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Abstract—The given article covers the general formulations of 

inverse kinematic problems for robot motion control systems. We 

have discussed the difficulties how to solve such problems using 

analytical and numerical methods. We have also analyzed the 

convergence of iterative algorithms with the regularization on the 

trajectory with the points outside of the gripper reachability. The 

example of an iterative calculation of joint trajectories for a 3-

link robot using the recursive algorithm for the Jacobi matrix 

calculation has been presented.  
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I. INTRODUCTION 

When modeling manipulative robot motion control systems 
(MCS) it is necessary to solve with the help of a computer the 
inverse kinematic problems (IKP) for their executive 
mechanisms (EM) using analytical or iterative methods. 
Algorithms for solving such problems constitute the 
mathematical basis for development (MCS) of robots. 

A robot manipulator is composed of a serial chain of rigid 
links connected to each other by revolute or prismatic joints. A 
revolute joint rotates about a motion axis and a prismatic joint 
slide along a motion axis. Each robot joint location is usually 
defined relative to neighboring joint. The relation between 
successive joints is described by 4x4 homogeneous 
transformation matrices that have orientation and position data 
of robots. The number of those transformation matrices 
determines the degrees of freedom of robots. The product of 
these transformation matrices produces final orientation and 
position data of a n degrees of freedom robot manipulator. 
Robot control actions are executed in the joint coordinates 
while robot motions are specified in the Cartesian coordinates. 
Conversion of the position and orientation of a robot 
manipulator end-effector from Cartesian space to joint space is 
called as inverse kinematics problem, which is of fundamental 
importance in calculating desired joint angles for robot 
manipulator design and control [1]. 

For a manipulator with n degree of freedom, at any instant 
of time joint variables is denoted by (qi =q (t), i = 1;2;3;....n) 
and position variables (xj = x(t), j = 1;2;3;….m). The relations 
between the end-effector position x(t) and joint angle q (t) can 
be represented by forward kinematic equation, x(t) = f (q (t)) 

where f is a nonlinear, continuous and differentiable function. 
On the other hand, with the given desired end effector 
position, the problem of finding the values of the joint 
variables is inverse kinematics, which can be solved by, q (t) = 
f(x(t))  Solution of (q(t)) is not unique due to nonlinear, 
uncertain and time varying nature of the governing 
equations [2]. 

The different techniques used for solving inverse 
kinematics can be reviewed with some articles where, Wu et.al. 
[3], a new analytic inverse kinematics (IK) solver is proposed 
which is suitable for multiple constrained 12-DOF human 
limbs. By decomposing human skeleton into five parts one 
head chain, two arm chains and two leg chains, a multi-
constrained human skeleton can be solved analytically. 

Drzevitzky [4] introduced Inverse Kinematics problems for 
anthropomorphic limbs and have shown how to solve those 
analytically in order to obtain symbolic solutions. The 
symbolic solutions can be modified and re-computed to match, 
for example, other input values that serve as constraints when 
solving the according Inverse Kinematics problem. 

In the theoretical robotics solutions for IKP often use 
algorithms based on analytical expressions that require 
calculating inverse trigonometric and transcendental functions. 
Such algorithms are obtained directly from geometric 
kinematics models of EM, or by vector-matrix models in the 
representation of Denavita-Hartenberg, describing the 
kinematics of EM in homogeneous coordinates [7]-[13]. 

However, for robots with complex kinematics, analytical 
solutions of the IKP on a given trajectory of grasping may turn 
out to be erroneous in specific configurations of EM (link 
positions), as well as at the boundary and outside the reachable 
zone of the grasp (gripper) because of the degeneracy of the 
Jacobi matrix due to the lowering of its rank. In such cases, 
only approximate solutions of IKP can be obtained by iterative 
methods. But when using such methods, it is necessary to study 
the convergence of their algorithms. 

The article discusses the difficulties of the analytical 
solution of the IKP using the example of a three-link robot 
with rotational links, draws attention to the need for 
regularization of iterative algorithms to ensure their 
convergence, describes the recursive algorithm for calculating 
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the Jacobi matrix, and analyzes the operability of iterative 
algorithms on the trajectories of the gripper containing areas 
with special configurations of EM. 

II. GENERAL FORMULATIONS OF THE IKP 

In systems of positional, high-speed and force-torque 
control movement of robots, different inverse problems of 
kinematics are solved. 

A. IKP about Positions of Links 

Given a 6 × 1 vector of linear position coordinates and 
angular coordinates of the orientation of the gripper 

  = (                 )
  

N × 1 vector of generalized coordinates of links is calculated 
 

q= (          )
     (  )                             ( ) 

 

Where      is the N × 1 vector-valued function inverse to 
the 6 × 1 vector-valued function Ф (q) corresponding to the 
kinematic scheme of the robot’s EM. 

The problem (1) is the most complicated from the 
computational point of view, since it requires the solution of a 
system of nonlinear algebraic equations of the form. 

 ( ) -     = F(q) = 0 

Where, 0 is the zero 6 × 1 vector. 

IKP about link speeds 

For given vectors of linear and angular velocities of 
grasping (of the gripper): 

  = (        )
 
      (        )

 
 

the N × 1 vector of generalized link speeds is calculated. 

  ̇ = (  ̇    ̇     ̇ )
      ( ) (  

  
)                                 (2) 

Where      ( ) is the inverse (or pseudoinverse) matrix of 
the Jacobi matrix J(q) of the vector-valued function Ф(q). 

The problem (2) is a solution of a system of linear algebraic 
equations of the form: 

 ( )  ̇     (
  
  
* 

B. IKP about the Forces and Moments in the Joints (Hinges) 

of the Links 

By the given vectors of projection of force and moment in 
the gripper: 

  = (        )
 
      (        )

 
 

The vector of generalized forces in the hinges is determined 

Q= (          )
 =  ( ) (  

  
).                                      (3) 

Expression (3), which requires the calculation and 
transposition of the Jacobi matrix, is valid only for the case of 
an ideal EM that does not have energy losses in the joints of 
the links. 

The Jacobi matrix in problems (1) - (3), depending on the 
number of links N of a robot can be square or have a 
rectangular form: 

J(q)= 
  ( ) 

  
 
  ( )

  
= 

{
   ( )

   
            ̅̅ ̅̅ ̅       ̅̅ ̅̅ ̅} 

In a more general formulation, problem (1) can be 
formulated as the problem of minimizing the square of the 
norm of the discrepancy vector: 

‖ ( ) ‖                                                                   (4) 

and solved by iterative methods without computing the 
Jacobi matrix or gradient methods using its numerical 
approximations. However, the convergence of algorithms of 
such methods is slower and when they are used, more steps of 
the iterative process are required [6]. 

In [8], an example of an iterative solution of the IKP in the 
formulation (4) for a 6-link robot is given, on the program 
trajectory of grasping which the constant orientation of the 
grasping is given not by the Euler angles, but by the vector of 
the direction cosines. 

If the values of the vector of generalized coordinates are 

bounded by the admissible domain q     , then problems of 

the form (4) should be solved by methods of conditional 
minimization. In this case, the exact solution of the IKP may in 
principle be absent. 

C. Analytical Solution of the IKP 

Consider a 3-link robot of the BBB type operating in an 
angular coordinate system for which problem (1) is solved 
ambiguously and depends on the sign of the angular position of 
the third link (the lower or upper arm configuration): 

         (
  
  ⁄ ); 

             ( ); 

         (
(     )

   
⁄ )        ( )                     (5a) 

Where L1, L2, L3 are the lengths of the links; 
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The solution of the IKP can also be obtained from other 
expressions [9]: 

         (
  
  ⁄ );      √    ; 

           (   ); 

         (
(     )

   
⁄ )    

  arctg (
       

           
)                                        (5b) 

However, the solutions of the IKP with MATLAB 
functions by the expressions (5a) on the trajectory of grasping 
with points outside its reachability zone turn out to be complex 
numbers that have no practical meaning. To obtain real 
solutions of the IKP, the values of the variables C and D, 
which are cosines, should be limited to one. The solutions of 
the IKP by the expressions (5b) are obtained real at points both 
inside and outside the reach zone of the gripper, so there is no 
need to limit the values of the variables C and E. 

III. ALGORITHMS OF ITERATIVE METHODS 

We consider algorithms for the numerical solution of 
problem (1), in which the Jacobi matrix is calculated in explicit 
form. 

A. Algorithm of Newton’s Method 

Theoretically, in the case of a square Jacobi matrix, for 
example, when N = 3 or 6, the following algorithm can be 
used: 

            
  (  )   (  ),                                    (6) 

Where       is the scalar value of a constant or variable 
step.  

Wherein At each step of the iterative process, it is required 
to calculate the inverse matrix corresponding to the Jacobi 
matrix. However, in special configurations of EM, if the Jacobi 
matrix is poorly conditioned or completely degenerate due to a 
decrease in its rank, the operability of algorithm (6) is lost, 

Simplified algorithm of Newton’s method 

If we replace the inverse matrix      in the algorithm (6) 
with the transposed Jacobi matrix 

             
 (  )   (  ),                               (7) 

Coarse (Rough) solutions of problem (1) can be obtained, 
but in special configurations of EM, the convergence of 
algorithm (7) is also not guaranteed. 

B. Algorithm of the Gauss-Newton Method 

When solving problems with a rectangular Jacobi matrix, 
when the number of links is redundant (N > 6) or insufficient 
(N < 6) in the algorithm (6), instead of the inverse matrix     , 
it is necessary to use the left 

    (    )        or the right        (     )   
pseudoinverse matrices [5]. We obtain the following algorithm: 

             
 (  )   (  )                                      (8) 

C. Algorithms of the Levenberg-Marquardt Method 

In the algorithm (8), in calculating pseudo inverse matrices, 
because the matrices (    )  and (     )  can turn out to be 
poorly conditioned or degenerate, to ensure the convergence of 
the iterative processes, it is necessary to carry out factorization 
based on the matrix decomposition or to use simple 
regularization: 

            [( 
        )

    ]   (  )                      ( ) 

            [ 
 (          )

  ]   (  )                   (  ) 

Where E is the identity matrix;     is a regularizing scalar 
parameter. 

When applying any of the algorithms (6) - (10), the matrix 
J (q) can be calculated either by the direct derivation of the 
vector function  ( )by analytic expressions, which is rather 

cumbersome for N ≥  3, or by a more efficient recursive 

algorithm [13], using the transformation matrices of 
homogeneous coordinates and the intersection operations 
(vector products) of the columns of the rotation matrix of 
grasping (n, o, a) - normal vectors, orientation and approach.  

A recursive algorithm for computing the Jacobi matrix 

In the base coordinate system of the robot, the Jacobi 
matrix performs the transformation of the vector of generalized 
link speeds: 

(
    
    

)     ( )   ̇ 

Where       and       are the vectors of the projections of 

the linear and angular velocity of grasping. 

Here the Jacobi matrix is defined as the product 

  ( )     ( )     ( )  

Where   ( )  – 6   Jacobi matrix of velocity 
transformation in the coordinate system of the gripper 

(
    
    

)     ( )   ̇ 

  ( ) - 6 × 6 matrix transformation of linear and angular 
velocities of grasping from the N-th to the base coordinate 
system. 

(
    
    

)     ( )  (
    
    

) 

To calculate the matrix    ( ) , 4 × 4 matrices are required 

that determine the position and orientation of the gripper in the 
j-th coordinate system, i.e., with respect to the (j-1) -th link: 

  ( )     (  )    (  )   (  )    

= (
                   

                     
)  
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Where         (                     )
 

   - rotation matrix 

with orientation vectors of the grip coordinate system;        

 (                    )
 
 vector of the position of the center of the 

coordinate system of the grasp. 

Columns of the matrix   ( )  (                   ) are 

calculated by the reverse recursion (j = 6, 5, ….1):  

      {
(
  
  
*

(
  
     

)
                 

Where     - 3 × 1 vector, composed of Z-components of 

vector products. 

   

[
 
 
 
(              ) 
(              ) 
(              ) ]

 
 
 

=[

                           

                         
                         

] ; 

  - a 3 × 1 unit vector directed along the axis of motion of 

the j-th link 

        
    [

 
 
 
] = [

      
      
      

] ; 

       is the zero 3 × 1 vector. 

The matrix   ( )  in the block representation has the 
following form: 

  ( )   [
        
        

] 

Where         is the zero matrix;      ( )      rotation 

matrix with the column vectors of the normal, orientation and 
approach, calculated in the base coordinate system. 

A more detailed recursive algorithm for computing the 
Jacobi matrix is described in [9]. 

Analysis of the convergence of iterative algorithms 

Let us analyze the processes of the iterative IKP solution 
using algorithms (6) - (10) with the Jacobi matrix calculation 
using the above recursive algorithm on two BBB type robot 
gripper trajectories (Fig. 1). 

 

Fig. 1. Given trajectories of grasp. 

The trajectories are given by the base points Sg ={X, Y, Z}, 
the first is in the reachable zone of grasp, the second - with 
some points outside its boundary. 

Fig. 2 and 3 show the trajectory of the links obtained for the 
upper configuration of the robot by analytical methods (5a) and 
(5b), and calculated by these trajectories by solving the direct 
problem of kinematics corresponding trajectories of the gripper 
Sc = {Xc, Yc, Zc} are shown in Fig. 1 by solid lines. 

 

Fig. 2. Results of the solution of the IKP on the first trajectory of grasp. 

 

Fig. 3. Results of the solution of the IKP on the second trajectory of grasp. 

In Fig. 4 are presented the graphs of the modules of the 
Jacobi matrix determinant of the BBB-type robot, calculated 
from the recursive algorithm for the two variants of the link 
trajectories (see Fig. 2 and 3). 

Exactly the same graphs are obtained when calculating the 
elements of the Jacobi matrix by analytic expressions. It is seen 
from the graphs that for the second variant of the trajectories at 
the points on the boundary of the reachability zone of the grasp 
the determinant of the degenerate Jacobi matrix takes the value 
zero. 

On the first trajectory of the grasp, the solutions obtained 
by all the compared algorithms (6) - (10) coincide with the 
trajectories of the links (see Fig. 2), calculated by analytical 
methods. At the same time, for each of the algorithms, the 

values of the constant parameters    and     were 
established, which ensure the convergence of the IKP solution 
processes for the number of iterations         .  

 

Fig. 4. Graphs of modules of the Jacobi matrix determinant. 

For j link B-type 

For j link p-type, 
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On the second trajectory of grasping, because of the 
degeneracy of the Jacobi matrix at special points, the 
convergence of algorithms (6) and (8) is lost.   Algorithms (9) 
and (10), with regularized left and right pseudo-inverse 

matrices, are the most stable. At values of           = 0,1 

they give the same solutions as in Fig. 3, for the number of 
iterations           .The algorithm (7), which uses the 
transposed Jacobi matrix, converges, but gives very rough 
solutions.  

IV. CONCLUSION 

Thus, based on the results of the study, the following 
practical recommendations can be made.  

When modeling and developing control systems for the 
movement (motion) of manipulative robots, it is advisable to 
use iterative algorithms for solving the IKP. Analytical 
solutions by expressions containing inverse trigonometric 
functions in special configurations of EM can turn out to be 
incorrect. 

The most accurate solutions of the IKP multi-link robots 
can be obtained by algorithms (9) and (10) with regularization, 
in which the Jacobi matrix is recommended to be calculated 
without numerical differentiation using a recursive algorithm 
that uses kinematic models in homogeneous coordinates. 

When programming (planning) the grasp paths 
(trajectories) in robot motion control systems, care should be 
taken to avoid the situations shown in Fig. 1 and 3. 

The base points should be set in the working area of the 
robot, determined by the overall dimensions of the links and 
the Permissible variation ranges of the generalized 
coordinates.   
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