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Abstract—Graphs are structures used in different areas of
scientific research, for the ease they have to represent different
models of real life. There is a great variety of algorithms that
build graphs with very dissimilar characteristics and types that
model the relationships between the objects of the problem to
solve. To model the relationships, characteristics such as depth,
width and density of the graph are used in the directed acyclic
graphs (DAGs) to find the solution to the objective problem. These
characteristics are rarely analyzed and taken into account before
being used in the approach of a solution. In this work, we present
a set of methods for the random generation of DAGs. DAGs are
produced with three of these methods representing three synthetic
loads. Each of the three above characteristics is evaluated and
analyzed in each of DAGs. The generation and evaluation of
synthetic loads is with the objective of predicting the behavior of
each DAG, based on its characteristics, in a scheduling algorithm
and assignment of parallel tasks in a distributed heterogeneous
computing system (DHCS).

Keywords—Directed acyclic graph; distributed heterogeneous
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I. INTRODUCTION

In recent years there has been growing interest in scientific
applications of workflow, which are often modelled by Di-
rected Acyclic Graphs (DAGs) [1]. This type of graphs, which
do not have cycles in parallel connections, allow to represent
the relations, the interdependencies and the characteristics
between the objects, such as kinship relations between people,
the structures of web page designs, basic data structures
of applications for information visualisation [2], as well as
modelling tool in various fields (social sciences, computer
science and biology) [1], and in the representation of parallel
programs, which are modelled in the scheduling of tasks in
Distributed Heterogeneous Computing System (DHCS) [1],
[3]-[6].

In the parallel and distributed computing systems, the
DAGs, also allow to show the dependencies among the tasks,
the precedence restrictions, the communication links, the cal-
culation costs and the communication costs of the tasks that
constitute the application to be executed within the system
[1], [7], [8]. In addition to the above, the DAGs are used to
distribute and represent the different tasks that make up the
solution of a problem, and the way in which these tasks are
distributed among the processors, by means of the algorithms
of the scheduling and allocation of tasks [7].

The algorithms of the scheduling and the allocation of
tasks, seek to optimize one or more performance parameters
such as the Makespan [9], the maximization of the resources

of the system [10], [20], the waiting time [21], etc. by means
of techniques derived from operations research, evolutionary
algorithms, heuristic techniques and other methods of opti-
mization using operations research techniques, heuristics and
meta-heuristics.

To carry out the tests of the scheduling algorithms in
the parallel and distributed computing systems, the DAGs
are generated in two ways: by generating graphs of real
applications, and by the random generation of synthetic loads
[4].

For the generation of graphs of real applications, the
designs of DAGs of real problems are considered, such as the
molecular dynamic code [6], [11], the Gaussian elimination,
and the Fast Fourier Transform [11], and so on. These appli-
cations are processed with the scheduling algorithm to obtain
the results in the performance metrics to be evaluated.

For the generation of synthetic loads constituted by DAGs,
different algorithms of random generation of graphs can be
used, such as: the Erdös-Rényi method [12], the level-by-
level method [13], the fan-in fan-out method [14], the Random
Orders method [15], the Márkov chain method [7], [16], the
parallel approach method for the random generation of graphs
on GPUs [17], and so on. These algorithms use a set of
parameters in their execution, to generate the DAGs with
specific characteristics or properties.

The different research works specify the characteristics and
properties of the DAGs in different ways. In [18], the following
properties of the DAGs are mentioned and defined: the depth
of the graph, the width, the regularity, the density and the
number of jumps. In [4], three characteristics of the DAGs are
analyzed: the longest route, the distribution of the out-degree
(degree of exit) and the number of edges. In [19] author refers
to the following parameters of the DAGs: the critical path and
the size of the DAG.

These characteristics of the DAGs are decisive in the results
of the performance metrics measured by the task scheduling al-
gorithm that uses synthetic loads, so generating synthetic loads
to perform the tests of the scheduling algorithms in distributed
heterogeneous systems produce two important problems: first,
there is no standard algorithm that produces the graphs with
specific properties that you wish to evaluate, in the scheduling
algorithms; the generated synthetic loads produce evaluations
in the scheduling algorithms that are generally adapted to the
performance parameters that the algorithm evaluates, produc-
ing excellent results with synthetic loads, but with poor results
with loads of real users. Second, the graphs do not adapt to
the underlying computation system in which the scheduling
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algorithms are tested, so it is necessary to execute different
graph generation algorithms to produce synthetic loads, that
are evaluated with the scheduling algorithm and, with the
distributed heterogeneous system.

As explained in the previous paragraph, this paper de-
scribes five methods for the generation of random DAGs. Of
these five methods, three of them are chosen: the Erdös-Rényi
method, the Márkov chain method and the parallel approach
method, with the aim of generating synthetic loads that will
be analyzed in the characteristics of depth, width and the
density of the graph to predict the behavior of a scheduling
algorithm and allocation of tasks in a distributed heterogeneous
computing system.

The selection of the three methods of generation of random
graphs aims to:

1) Determine and analyze the values that each method
generates in the characteristics of the depth, width
and density of the graph.

2) Evaluate the convergence speed of each algorithm,
considering that two of them run sequentially and the
last one in parallel.

3) Obtain synthetic loads, which allow the validation of
an algorithm for scheduling and allocation tasks in a
distributed heterogeneous computing system.

The manuscript is constituted in following ways: In Section
2 related works, the most common algorithms for the genera-
tion of DAGs reported in the literature are described, Section 3
justifies the random generation of DAGs for the construction of
synthetic loads to be used in the scheduling and allocation of
tasks in SCHD. A set of basic definitions of the DAGs is shown
in Section 4. Section 5 describes the way in which parallel
tasks are modeled with DAGs. The application of the DAGs
in the problem of scheduling and allocation tasks in the DHCS
is described in Section 6. Section 7 describes the importance of
the characteristics of the generated DAGs. Section 8 describes
the results obtained from the evaluation of the two methods of
generation of DAGs. Section 9 shows the conclusions obtained
in this work, and finally Section 10, shows the works that will
be developed in the future in this research area.

II. RELATED WORKS

In the problem of task scheduling in heterogeneous dis-
tributed systems, different methods have been used for the
generation of random graphs. In this section, we describe five
of the most common methods that generate random graphs.

The algorithms described here generate the graphs based
on a set of parameters that are put into the algorithm. The
characteristics of each generated graph are similar to those of
the graphs of parallel applications of the real world.

The Erdös-Rényi [12], are two simple, elegant and general
mathematical models [17], considered the most popular meth-
ods for the random generation of graphs [4]. The first model
denoted as Γv,e choosing a uniformly random graph of the set
of graphs with v vertices and e edges. The main characteristic
of this method is the generation of random graphs, with a fixed
number of edges [4].

The second method denoted as Γv,p choose a uniformly
random graph of the set of graphs with v vertices, where each

edge has the same p probability of existing [12]. From this
method, the following properties can be highlighted [4]:

• When the value of v is sufficiently large, the number
of edges in the graphs generated tends to p

(
n
2

)
.

• There is a high probability of generating a subgraph
weakly connected to most vertices, if np tends to a
constant greater than 1 and there is no other compo-
nent connected with more than Olog(n) nodes.

• If p > (1+ε) ln n
n then it is highly probable that the

generated graph will not have isolated vertices.

To date this model has been widely used in many fields
of research, among which are: communication engineering,
social networks, the spread of viruses and worms in networks,
data search and replication in point to point networks, evaluate
the similarity of the topologies between biological regulation
networks and monotonous systems, and used to study genetic
variation in human social networks, among other areas [17].

The level by level method designed specifically for the
validation of heuristics that are applied in task scheduling [13].
This method is based on the concept of levels. This concept
states that if there is an edge from level a to level b, then
there is no path from a vertex in b to a vertex in a the edges
are created with probability p exactly as in the Erdös-Rényi
Γv,p method. The practical utility of this method is due to the
possibility of limiting the size of the critical path of the graph,
when the value of the variable k in the algorithm is limited.

The Fan-in/Fan-out method, proposed in [14] uses prop-
erties of the branch of mathematics called order theory to
analyse and generate random graphs. The operation is based
on the generation of randomly ordered sets, which are used to
generate task graphs. The fundamental concept of the method
is to create a partial order by the intersection of several total
orders.

The Random Orders method, proposed in [15], uses prop-
erties of the branch of mathematics called theory of order to
analyze and generate random graphs. Its operation is based
on the generation of partially ordered random sets, which are
used to generate task graphs. The fundamental concept of the
method is based on creating a partial order by the intersection
of several total orders.

The Márkov Chain Method is based on a Márkov chain to
generate even random acyclic digraphs of a given size [16].
This method, initially proposed for information visualisation
applications, seeks to produce random acyclic digraphs with:

• A prescribed number of vertices uniformly random
starting from the empty graph.

• Dimensioned total degree or dimensioned vertex de-
gree.

• A way to control the density of the edges of the
resulting graphs.

This algorithm uses the following development: let V =
{1, ..., n} denote the set of underlying vertices of the consid-
ered graph. We define a Márkov chain M with state space of
all acyclic digraphs on the set of vertices V A Márkov chain
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is completely determined by its transition function, prescribing
the probability that the chain goes from a given state to any
other possible state. For this case the transition function is as
follows:

One position consists of an ordered pair (i, j) of different
vertices of V . If Xt denotes the state of the Márkov chain over
time t, then Tt+1 is selected in accordance with rules 1) and
2) described below.

Suppose a position (i, j) which is selected uniformly at
random:

1) If the position (i, j) corresponds to an arc e in Xt,
then Xt\e. The edge e is deleted from the graph
associated with Xt.

2) If the position (i, j) does not correspond to an arc e in
Xt, then Xt+1 is obtained from Xt when adding this
arc, as long as the underlying graph remains acyclic;
otherwise Xt+1 = Xt.

The algorithm obtains the main characteristics of the
Márkov chain: aperiodic and irreducible with a symmetric
transition matrix, containing a uniform, limiting stationary
distribution in the set of all acyclic digraphs on the set of
vertices of V .

A proposal to improve the Márkov chain algorithm has
been proposed in [7]. In this research work the algorithm is
slightly modified and used to generate acyclic digraphs simply
connected evenly at random. This type of digraph is widely
used in task scheduling, due to the ease of representing parallel
programs that are modelled. For this ease, this improved
algorithm of the Márkov chain is selected in this research work.

This algorithm consists of two rules T1 and T2, which
appear in the following paragraphs:

Let N ≥ 2 is a fixed integer, and V = {1, ..., n} denotes a
finite set of vertices. Consider the set A of all acyclic directed
graphs on V that is, graphs that do not contain circuits. Next,
we define the Márkov chain M on the set A. Because the V set
of vertices is fixed, there is no distinction between a digraph
in A and the set of its arcs. The transition in any two states
in M is given as follows:

Xi is the state of the Márkov chain in time t. Assume a pair
of integers (i, j) that have been uniformly drawn at random
from the set V × V .

• Rule (T1). If (i, j) is an arc in Xt this is deleted from
Xt. This is Xt+1 = Xt\(i, j).

• Rule (T2). If (i, j) is not an arc in Xt then:
◦ This is added to Xt if the resulting graph is

acyclic. This is, Xt+1 = Xt ∪ (i, j).
◦ In another case nothing is done, this is,

Xt+1 = Xt.

When starting the algorithm from a graph with an empty
array of arcs, it is possible to apply the rules (T1) and (T2)
iteratively to construct an acyclic digraph with a nearly uniform
distribution.

The characteristics of the algorithm demonstrated by the
authors are:

• The probability of a transition going from a state X
to a state Y 6= X is 1

n2 .

• The generation of the transition matrix as symmetric.

• The convergence of the Markov chain to uniform
distribution.

• The irreducibility of the state of space M.

A parallel approach to the random generation of graphs on
GPUs is a method proposed in [17], which seeks to solve the
problem of the exponential growth of the number of edges in
the process of classical generation of graphs with the Erdös-
Rényi method.

The general scheme of this research is based on a collection
of three sequential algorithms as follows: the first algorithm
called ER is the implementation of the random process of
the Gilbert model [12]; the second ZER algorithm exploits
the availability of an analytical formula for the expected
number of edges in the generated graphs, which can be omitted
in a geometric approach; A third algorithm, PreLogZER, is
implemented to avoid the calculation of logarithms required
by the proposed method. The three sequential algorithms are
scaled to a parallel format, which is programmed in a GPU
environment.

This algorithm was proposed by the authors to be evaluated
in a GPU hardware architecture. In our work, the algorithm is
evaluated in an architecture of four processing cores using the
MPI libraries of the C language.

III. JUSTIFICATION OF THE RANDOM GENERATION OF
GRAPHS

In the absence of a procedure for generation of standard
random graphs, it is necessary to carry out experiments with
different scheduling algorithms, to generate the synthetic loads
that will be evaluated with the new scheduling algorithm to be
executed in the DHCS.

The random generation of DAGs allows the use of different
types of graphs that resemble the designs of the real parallel
programs, which causes the values obtained in the performance
metrics evaluated to be most attached to the workloads gener-
ated by the real users in the DHCS.

Then, the generation of random workloads, to validate a
new scheduling algorithm is justifiable because:

• It can help to find a counterexample for the algorithm
[4]. Although the algorithm is theoretically correct,
the random input data can help find errors in the
implementation, or help identify bottlenecks in per-
formance.

• It helps to evaluate the performance of the algorithm
in contexts not analyzed theoretically [4]. It allows
to predict how the algorithm will be executed in real
conditions.

• They allow predicting some of the properties of
acyclic graphs [16].

• It is possible to obtain DAG’s evenly distributed with
bounded total grade or bounded vertex degree [16].
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• It is likely to obtain, in a large set of examples, all
possible or interesting cases that should be tested or
studied [7].

• They allow to synthesize data sets with the objective
of evaluating the efficiency and effectiveness of the
algorithms [17].

IV. BASIC DEFINITIONS

A graph is a structure that represents relationships and
interdependencies between objects, and the characteristics that
relate them. Examples of graph applications can be kinship
relationships between people, the structure of web page de-
sign, basic data structures of applications for information
visualization [16], as well as modeling tool in various fields
(social sciences, computer science and biology) [7], and in the
representation of parallel programs that are modeled in task
scheduling in high performance computing systems (HPCS,
High Performance Computing System) [18].

Given the variety of graphs in the existing literature [2], in
this section we define a special type of graph called acyclic
weighted directed graph (which we refer to in the following
sections as DAG), using the following definitions.

Definition 1. A graph G is a pair G = (V,E) consisting of
a finite set V 6= ∅ and a set E of two subset elements of V .
The elements of V are called vertices. An element e = {a, b}
of E is called an edge with final vertices a and b. It is said
that a and b are incidents with e and that a and b are adjacent
or neighbours of each other, and is defined as e = ab or aeb

Definition 2. To determine the relationship between vertex
information (which the connections do not model), a digraph
is defined. A digraph exists when the set of connections A =
A(G) is directed, they distinguish between the connections
ei,j = (vi, vj) and ej,i = (vj , vi), then the graph D = (V,A)
is called directed graph or graph.

Definition 3. Now, if between the existing connections, the
digraph has related a number T (vi, vj) which represents the
cost of communication between the vertex vi and vertex vj we
have a weighted graph. A weighted graph is a pair (G,W ),
where G is a graph and W represents a function W : E → R
in this way, the weight of a connection e is W (e) The weight
of the graph is W (G) =

∑
eεEW (e).

Definition 4. Finally, a graph that has no cycles in parallel
connections ie it has no connections of the form: evi,vi is called
an acyclic graph.

V. MODELLING OF PARALLEL TASKS WITH GRAPHS

As heterogeneous distributed computing systems (e.g. clus-
ters, grids, clouds, etc.) become commonplace to meet the
massive computational demands of executing complex, multi-
tasking scientific applications, the process of assigning these
tasks to multiple resources, known as scheduling, is important
for application performance.

In recent years, DAGs have received much attention as a
result of the growing interest in modelling scientific workflow
applications [1].

This modelling, in the DHCS allows to show:

• the dependencies between tasks [8],

• the transmission of data between tasks [1],

• the precedence constraints between task [4,8],

• the communication links between tasks,

• the costs of calculating each of the tasks [8], and

• the costs of communication between tasks [8].

VI. APPLICATION OF DAGS IN THE TASK SCHEDULING
PROBLEM IN DHCS

Without loss of generality and considering the definitions
existing in the literature [1], [3]-[6] in this section, it is defined
how the DAGs are applied to the problem of the scheduling
and the allocation of tasks in a DHCS.

A DAG consists of v nodes n1, n2, . . . , nv which can
be executed on any of the processors available from an
DHCS. A node in the DAG represents a task, which is a
set of instructions that must be executed sequentially without
preferential right on the same processor. A node has one or
more entries. When all the entries are available, the node is
activated for execution. After its execution, it generates its
outputs. A parentless node is called an input node, and a
childless node is called an output node. The weight at a node
is called the computing cost of a node ni and is denoted by
w(ni).

The graph also has e directed edges representing a partial
order between tasks. The partial order introduces a DAG
precedence constraint, and implies that if ni → nj , then nj
is a child who can not start until his father ni complete and
send your data to ni. The weight at one edge is called the
communication cost of the edge and is denoted by c(ni, nj).
This cost is incurred if, ni and nj are scheduled in different
processors and is considered zero, if ni and nj are scheduled
on the same processor. For standardisation we specify that a
DAG has only a single input node and a single output node.

VII. CHARACTERISTICS OF THE GENERATED DAGS

When experimenting with a new algorithm for scheduling
and allocation tasks, it is necessary to carefully observe each of
the parameters that constitute the DAGs. The parameters that
are observed allow us to avoid biases in the results obtained
in the new algorithms, when testing: convergence, speed, the
capacity of resource allocation and transfer speeds.

Some of the works that highlight the importance of the
parameters of the DAGs are [3], [4], [18], [19]. In this section,
three characteristics of the DAGs that are analyzed in synthetic
loads are defined.

The depth of the graph, also known as the critical path
or the longest path, is the path from the input node to the
output node of the DAG, and has the highest values in the
total calculation of execution costs of each task, and the total
communication costs of the edges [11], [19]. When parallel
tasks are scheduled using the DAGs, the algorithms require an
appropriate scheduling of tasks located in the critical path.

The width of the DAG, which determines the maximum
parallelism in the DAG, that is, the number of tasks in the
longest level.
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The density of the graph, denotes the number of edges
between two levels of the DAG; with a low value in this
property, there are few edges and with large values there are
many edges in the DAG.

VIII. SIMULATION AND RESULTS

This section explains the procedure carried out to perform
the simulation of the experiments and the results obtained.

The first subsection explains the parallel algorithm for
the generation of the synthetic loads; in second section, the
specifications of the way, in which the DAGs are used in this
work are described; finally the results are depicted in three
subsections: number of nodes generated (on average) in the
critical path, the maximum parallelism in the DAG and the
density of the graph.

We describe an additional feature of the methods: the
convergence time of the algorithms. This measurement allows
us to know, the times that each method consumes in the
generation of synthetic loads. The results obtained are shown
in a graph for better understanding.

A. Algorithm for the Generation of Synthetic Loads

For the realization of the simulation, an algorithm that runs
on a platform of four cores was used. The division of work
between the cores is done in the following way:

Core 0

1) Build the symmetric matrix with the number of
vertices specified and the probability of inclusion, for
the Erdös-Rényi method. Send all parameters to the
core 1, to build the DAG with this method.

2) Specifies the maximum number of edges and the
probability of inclusion. Send all parameters to the
core 2, to build the DAG with this method.

3) Set v representing the set of vertices. Send all pa-
rameters to the core 3, to build the DAG with this
method.

4) Receives the results of the cores and shows them to
the user.

Core 1

1) Process the Erdös-Rényi algorithm. Receives the
symmetric matrix.

2) Build the DAG based on the symmetric matrix.
3) Go through all the possible routes in the DAG to

get: the depth of the graph that represents the critical
route, the width of the DAG and the density of the
graph.

4) Measures the time consumed by the algorithm.

Core 2

1) Process the Parallel approach algorithm. Receives
both parameters: maximum number of edges and the
probability of inclusion.

2) Build the DAG based on this parameters.
3) Go through all the possible routes in the DAG to

get: the depth of the graph that represents the critical
route, the width of the DAG and the density of the
graph.

4) Measures the time consumed by the algorithm.

Core 3

1) Process the Markov algorithm. Receive the set of
vertices and build the DAG.

2) Go through all the possible routes in the DAG to
get: the depth of the graph that represents the critical
route, the width of the DAG and the density of the
graph.

3) Measures the time consumed by the algorithm.

The details of each step, within the processing cores are
omitted in this research work for reasons of space; and instead,
the results obtained in each experiment are highlighted.

B. Specifications

For a better understanding in the treatment of the DAGs,
it is necessary to dictate the following specifications:

• There must be a dummy vertice of entry into the DAG,
that indicates the input of the parallel program.

• There must be an exit node that indicates the end of
the parallel program to be put into the system.

• There must be at least one route that leads from the
input node to the exit node.

• There may be vertices without a link to the main node
in the DAG, which represent processes that start after
the main program has started.

In this work, the parameters of the algorithm are not
compared, such as the probability of inclusion; in any case,
these parameters remain fixed for the three methods and, once
the DAGs are produced the three proposed parameters are
observed, measured and analyzed.

C. Number of Nodes Generated (on Average) in the Critical
Path

The objective of this experimentation is to verify the
number of vertices generated by each method, in the critical
route of the DAG. Obtaining a large number of vertices in the
critical path, indicates that the costs of executing each task will
be high: the task will remain in the system for a long time and
will require a high number of system resources.

The parameters used in this experiment are: N and M .
The parameter N stands for the finite set of vertices and takes
the values of 5 to 20, and M stands for the number of nodes
generated (on average) in the critical path.

What results does each method give? Fig. 1 shows the
results for this experiment. For the case of the Erdös-Rényi
method, there is a direct relationship between the number
of vertices of the critical route and, the parameter of the
number of vertices to be generated with the algorithm; this
relationship allows generating DAGs with short critical routes,
which represent a low consumption of processing resources in
the HDCS.

The Markov chain method produces longer critical routes,
due to the increase in the number of DAG levels. By producing
more levels in the DAG, the Markov method also produces an
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Fig. 1. Number of nodes generated (on average) in the critical path.

increase in the number of edges. These results allows to test
the DAG with heavier loads in the HDCS.

The third method, the parallel approach, can produce
critical routes that oscillate between the number of vertices
generated and a greater number of vertices. Namely, it is a
method that can be used to generate light synthetic loads and
heavy synthetic loads, in the same set of tests of the scheduling
algorithm.

D. The Maximum Parallelism in the DAG: Width

In general terms, the width determines the maximum
parallelism in the DAG, this is the number of tasks in the
longest level.

To generate a comparison between the 3 proposed methods,
the parameter N was varied with the same values: from 10 to
30 with increments of 5 units.

For the the Markov chain algorithm, the parameters m and
p, remain constant during the tests performed. The parameter
E is considered a maximum number of edges as N2; m
representing the break points of the intervals, E the maximum
number of edges and p the probability of inclusion.

The parameter N (the finite set of vertices) takes the values
of 10, 20, 30. Thus the probability of a transition going from
a state X to a state Y 6= X is given by the formula 1

N2 .

The width generated in the DAG with this algorithm occurs
at the highest levels, i.e. if the graph is produced with 5
levels the maximum width is reached at level 1 or 2, which
implies that the assignment and release of the resources in the
distributed heterogeneous system are made at an early stage of
the execution of the algorithm. The results obtained with this
method and, according to the generated variations are shown
in Fig. 2.

Given the random nature of the DAG generation, it is very
difficult to determine the behaviour of the algorithm under
different conditions, but it allows us to determine the resource
usage times.

The parallel approach uses the following parameters: m
representing the break points of the intervals, E the maximum
number of edges and p the probability of inclusion.

The results obtained according to the generated variations
are shown in Fig. 2.

Fig. 2. The maximum parallelism in the DAG: width.

The results obtained with this method show a thinning in
the width of the DAG, what can be interpreted as the generation
of parallel applications with less load of resources for the
algorithm that realises the scheduling.

A very important point in this algorithm is the number
of edges produced in the DAG. While the previous method
generates few edges, in this method it is observable that at
each level a substantial number of these are produced, which
indicates the parallel applications that are represented contain
high indexes of communication between them, allowing to
evaluate the means of distributed system communication.

In this set of experimentations, the last method Erdös-
Rényi, shows consistent results as shown in Fig. 2. The levels
that occur in the DAG, maintain a strict attachment to the
number of vertices that are generated, i.e., if 5 or 10 vertices
are generated, at least one level in the DAG is produced with
this same number of vertices. The consistency of this method
makes it suitable for experimenting with light loads in the
planning algorithm.

E. The Density of the Graph

We account for each level the number of edges, to de-
termine the communication levels produced by the generated
DAG.

According to the number of localized edges, we have
classified connectivity levels as low, dense and very dense.
A low level refers to the existence of a connectivity of 50% or
less of the nodes between one level and another, that is, if level
1 has 6 vertices and level 2 has 2 vertices, a low connectivity
refers to that 3 or less vertices of level 1 are connected with
the 2 vertices of level 2. High connectivity refers to 80% or
less of the vertices of level 1 are connected to the vertices of
level 2. A dense communication level refers to there is a total
connectivity between the vertices of a level and the vertices of
its immediate lower level.

The parameters used in this experiment are: N and M . The
parameter N stands for the finite set of vertices and takes the
values of 5 to 20, and M stands for the percentage of edges,
generated between DAG levels.

Fig. 3 shows the results obtained in the density of graphs.
This experiment show that the Markov chain method stand out
above the other two methods, by generating high connectivity;
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Fig. 3. Results obtained in the density of graphs.

with this method the number of connections between all levels
of the DAG is very high.

The parallel approach, has an oscillation in the results and
exhibits good scalability as the experiment progresses; it can
produce dense connectivities and very dense connectivities. is
considered in this work as a dual method, which facilitates
experimenting with high and low levels of coefficient in the
system.

The Erdös-Rényi method holds a stability in the connec-
tivities produced in the DAG. During all the experimentation,
the levels remain dense. These results are favorable for exper-
imenting with stable loads in the planning algorithm.

The levels of connectivity of the graph, have been charac-
terized to allow the allocation algorithm to have an “idea" of
the location of the tasks in the HDCS. That is, a low connec-
tivity allows the DAG’s tasks to be located in geographically
remote computing resources. Whereas a dense connectivity,
forces the algorithm to assign tasks as closely as possible.

F. Convergence Time of the Algorithms

Another characteristic observed in the experiments has
been the convergence time of the algorithms proposed, i.e.
the time that the algorithm needs to generate all the graphs.

The Markov chain method, due to its condition of being
a sequential algorithm, its total time for the completion of
the generation of total graphs is slightly higher, than the time
needed for the parallel approach for random graph method,
which was born with a condition of being a parallel algorithm.
In summary form in Fig. 4 shows the times of convergence
consumed, by each one of the methods.

The Markov chain method is used to represent parallel
applications that require a large number of computational
system resources, which will be used in the early stages
of the algorithm; whereas, the second method facilitates the
generation of DAGs with high communication requirements
in the system.

The Erdös-Rényi method, accelerates convergence due to
the simplicity of the method. In the results obtained, it pro-
duces the synthetic loads more quickly.

Fig. 4. Convergence time of methods.

IX. CONCLUSIONS

The synthetic loads used for the evaluation of scheduling
algorithms and assignment of tasks in HDCS, are generated by
sophisticated methods that do not consider the characteristics
of the DAGs in the scheduling process.

Evaluating an algorithm that discriminates or does not
consider the properties of the DAGs, can produce amazing
results in the evaluations of the scheduling algorithms with
synthetic loads, but can generate devastating results when it is
evaluated with loads of real users.

Therefore, in this work we evaluated three methods of
generation of random graphs, to produce synthetic loads that
were analyzed and evaluated to allow:

• Find the weaknesses and strengths of each method,
generating synthetic loads constituted by a large num-
ber of DAGs.

• The ability of each method to represent parallel
programs of real applications that users submit for
execution in an HDCS.

• Evaluate the methods in each of the characteristics of
the DAGs, and obtain a comparison of the obtained
values.

Finally, with the algorithm proposed in this work, synthetic
loads are produced. These loads are evaluated and analyzed
before being used in an algorithm for planning and assigning
tasks. The evaluations and analyzes generated allow us to
design an algorithm, with the ability to predict the planning
and allocation of computational resources in the target system.

X. FUTURE WORKS

Currently, we are experimenting with graphs that contain
more vertices. The following experiments will have graphs
with 20 to 50 vertices, with the same methods of generation.

We are also working with the design of the algorithm of
scheduling and allocation of tasks. This algorithm is planned
to be designed with a meta-heuristic strategy; the objective
computer system to test the algorithm will have a heteroge-
neous hardware and a heterogeneous operating system. The
synthetic loads generated with the methods proposed in this
research work, and characterised with 5 parameters, are the
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test DAGs that are received in the target system to measure
different performance metrics.
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