
cases substantial reduction.

Moreover, in order to show how well our machine is
capable of generalizing than the traditional machines, the
performance of the proposed method along with the traditional
QPSVM and VLPSVM is compared in terms of Generalization
Failure Rate (GFR). In Table II, the GFRs of traditional
QPSVM, VLPSVM and the proposed SOSVM are listed for
various dataset. Also, the ratios of GFRs of the proposed
SOSVM with respect to traditional machines are listed to show
how well SOSVM performs to generalize the training data. It
can be seen from the table that the average GFR value of our
machine as small as 30% of the most powerful classifier like
the QP SVM and 2% of the LP SVM.

Finally, in order to judge the proposed in terms of Machine
Accuracy Cost (MAC), the MAC values of the proposed
method along with the traditional QPSVM and VLPSVM is
listed Table III. Also, the ratios of MACs of the proposed
SOSVM with respect to traditional machines are listed to show
how well our machine minimizes the cost. It can be seen
from the table that the average MAC value of our machine
as small as 16% of the most the most powerful classifier like
the QPSVM and 80% of the sparse LP SVM.

VI. CONCLUSION AND FUTURE WORK

We have developed a fast but powerful classifier by using
sequential optimization that is supported with simultaneous
parameter search. We have also defined two new terms “GFR”
and “MAC” that can be directly and easily measured to verify
a detector’s perfection. Our classifier is very much straight
forward using least effort to train. Compared to the state-of-
the-art sparse classifiers, it is more efficient, hence, posing
average MAC value as small as 16% of the standard QP

www.ijacsa.thesai.org 316 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 2, 2018

TABLE I. NO. OF KCVS (KERNEL COMPUTING VECTORS), WHICH INCREASES FOR LOWER TRAIN ERROR AND HIGH TEST ERROR RATE ON
BENCHMARK DATA FOR DIFFERENT MACHINES

Dataset No.
of
train
pat-
tern

No.
of test
pattern

Data
Di-
men-
sion

QPSVM mean
SVs (SD)

QPSVM
mean TeER
(SD)

VLPSVM
mean EVs
(SD)

VLPSVM
mean TeER
(SD)

SOSVM mean
MVs (SD)

SOSVM
mean TeER
(SD)

#MV s
#SV s

#MV s
#EV s

BANANA 400 4900 2 102.26 (14.09) 10.61 (0.53) 15.08 (1.30) 10.75 (0.51) 15.23 (1.75) 10.91 (0.52) 0.1489 1.0099
DIABETIS 468 300 8 263.22 (15.63) 23.28 (1.70) 12.58 (1.94) 23.40 (1.77) 12.56 (1.93) 23.43 (1.78) 0.0477 0.9984
HEART 170 100 13 68.23 (6.01) 16.60 (3.05) 21.94 (2.61) 17.44 (3.49) 10.60 (9.47) 15.55 (3.20) 0.1554 0.4831
THYROID 140 75 5 43.51 (3.10) 5.20 (2.08) 8.97 (1.59) 5.09 (2.11) 4.34 (1.27) 7.77 (8.14) 0.0997 0.4838
TITANIC 150 2051 3 148.50 (3.33) 22.69 (0.86) 83.91 (36.52) 22.91 (0.60) 48.48 (34.06) 23.34 (1.39) 0.3265 0.5778
TWONORM 400 7000 20 299.18 (7.00) 2.42 (0.14) 32.00 (5.03) 3.71 (0.55) 18.50 (1.55) 3.38 (0.38) 0.0618 0.5781
Average 288 2404.33 8.50 154.15 (8.19) 13.47 (1.39) 29.08 (8.16) 13.88 (1.50) 18.29 (8.34) 14.06 (2.57) – –

TABLE II. GENERALIZATION FAILURE RATE (GFR) FOR DIFFERENT
MACHINES

Dataset QPSVM VLPSVM SOSVM SOSVM
QPSVM

SOSVM
VLPSVM

BANANA 0.0031 0.0026 0.0019 0.6265 0.7618
DIABETIS 0.0010 0.0014 0.0014 1.3083 1.0100
HEART 0.0039 0.0060 0.0012 0.3073 0.2018
THYROID 0.0918 0.0109 0.0013 0.0142 0.1194
TITANIC 0.0017 0.0015 0.0010 0.6021 0.6975
TWONORM 0.0017 1.7005 0.0246 14.2239 0.0145
Average 0.0172 0.2871 0.0052 – –

TABLE III. MACHINE ACCURACY COST (MAC) FOR DIFFERENT
MACHINES

Dataset QPSVM VLPSVM SOSVM SOSVM
QPSVM

SOSVM
VLPSVM

BANANA 1.1439 0.1690 0.1520 0.1329 0.8996
DIABETIS 3.4311 0.1642 0.0876 0.0255 0.5337
HEART 0.8181 0.2657 0.0955 0.1168 0.3594
THYROID 0.4590 0.0945 0.0945 0.2059 1.0000
TITANIC 1.9208 1.0885 1.0666 0.5553 0.9799
TWONORM 3.0661 0.3323 0.2001 0.0653 0.6021
Average 1.8065 0.3524 0.2827 – –

SVM, 80% of the sparse LP SVM by Vapnik. Moreover, being
optimally complex and powerful, its overfitting tendency is
really low, which leads it to offer average GFR value as small
as 30% of the most powerful classifier like the standard QP
SVM and 2% of Vapnik’s LP SVM.

Due to this exceptionally good performance, one question
pops up about how it manages to perform better than Vapnik’s
LP SVM (VLPSVM) or the standard QP SVM (QPSVM). We
do not have any theoretical explanation for it now (and left
for future work) but one plausible explanation for it could
be that by the second layered training from the sequential
combination of the two sub-machines generated by QP and LP
(using corresponding parameters by a joint and simultaneous
search) respectively, we get a machine vectors set being second
ordered filtered and scaled (hence learned) having stochastic
and topological properties complex and sophisticated than
Support Vectors (in case of QPSVM) or Expansion Vectors (in
case of VLPSVM) while working in the similar method for the
discriminator. Thus, our algorithm produces a hybrid and un-
conventional hyperplane, based on a compact second ordered
representer set coupled with corresponding co-efficent vector
and bias that collectively adopts the statistical and geometric
properties of training data very skillfully and generalization is
boosted.

Anyway, while our classifier has consistently over per-
formed state of the art complex and sparse classifiers with
respect to computational cost and accuracy, we are considering
some further manipulation with it where parts are given below:

1) An extension from two-stages including further stages.

2) A deep theoretical analysis relating the data charac-
teristics, components of the sub-machines as well as their
sequential behavior and pattern-space sharing including low
GFR and MAC would be interesting.

At last, an efficient and accurate classifier like our SOSVM
is very much essential. For example, our classifier is indispens-
able in real life, where one may have more time and resources
to train but very less to test.

REFERENCES

[1] P. Viola and M. J. Jones, “Robust real-time face detection,” International
Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[2] V. Vapnik, Statistical learning theory. Wiley, 1998.
[3] F. Vojtěch and V. Hlaváč, “Greedy algorithm for a training set reduction

in the kernel methods,” in Proc. of the International Conference on
Computer Analysis of Images and Patterns. Springer, 2003, pp. 426–
433.

[4] S. S. Keerthi, O. Chapelle, and D. DeCoste, “Building support vector
machines with reduced classifier complexity,” Journal of Machine
Learning Research, (JMLR), vol. 7, no. Jul, pp. 1493–1515, 2006.

[5] E. Osuna and F. Girosi, “Reducing the run-time complexity of support
vector machines,” in Proc. of the International Conference on Pattern
Recognition (ICPR), 1998, pp. 1–10.

[6] M. Rätsch, S. Romdhani, G. Teschke, and T. Vetter, “Over-complete
wavelet approximation of a support vector machine for efficient classifi-
cation,” in Proc. of the Joint Pattern Recognition Symposium. Springer,
2005, pp. 351–360.

[7] S. Romdhani, P. Torr, B. Schölkopf, and A. Blake, “Efficient face detec-
tion by a cascaded support–vector machine expansion,” in Proc. of the
Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 460, no. 2051, 2004, pp. 3283–3297.

[8] M. Wu, B. Schölkopf, and G. Bakır, “A direct method for building
sparse kernel learning algorithms,” Journal of Machine Learning Re-
search (JMLR), vol. 7, no. Apr, pp. 603–624, 2006.

[9] A. Cotter, S. Shalev-Shwartz, and N. Srebro, “Learning optimally sparse
support vector machines,” in Proc. of the 30th International Conference
on Machine Learning (ICML), 2013, pp. 266–274.

[10] Y. J. Lee and O. L. Mangasarian, “RSVM: reduced support vector
machines,” in Proc. of the First SIAM International Conference on Data
Mining (SDM), 2001, pp. 1–17.

[11] T. Joachims and C. N. J. Yu, “Sparse kernel svms via cutting-plane
training,” in Proc. of the European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML), 2009, p. 8.

[12] K. Z. Arreola, J. Fehr, and H. Burkhardt, “Fast support vector machine
classification using linear SVMs,” in Proc. of the 18th International
Conference on Pattern Recognition (ICPR), vol. 3, 2006, pp. 366–369.

[13] B. Heisele, T. Serre, S. Prentice, and T. Poggio, “Hierarchical classifi-
cation and feature reduction for fast face detection with support vector
machines,” Pattern Recognition, vol. 36, no. 9, pp. 2007–2017, 2003.

www.ijacsa.thesai.org 317 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 2, 2018

[14] H. Sahbi and D. Geman, “A hierarchy of support vector machines
for pattern detection,” Journal of Machine Learning Research (JMLR),
vol. 7, no. Oct, pp. 2087–2123, 2006.

[15] X. Huo and J. Chen, “Building a cascade detector and applications
in automatic target detection,” Applied Optics: Information Processing,
vol. 43, no. 2, pp. 1–47, 2003.

[16] R. Karim, M. Bergtholdt, J. H. Kappes, and C. Schnörr, “Greedy-based
design of sparse two-stage svms for fast classification,” in Proc. of the
29th DAGM Symposium on Pattern Recognition, 2007, pp. 395–404.

[17] S. Maji, A. C. Berg, and J. Malik, “Efficient classification for additive
kernel svms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1,
pp. 66–77, 2013.

[18] L. Ladicky and P. H. S. Torr, “Locally linear support vector machines,”
in Proc. of the 28th International Conference on Machine Learning,
(ICML), 2011, pp. 985–992.

[19] Z. E. Xu, J. R. Gardner, S. Tyree, and K. Q. Weinberger, “Compressed
support vector machines,” arXiv preprint arXiv:1501.06478, 2015.

[20] S. Maji, A. C. Berg, and J. Malik, “Classification using intersection
kernel support vector machines is efficient,” in Proc. of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR), 2008, pp. 1–8.

[21] R. Xiao, H. Zhu, H. Sun, and X. Tang, “Dynamic cascades for face
detection,” in Proc. of the IEEE 11th International Conference on
Computer Vision (ICCV), 2007, pp. 1–8.

[22] H. Luo, “Optimization design of cascaded classifiers,” in Proc. of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2005, pp. 480–485.

[23] M. J. Saberian and N. Vasconcelos, “Boosting classifier cascades,” in
Proc. of the 24th Annual Conference on Neural Information Processing
Systems (NIPS), 2010, pp. 2047–2055.

[24] M. Chen, Z. E. Xu, K. Q. Weinberger, O. Chapelle, and D. Kedem,
“Classifier cascade for minimizing feature evaluation cost,” in Proc.
of the 15th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2012, pp. 218–226.

[25] D. Chen, S. Ren, Y. Wei, X. Cao, and J. Sun, “Joint cascade face
detection and alignment,” in Proc. of the 13th European Conference on
Computer Vision (ECCV), 2014, pp. 109–122.

[26] J. Li and Y. Zhang, “Learning SURF cascade for fast and accurate
object detection,” in Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2013, pp. 3468–3475.

[27] V. C. Raykar, B. Krishnapuram, and S. Yu, “Designing efficient cas-
caded classifiers: tradeoff between accuracy and cost,” in Proc. of the
16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2010, pp. 853–860.

[28] I. Visentini, L. Snidaro, and G. L. Foresti, “Cascaded online boosting,”
J. Real-Time Image Processing, vol. 5, no. 4, pp. 245–257, 2010.

[29] M. J. Saberian and N. Vasconcelos, “Boosting algorithms for detector
cascade learning,” Journal of Machine Learning Research (JMLR),
vol. 15, no. 1, pp. 2569–2605, 2014.

[30] Z. E. Xu, M. J. Kusner, K. Q. Weinberger, and M. Chen, “Cost-sensitive
tree of classifiers,” in International Conference on Machine Learning,
2013, pp. 133–141.

[31] Z. E. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle,
“Classifier cascades and trees for minimizing feature evaluation cost,”
Journal of Machine Learning Research, vol. 15, no. 1, pp. 2113–2144,
2014.

[32] Z. Fu, A. R. Kelly, and J. Zhou, “Mixing linear svms for nonlinear
classification,” IEEE Trans. Neural Networks, vol. 21, no. 12, pp. 1963–
1975, 2010.

[33] W. C. Cheng and D. M. Jhan, “A cascade classifier using adaboost
algorithm and support vector machine for pedestrian detection,” in Proc.
of the IEEE International Conference on Systems, Man and Cybernetics,
2011, pp. 1430–1435.

[34] S. Maji and J. Malik, “Fast and accurate digit classification,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2009-159, 2009.

[35] Q. Gu and J. Han, “Clustered support vector machines,” in Proc. of the
16th International Conference on Artificial Intelligence and Statistics
(AISTATS), 2013, pp. 307–315.

[36] S. Maji and A. C. Berg, “Max-margin additive classifiers for detection,”
in Proc. of the IEEE 12th International Conference on Computer Vision
(ICCV), 2009, pp. 40–47.

[37] G. Sharma, F. Jurie, and P. Perez, “Learning non-linear SVM in input
space for image classification,” Ph.D. dissertation, GREYC CNRS UMR
6072, Universite de Caen, 2014.

[38] M. Osadchy, D. Keren, and B. F. Specktor, “Hybrid classifiers for object
classification with a rich background,” in Proc. of the 12th European
Conference on Computer Vision (ECCV), 2012, pp. 284–297.

[39] M. Osadchy, D. Keren, and D. Raviv, “Recognition using hybrid
classifiers,” IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), vol. 38,
no. 4, pp. 759–771, 2016.

[40] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple kernels
for object detection,” in Proc. of the IEEE 12th International Conference
on Computer Vision (ICCV), 2009, pp. 606–613.

[41] A. Nefedov, J. Ye, C. Kulikowski, I. Muchnik, and K. Morgan,
“Experimental study of support vector machines based on linear and
quadratic optimization criteria,” DIMACS Technical Report 2009-18,
2009.

[42] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[43] G. Rätsch. Benchmark data sets. [Online]. Available: http://ida.first.
fraunhofer.de/projects/bench/benchmarks.htm

www.ijacsa.thesai.org 318 | P a g e

