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Abstract—In this paper, we consider “sets” selection problem
from a database. In conventional selection problem, which is
“objects” selection problem, the skyline query has been utilized,
since it can retrieve a set of important objects where each object
isn’t dominated by another object in a database. However, it
is not effective when we have to select important sets, each of
which contains more than one objects. Thus, we consider a “set
skyline query” that retrieves non-dominated sets of objects from
a database, which we call “object sets.” The K-skyband query
is a popular variant of the skyline query. It retrieves a set of
objects, each of which is not dominated by K other objects.
In this paper, we propose “K-Skyband set query.” It retrieves
important sets instead of objects. We investigated the properties
of the query, as well as developing pruning strategies to avoid the
unnecessary enumeration of objectsets and comparisons among
them. Intensive experiments have been performed to examine the
implemented algorithm. The results demonstrate the effectiveness
and efficiency of the proposed algorithm.

Keywords—Set Selection; Skyline Query; Skyline Set Query;
Skyband Query; Skyband-set Query

I. INTRODUCTION

To select important objects from a large-scale database is
one of the most important processes to analyze the database.
In the database literature, Borzsony et al. have been proposed
a query that retrieves a set of objects where each is not
dominated by another object in the database [1]. We call
it a “skyline query.” It has attracted lots of researchers and
practitioners due to broad applicability in decision making and
analysis tasks [2].

Let us consider an example of a financial investment
problem in the table in Fig. 1, which are seven stocks with
their corresponding prices (a1) and risks (a2). In general, all
investors want to invest in stocks with lower commission costs
and lower predicted risks. Fig. 1 shows the skyline query result
for the table where the result is {O1, O2, O3}.

In some cases, we may need to select two or more objects
in a selection or in a lookup. For example, a user might want
to invest in a combination of stocks with low costs and risk.
We often call this combination an investment portfolio. Skyline
query cannot be utilized effectively in this case because a user
may have to choose dominated objects that are not among
the skyline objects during multiple object selection in order to
obtain their optimal choices.

The investment portfolio selection problem can be analyzed
by using sets of objects, which we call “objectsets.” We denote
s as the number of objects in each objectsets. Let us consider
an investor who wants to invest in two stocks, i.e., we assume
that s = 2. Table I shows the different combinations of two

ID a1(cost) a2(risk)

O1 1 7

O2 3 3

O3 7 1

O4 7 3

O5 5 5

O6 3 5

O7 9 9 a1(cost)

a2(risk)
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O5
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Fig. 1. Non-dominated objects and skyline.

objects from the running example where each record is a set
of two stock objects. The attribute values for each objectset
are the sum of their corresponding components values. Now,
we can formalize the problem where the objectset skyline
has lower attribute values a1 (cost) as well as a2 (risk). For
s = 2, an objectset skyline query retrieves the result of
{OS1,2, OS2,3, OS2,6} because no other objectset can domi-
nate them (see Fig. 2). Notice that the conventional skyline
result of {O1, O2, O3} does not provide sufficient insights
into the selection problem. Investors always want to select
non-dominated objectsets to ensure that their portfolio has the
minimum cost with minimal risk.

Furthermore, we assume that an investor wants to invest in
three stocks. After computing all combinations of three stocks,
we need to check the dominance of these combinations to
obtain the objectset skyline result. For combinations of three
stocks, the objectset skyline query retrieves {OS1,2,3, OS1,2,6,
OS2,3,4, OS2,3,6} as the output result (see Fig. 3).

To address the issues related to set selection problem, we
propose a “K-skyband-set”. A K-skyband query, which is a
popular variant of skyline query, returns objects that are not
dominated by K other objects [6]. A K-skyband-set query
retrieves objectsets, each individual objectset of which is not
dominated by K other objectsets. In other word, an objectset
in a K-skyband-set query’s results may be dominated by at
most K − 1 other objectsets. For example, if we set the
objectset size s = 1 and the skyband value K = 1, then
the skyband set query retrieves objectsets {O1, O2, O3} for
the seven stocks example as in Fig. 1. In addition, for s = 1
and K = 2, the skyband-set query retrieves {O1, O2, O3, O6}.
This is because the objectsets comprising O1, O2, O3 are not
dominated by any objectset, and objectset O6 is dominated by
only one objectset O2. For s = 1 and K = 3, the skyband-
set query retrieves {O1, O2, O3, O4, O5, O6}. Thus, the K-
skyband query provides flexibility to increase and decrease
the number of objectets by varying the size of K.
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TABLE I. SETS OF TWO STOCKS

ID a1(cost) a2(risk) ID a1(cost) a2(risk) ID a1(cost) a2(risk)
OS1,2 4 10 OS2,4 10 6 OS3,7 16 10
OS1,3 8 8 OS2,5 8 8 OS4,5 12 8
OS1,4 8 10 OS2,6 6 8 OS4,6 10 8
OS1,5 6 12 OS2,7 12 12 OS4,7 16 12
OS1,6 4 12 OS3,4 14 4 OS5,6 8 10
OS1,7 10 16 OS3,5 12 6 OS5,7 14 14
OS2,3 10 4 OS3,6 10 6 OS6,7 12 14

a1(cost)

a2(risk)

OS1,2

OS2,6

OS3,4

OS5,7

OS3,7

OS1,6 OS1,5
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OS2,4

OS2,5

OS2,7
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Fig. 2. Skyband-set (s=2, K=1).
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Fig. 3. Three-objects skyline.

Next, let us consider examples for s = 2. Table I represents
the sets of two objects. According to Fig. 2, it is clear that the
objectsets {OS1,2, OS2,3, OS2,6} are not dominated by any
other objectset. Therefore, they are among the results obtained
by the objectset skyband queries for s = 2 and K = 1.
We can increase the number of the results set by increasing
K. For s = 2 and K = 2, the skyband-set query retrieves
{OS1,2, OS1,3, OS1,6, OS2,3, OS2,5, OS2,6, OS3,4} (see
Fig. 4). Similarly, for s = 2 and K = 3, the skyband-set
query retrieves {OS1,2, OS1,3, OS1,6, OS2,3, OS2,5, OS2,6,
OS3,4, OS3,5} (see Fig. 5).

The main challenge when developing an objectset skyband
query is overcoming its large space complexity. For a data
set with n records, the number of objectsets of size s is
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Fig. 4. Skyband-set (s=2, K=2).
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Fig. 5. Skyband-set (s=2, K=3).

up to nCs. Thus, the time complexity is also high because
we need to compute all of the objectsets to obtain the final
result. The traditional skyline or skyband algorithm calculates
all of the candidate objectsets progressively. Next, it updates
the resulting objectset dynamically. Therefore, existing index
structures, such as ZBtrees [5] and R-trees [6], are not suitable
for objectset skyband computation. So far, there is no existing
work that can compute K-skyband set efficiently.

We propose an efficient method that can select the K-
skyband set in this paper. We utilize two filtering techniques to
prevent computing large volumes of unnecessary objectsets. In
addition, we examine and confirm that these pruning strategies
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are also useful for skyband objectset computation. We em-
pirically verified the efficiency of the proposed algorithm by
conducting several experiments with various datasets including
synthetic and real datasets.

Organization of the remainder of this paper is as follows.
In Section II, we first review the most basic research into
skyline queries, before explaining objectset skyline queries. In
Section III, we present the problem definition for a skyband-set
query and the related definitions. We also discuss the properties
of objectsets in this section. We explain the implementation
with detailed examples as well as analyzing the proposed
method for computing a skyband-set query in Section IV. In
addition, we discuss the objectset pruning strategies in this
section. We demonstrate the effectiveness and experimentally
enumerate our proposed algorithm in a variety of settings in
Section V. In Section VI, we conclude the proposals and give
some suggestions for future research.

II. RELATED WORK

There are two closely related works. One is “top-k com-
binatorial skyline queries” [9]. The other is “convex skyline
objectsets” [8].

Su et al. [9] examined a method to obtain the optimal top-k
combinations according to the preference order of attributes.
They retrieve combinations, which are not dominated by
another, incrementally according to the preference until the
best k results are found. However, their method depends on
the preference order of attributes and the required number
of combinations (k value). The preference order and the
limited number value k help to reduce the search space, which
is exponential for combinations. In contrast, our proposed
method does not require a attribute preference order nor
the number of combinations. Therefore, their method is not
suitable for solving our problem. Moreover, it is very difficult
to select the appropriate preference order, which restricts the
applicability of this method. Siddique et al. introduced the
“convex skyline objectset” problem. In the problem, objectsets
that are on the upper convex hull are all the skyline objectsets.
However, the convex hull is a subset of the skyline. It means
some of the skyline may not be on the convex hull. Our
previously proposed method depends on the properties of a
convex hull. Therefore, it cannot be applied to the skyband-set
query retrieval problem.

In addition, “combination skyline queries” were introduced
in [4], which described an index-based method called PBP for
determining the skyline objectsets where they indexed each
individual object. However, PBP also has some limitations.
The key problem is that it is very difficult to specify the object
selection pattern in advance because the end users are unfa-
miliar with the PBP algorithm. The pruning capability of the
BPB algorithm depends on this pattern selection step. Thus, if a
user selects an incorrect pattern, this can exponentially increase
the search space for the computation of objectsets. Another
limitation of the BPB algorithm is that it does not work well
as the cardinality of the objectset size s changes. It only works
well for a certain adequate size of s. Thus, it is necessary to
start from scratch in order to set s adequately. By contrast,
our solution does not require the construction of a pattern in
advance. Therefore, there is no possibility of the search space

increasing exponentially. Moreover, it is possible to vary the
objectset size s in our proposed method. Some previous studies
also considered the combination selection problem, but they
are not related to our proposed method. In particular, Roy et
al. [7] discussed how to choose the “maximal combinations”.
In the paper, a combination can be considered as “maximal”,
if it exceeds the pre-specified constraint during incremental
adding procedure of an object. Finally, they selected the k
most representative maximal combinations, thereby outputting
objects with high diversity [7]. Wan et al. [10] studied the
issue of constructing k profitable products from a new product
set that is non-dominated by other existing products on the
market. They constructed non-dominant products by allocating
prices to the new products, which differed from the existing
products. However, no previous studies considered skyband-set
querying. Thus, existing methods are not suitable for solving
objectset queries.

III. PRELIMINARIES

Given a data set D with m-attributes {a1, a2, · · · , am} and
n objects {O1, O2, · · · , On}, we use Oi.aj to denote the j-th
attribute’s value for object Oi. Without loss of generality, let us
assume that the domain of each attribute has positive numerical
values and a lower value is desirable for each attribute.

Definition Dominance:

An object Oi ∈ D can dominate another object Oj ∈ D,
denoted as Oi ≤ Oj , if Oi.ar ≤ Oj .ar (1 ≤ r ≤ m) for all
m attributes and Oi.at < Oj .at (1 ≤ t ≤ m) for at least one
attribute. We refer to Oi as the dominant object and Oj as the
dominated object between Oi and Oj . If Oi dominates Oj ,
then Oi is more desirable than Oj .

In the table of Fig. 1, object O1 dominates object O7,
i.e., O1 ≤ O7 because object O1 has smaller values for both
attributes than object O7.

Definition Skyline:

An object Oi ∈ D is referred to as a skyline object of
D if and only if no other object Oj ∈ D (j 6= i) exists
that can dominates Oi. The set of skyline objects in D is
denoted by Sky(D). Let us consider the seven stocks example,
where object O2 dominates {O4, O5, O6, O7}. No object can
dominate objects {O1, O3} in D. Therefore, a skyline query
outputs the result of Sky(D) = {O1, O2, O3} (see Fig. 1).

Definition s-objectset:

An s-objectset, say OS, is a set of s objects chosen from
D, i.e., OS = {O1, · · · , Os}. To ensure that the representation
remains simple, we denote s objects as OS = OS1,··· ,s, where
each attribute value for OS is calculated using the following
formula:

OS.aj = fj(O1.aj , · · · , Os.aj), (1 ≤ j ≤ m), (1)

where fj represent a monotonic aggregate function that
receives s parameters as inputs and produces a single value.
We can apply any monotonic aggregate function in our pro-
posed method. However, for simplicity, we apply sum as the
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aggregate function, which returns the aggregate values for s
objects as follows:

OS.aj =

s∑
i=1

Oi.aj , (1 ≤ j ≤ m) (2)

Notice that the total number of s-objectsets in D is nCs =
n!

(n−s)!s! and we denote the number by |S|.

Definition Dominance Relationship:

An s-objectset OS ∈ D will dominate another s-objectset
OS′ ∈ D, denoted as OS ≤ OS′, if OS.ar ≤ OS′.ar
(1 ≤ r ≤ m) for all m attributes and OS.at < OS′.at
(1 ≤ t ≤ m) for at least one attribute. We refer to this OS
as the dominant s-objectset and we also refer to OS′ as the
dominated s-objectset.

Definition Objectset Skyline:

Let OS be an s-objectset in D. If OS is not dominated
by any other OS in D, we call it a skyline OS (s-objectset).
The skyline of s-objectsets in D, represented by Skys(D), is
the set of skyline s-objectsets in D. If we consider s = 2,
for the data set shown in Table I, 2-objectsets OS1,2, OS2,3,
and OS2,6 are not dominated by any other 2-objectsets in D.
Therefore, the 2-objectset skyline query outputs Sky2(D) =
{OS1,2, OS2,3, OS2,6} (see Fig. 2).

Definition Skyband-set:

A skyband-set query retrieves a set of objectsets, where
each individual objectset is not dominated by k other object-
sets. It also means, an objectset in the skyband-set query can
be dominated by at most k−1 other objectsets. If we consider
s = 2 and k = 2, a skyband-set query based on data set D
outputs {OS1,2, OS1,3, OS1,6, OS2,3, OS2,5, OS2,6, OS3,4}
as the query results (see Fig. 4).

Recall that any top-k query result (result of a top-k query
based on an arbitrary linear function) is contained in the results
of the skyband set. Therefore, we can use the skyband set
results as a pre-processing step for skyline and top-k query
computation.

IV. SKYBAND-SET ALGORITHM

In this section, we present the details of the proposed
skyband-set method, which is a levelwise search algorithm.
First, it calculates the 1-objectsets skyband, before computing
all of the 2-objectsets skyband, and this procedure continues
up to s-objectsets.

First, we assume that the skyband-set query is for objectset
size s = 1 and skyband size K = 1. This query is similar to
a conventional query and it produces similar non-dominant
objects as the results set. Any traditional method is suitable
for retrieving the results for this initial query. Therefore, we
use the SFS algorithm developed in [3] to calculate the
skyband-set query with s = 1 and k = 1. After complet-
ing all of the domination checks, we obtain the domination
relation table shown in Table II, which we refer to as the
domRelationTable.

Table II shows that objects O1, O2, and O3 are not dom-
inated by another objects. Therefore, for s = 1 and k = 1,

TABLE II. DOMINANCE RELATIONSHIP AMONG 1-OBJECTSETS

Object Dominant Object
O1 ∅
O2 ∅
O3 ∅
O4 O2, O3

O5 O2, O6

O6 O2

O7 O1, O2, O3, O4, O5, O6

the skyband-set query output is {O1, O2, O3}. Next, if we
retain the objectset size s = 1 and increase the skyband value
to k = 2, then the skyband-set output becomes {O1, O2, O3,
O6}. Similarly, a skyband-set query for s = 1 and k = 3 will
retrieve {O1, O2, O3, O4, O5, O6}, and the query for s = 1
and K = 4 will retrieve all objects as outputs.

As discussed regarding the skyband-set problem, if we
select the objectset size as equal to s, then a data set D
with n objects can retrieve the total number objectsets as
|S| = nCs. For a large value of n, this represents a severe
algorithmic challenge compared with the traditional skyline
computation problem. Fig. 2, 4, and 5 show that for s = 2,
the total number of possible sets is |S| = 21 (7C2). Therefore,
in order to produce domRelationTable in a similar manner
to Table II, we must conduct a domination check based on
420 (21 * 20) comparisons. Thus, even for a small data set
containing thousands of objects, the total number of objectsets
is remarkably large and vast numbers of comparisons are
required. However, given Theorem 1 and Theorem 2, we are
free to obtain the dominance relationships for the objectsets
without composing them. This also avoids a large number of
unnecessary comparisons in the domination check.

Theorem 1: Let OS1, OS2, and OS3 be three s-objectsets
in D. If OS1 ≤ OS2, then OS1OS3 ≤ OS2OS3, where
OS1OS3 is the 2s-objectset that includes the 2s objects that
are included in OS1 or OS3, and similarly, OS2OS3 is the
2s-objectset that includes the 2s objects that are included in
OS2 or OS3.

Proof: Let OS and OS′ be two s-objectsets, and let O
be an object that is not included in OS or OS′ in an m-
dimensional database D. Assume that OS ≤ OS′. If we add
O to OS and obtain the superset of OS, which is O∪OS, then
by the definition, (O ∪ OS).aj = O.aj +

∑s
i=1Oi.aj , (1 ≤

j ≤ m). Similarly, we can make O ∪ OS′. We can say that
(O ∪ OS).aj ≤ (O ∪ OS′).aj for all j and (O ∪ OS).aj <
(O ∪ OS′).aj at least one j (1 ≤ j ≤ m) by the assumption;
therefore, (O ∪OS) ≤ (O ∪OS′).�

Theorem 2: If an objectset OS is dominated by at least k
other objectsets, then all supersets that contain OS cannot be
a member of the k-skyband-set. Therefore, further skyband-
set calculations do not require the composition of the super-
objectsets that contain OS.

Proof: Assume that a data set D has four objectsets:
OS1, OS2, OS3, and OS4. If objectset OS1 is dominated by
OS2 and OS3, then the proposed algorithm does not require
that we compose super-objectset OS1OS4 for K = 2. By using
Theorem 1, if OS2 ≤ OS1, then OS2OS4 ≤ OS1OS4. This
is also true for OS3OS4 ≤ OS1OS4. Thus, two objectsets
dominate OS1OS4.�
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TABLE III. DOMINANCE RELATIONSHIP AMONG 2-OBJECTSETS

Objectset Dominant Objectset Objectset Dominant Objectset
OS1,2 ∅ OS3,4 OS2,3

OS1,3 ∅ OS3,5 OS2,3, OS3,6

OS1,4 OS1,2, OS1,3 OS3,6 OS2,3

OS1,5 OS1,2, OS1,6 OS3,7 OS1,3, OS2,3, OS3,4, OS3,5, OS3,6

OS1,6 OS1,2 OS4,5 OS2,5, OS3,5, OS2,4, OS4,6

OS1,7 OS1,2, OS1,3, OS1,4, OS1,5, OS1,6 OS4,6 OS2,6, OS3,6, OS2,4

OS2,3 ∅ OS4,7 OS1,4, OS2,4, OS3,4, OS4,5, OS4,6, OS2,7, OS3,7

OS2,4 OS2,3 OS5,6 OS2,6, OS2,5

OS2,5 OS2,6 OS5,7 OS1,5, OS2,5, OS3,5, OS4,5, OS5,6, OS2,7, OS6,7

OS2,6 ∅ OS6,7 OS1,6, OS2,6, OS3,6, OS4,6, OS5,6, OS2,7

OS2,7 OS1,2, OS2,3, OS2,4, OS2,5, OS2,6

By utilizing Theorem 1 and 2, we can prune a large
number of the unnecessary dominance checks. By checking
Table II from top to bottom, we first find that object O4 is
dominated by O2 and O3, from which we derive O2 ≤ O4 and
O3 ≤ O4. Each of the relationships with {O1, O5, O6, O7}
has not yet been examined. By applying Theorem 2 and
without performing any comparisons, we can easily compute
the following dominance relationship for 2-objectsets.

OS1,2 ≤ OS1,4 OS1,3 ≤ OS1,4 OS2,5 ≤ OS4,5

OS3,5 ≤ OS4,5 OS2,6 ≤ OS4,6 OS3,6 ≤ OS4,6

OS2,7 ≤ OS4,7 OS3,7 ≤ OS4,7

Moreover, we also obtain two more dominance relationship
for O4, as follows:

OS2,3 ≤ OS2,4 OS2,3 ≤ OS3,4

Similarly, object O5 is dominated by {O2, O6}, from which
we derive OS2 ≤ O5 and O6 ≤ O5. These relationships can
also be used to derive the following relationships for other
objects {O1, O3, O4, O7}.

OS1,2 ≤ OS1,5 OS1,6 ≤ OS1,5 OS2,3 ≤ OS3,5

OS3,6 ≤ OS3,5 OS2,4 ≤ OS4,5 OS4,6 ≤ OS4,5

OS2,7 ≤ OS5,7 OS6,7 ≤ OS5,7

In addition, we can derive

OS2,6 ≤ OS2,5 OS2,6 ≤ OS5,6.

For the sixth relationship O2 ≤ O6 in Table II, the
relationships with others are derived as follows:

OS1,2 ≤ OS1,6 OS2,3 ≤ OS3,6 OS2,4 ≤ OS4,6

OS2,5 ≤ OS5,6 OS2,7 ≤ OS6,7

Similarly, for the last relationship in Table II, the following
relationships are derived.

OS1,2 ≤ OS1,7, OS1,3 ≤ OS1,7, OS1,4 ≤ OS1,7,
OS1,5 ≤ OS1,7, OS1,6 ≤ OS1,7

OS1,2 ≤ OS2,7, OS2,3 ≤ OS2,7, OS2,4 ≤ OS2,7,
OS2,5 ≤ OS2,7, OS2,6 ≤ OS2,7

OS1,3 ≤ OS3,7, OS2,3 ≤ OS3,7, OS3,4 ≤ OS3,7,
OS3,5 ≤ OS3,7, OS3,6 ≤ OS3,7

OS1,4 ≤ OS4,7, OS2,4 ≤ OS4,7, OS3,4 ≤ OS4,7,
OS4,5 ≤ OS4,7, OS4,6 ≤ OS4,7

OS1,5 ≤ OS5,7, OS2,5 ≤ OS5,7, OS3,5 ≤ OS5,7,
OS4,5 ≤ OS5,7, OS5,6 ≤ OS5,7

OS1,6 ≤ OS6,7, OS2,6 ≤ OS6,7, OS3,6 ≤ OS6,7,
OS4,6 ≤ OS6,7, OS5,6 ≤ OS6,7

Thus, we can easily construct another “Dominance Rela-
tionship Table” for objectset with s = 2 using Table II without
comparing objectsets according to Theorem 1 and Theorem 2.
The new “Dominance Relationship Table” with s = 2 is shown
in Table III.

Table III is used to retrieve candidates for the objectset
skyband queries with s = 2 (the objecetset size is two). For
example, if a user specifies s = 2 and k = 1 for a skyband-set
query, then the proposed algorithm will select the candidate
objectsets comprising {OS1,2, OS1,3, OS2,3, OS2,6} from
Table III. Next, it will compose the four objectsets and perform
the domination checks among them. After the domination
checks, we find that OS1,3 is dominated by objectset OS2,6.
Thus, the proposed algorithm will output {OS1,2, OS2,3,
OS2,6} as the skyband-set.

Next, if the user specifies s = 2 and k = 2 for a skyband-
set query, then the proposed algorithm will first select the
candidate objectsets {OS1,2, OS1,3, OS1,6, OS2,3, OS2,4,
OS2,5, OS2,6, OS3,4, OS3,6}, before performing domination
checks among these candidate objectsets. Finally, it retrieves
{OS1,2, OS1,3, OS1,6, OS2,3, OS2,5, OS2,6, OS3,4} as the
skyband-set query result.

Similar to the example above, we can retrieve candidate
objectsets for any skyband-set query with s = 2 from the
dominance relations in Table III.

Now, if the user wants to select the top-3 objectsets, our
proposed algorithm will examine the µ score of each objectset
in the skyband set results and select OS1,2, OS2,3, and OS2,6

with µ scores of 10, 12, and 11, respectively, which are the top-
3 scores in the database. In general, the proposed algorithm
can retrieve the top-k query from the k-skyband-set results,
which can be computed efficiently by the algorithm.

Next, to construct “Dominance Relationship Table” for
s = 3, we follow the same procedure again and by utilizing
Theorems 1 and 2, we can prune a large number of unnecessary
dominance checks. After checking Table III, we first find that
objectset OS1,4 is dominated by OS1,2 and OS1,3, from which
we can derive OS1,2 ≤ OS1,4 and OS1,3 ≤ OS1,4. Each of the
relationships with {O5, O6, O7} has not yet been examined.
By using Theorem 2, we can find the following dominance
relationship for 3-objectsets without making any comparisons.

OS1,2,5 ≤ OS1,4,5 OS1,3,5 ≤ OS1,4,5
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TABLE IV. DOMINANCE RELATIONSHIP AMONG 3-OBJECTSETS

Obj.set Dominant Objectset Obj.set Dominant Objectset
OS1,2,3 ∅ OS2,3,7 OS1,2,3, OS2,3,4, OS2,3,5, OS2,3,6

OS1,2,4 OS1,2,3 OS2,4,5 OS2,3,5, OS2,4,6

OS1,2,5 OS1,2,6 OS2,4,6 OS2,3,6

OS1,2,6 ∅ OS2,4,7 OS1,2,4, OS2,3,4, OS2,3,7, OS2,4,5, OS2,4,6

OS1,2,7 OS1,2,3, OS1,2,4, OS1,2,5, OS1,2,6 OS2,5,6 ∅
OS1,3,4 OS1,2,3 OS2,5,7 OS1,2,5, OS2,3,5, OS2,4,5, OS2,5,6, OS2,6,7

OS1,3,5 OS1,2,3, OS1,3,6 OS2,6,7 OS1,2,6, OS2,3,6, OS2,4,6, OS2,5,6

OS1,3,6 OS1,2,3 OS3,4,5 OS2,3,4, OS2,3,5, OS3,4,6

OS1,3,7 OS1,2,3, OS1,3,4, OS1,3,5, OS1,3,6 OS3,4,6 OS2,3,4, OS2,3,6

OS1,4,5 OS1,2,4, OS1,2,5, OS1,3,5, OS1,4,6 OS3,4,7 OS1,3,4, OS2,3,4, OS2,3,7, OS3,4,5, OS3,4,6

OS1,4,6 OS1,2,4, OS1,2,5, OS1,2,6, OS1,3,6 OS3,5,6 OS2,3,5, OS2,3,6

OS1,4,7 OS1,2,4, OS1,2,7, OS1,3,4, OS1,3,7, OS1,4,5, OS1,4,6 OS3,5,7 OS1,3,5, OS2,3,5, OS2,3,7, OS3,4,5, OS3,5,6, OS3,6,7

OS1,5,6 OS1,2,5, OS1,2,6 OS3,6,7 OS1,3,6, OS2,3,6, OS2,3,7, OS3,4,6, OS3,5,6

OS1,5,7 OS1,2,5, OS1,2,7, OS1,3,5, OS1,4,5, OS1,5,6, OS1,6,7 OS4,5,6 OS2,4,5, OS2,4,6, OS2,5,6, OS3,5,6

OS1,6,7 OS1,2,6, OS1,2,7, OS1,3,6, OS1,4,6, OS1,5,6 OS4,5,7 OS1,4,5, OS2,4,5, OS2,4,7, OS2,5,7, OS3,4,5, OS3,5,7, OS4,5,6, OS4,6,7

OS2,3,4 ∅ OS4,6,7 OS1,4,6, OS2,4,6, OS2,4,7, OS2,6,7, OS3,4,6, OS3,6,7, OS4,5,6

OS2,3,5 OS2,3,6 OS5,6,7 OS1,5,6, OS2,5,6, OS2,5,7, OS2,6,7, OS3,5,6, OS4,5,6

OS2,3,6 ∅

OS1,2,6 ≤ OS1,4,6 OS1,3,6 ≤ OS1,4,6

OS1,2,7 ≤ OS1,4,7 OS1,3,7 ≤ OS1,4,7

Moreover, we also obtain two more dominance relationship
for OS1,4, as follows.

OS1,2,3 ≤ OS1,2,4 OS1,2,3 ≤ OS1,3,4

Similarly, objectset OS1,5 is dominated by {OS1,2,
OS1,6}, from which we derive OS1,2 ≤ OS1,5 and OS1,6 ≤
OS1,5. These relationships are used to derive the following
relationships with other objects {O3, O4, O7}.

OS1,2,3 ≤ OS1,3,5 OS1,3,6 ≤ OS1,3,5

OS1,2,4 ≤ OS1,4,5 OS1,4,6 ≤ OS1,4,5

OS1,2,7 ≤ OS1,5,7 OS1,6,7 ≤ OS1,5,7

In addition, we can derive:

OS1,2,6 ≤ OS1,2,5 OS1,2,6 ≤ OS1,5,6.

For OS1,2 ≤ OS1,6 and the relationships with
{O3, O4, O5, O7}, we can derive the following:

OS1,2,3 ≤ OS1,3,6 OS1,2,4 ≤ OS1,4,6

OS1,2,5 ≤ OS1,5,6 OS1,2,7 ≤ OS1,6,7

Next, for {OS1,2, OS1,3, OS1,4, OS1,5, OS1,6} ≤ OS1,7,
we derive the following.

OS1,2,3 ≤ OS1,3,7 OS1,2,4 ≤ OS1,4,7

OS1,2,5 ≤ OS1,5,7 OS1,2,6 ≤ OS1,6,7

OS1,2,3 ≤ OS1,2,7 OS1,3,4 ≤ OS1,4,7

OS1,3,5 ≤ OS1,5,7 OS1,3,6 ≤ OS1,6,7

OS1,2,4 ≤ OS1,2,7 OS1,3,4 ≤ OS1,3,7

OS1,4,5 ≤ OS1,5,7 OS1,4,6 ≤ OS1,6,7

OS1,2,5 ≤ OS1,2,7 OS1,3,5 ≤ OS1,3,7

OS1,4,5 ≤ OS1,4,7 OS1,5,6 ≤ OS1,6,7

OS1,2,6 ≤ OS1,2,7 OS1,3,6 ≤ OS1,3,7

OS1,4,6 ≤ OS1,4,7 OS1,5,6 ≤ OS1,5,7

For OS2,3 ≤ OS2,4 and the relationships with
{O1, O5, O6, O7}, we can derive the following.

OS1,2,3 ≤ OS1,2,4 OS2,3,5 ≤ OS2,4,5

OS2,3,6 ≤ OS2,4,6 OS2,3,7 ≤ OS2,4,7

For OS2,6 ≤ OS2,5 and the relationships with
{O1, O3, O4, O7}, we can derive the following.

OS1,2,6 ≤ OS1,2,5 OS2,3,6 ≤ OS2,3,5

OS2,4,6 ≤ OS2,4,5 OS2,6,7 ≤ OS2,5,7

Next, for {OS1,2, OS2,3, OS2,4, OS2,5, OS2,6} ≤ OS2,7,
we can derive the following relationships:

OS1,2,3 ≤ OS2,3,7 OS1,2,3 ≤ OS1,2,7

OS1,2,4 ≤ OS2,4,7 OS2,3,4 ≤ OS2,4,7

OS1,2,5 ≤ OS2,5,7 OS2,3,5 ≤ OS2,5,7

OS1,2,6 ≤ OS2,6,7 OS2,3,6 ≤ OS2,6,7

OS1,2,4 ≤ OS1,2,7 OS1,2,5 ≤ OS1,2,7

OS2,3,4 ≤ OS2,3,7 OS2,3,5 ≤ OS2,3,7

OS2,4,5 ≤ OS2,5,7 OS2,4,5 ≤ OS2,4,7

OS2,4,6 ≤ OS2,6,7 OS2,5,6 ≤ OS2,6,7

OS1,2,6 ≤ OS1,2,7 OS2,3,6 ≤ OS2,3,7

OS2,4,6 ≤ OS2,4,7 OS2,5,6 ≤ OS2,5,7

Similarly, for OS2,3 ≤ OS3,4 and the relationships with
{O1, O5, O6, O7}, we can derive the following.

OS1,2,3 ≤ OS1,3,4 OS2,3,5 ≤ OS3,4,5

OS2,3,6 ≤ OS3,4,6 OS2,3,7 ≤ OS3,4,7

Objectset OS3,5 is dominated by {OS2,3, OS3,6}, from
which we derive OS2,3 ≤ OS3,5 and OS3,6 ≤ OS3,5. These
relationships can be used to derive the following relationships
with other objects comprising {O1, O4, O7}.

OS1,2,3 ≤ OS1,3,5 OS1,3,6 ≤ OS1,3,5

OS2,3,4 ≤ OS3,4,5 OS3,4,6 ≤ OS3,4,5

OS2,3,7 ≤ OS3,5,7 OS3,6,7 ≤ OS3,5,7

In addition, we can derive:

OS2,3,6 ≤ OS3,5,6 OS2,3,6 ≤ OS2,3,5.

Again, for OS2,3 ≤ OS3,6 and the relationships with
{O1, O4, O5, O7}, we can derive the following:

OS1,2,3 ≤ OS1,3,6 OS2,3,4 ≤ OS3,4,5

OS2,3,5 ≤ OS3,5,6 OS2,3,7 ≤ OS3,6,7

Then, for {OS1,3, OS2,3, OS3,4, OS3,5, OS3,6} ≤ OS3,7,
we can derive the following relationships:

OS1,2,3 ≤ OS2,3,7 OS1,2,3 ≤ OS1,3,7

OS1,3,4 ≤ OS3,4,7 OS2,3,4 ≤ OS3,4,7

OS1,3,5 ≤ OS3,5,7 OS2,3,5 ≤ OS3,5,7
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OS1,3,6 ≤ OS3,6,7 OS2,3,6 ≤ OS3,6,7

OS1,3,4 ≤ OS1,3,7 OS1,3,5 ≤ OS1,3,7

OS2,3,4 ≤ OS2,3,7 OS2,3,5 ≤ OS2,3,7

OS3,4,5 ≤ OS3,5,7 OS3,4,5 ≤ OS3,4,7

OS3,4,6 ≤ OS3,6,7 OS3,5,6 ≤ OS3,6,7

OS1,3,6 ≤ OS1,3,7 OS2,3,6 ≤ OS2,3,7

OS3,4,6 ≤ OS3,4,7 OS3,5,6 ≤ OS3,5,7

For OS2,4, OS2,5, OS3,5, OS4,6 ≤ OS4,5 and the relation-
ships with {O1, O7}, we can derive the following:

OS1,2,4 ≤ OS1,4,5 OS2,4,7 ≤ OS4,5,7

OS1,2,5 ≤ OS1,4,5 OS2,5,7 ≤ OS4,5,7

OS1,3,5 ≤ OS1,4,5 OS3,5,7 ≤ OS4,5,7

OS1,4,6 ≤ OS1,4,5 OS4,6,7 ≤ OS4,5,7

In addition, we can derive the following:

OS2,3,4 ≤ OS3,4,5 OS2,3,5 ≤ OS3,4,5

OS2,4,6 ≤ OS4,5,6 OS2,5,6 ≤ OS4,5,6

OS2,3,5 ≤ OS2,4,5 OS2,4,6 ≤ OS2,4,5

OS3,5,6 ≤ OS4,5,6 OS3,4,6 ≤ OS3,4,5

For OS2,4, OS2,6, OS3,6 ≤ OS4,6 and the relationships
with {O1, O5, O7}, we can derive the following:

OS1,2,4 ≤ OS1,4,6 OS2,4,5 ≤ OS4,5,6

OS1,2,6 ≤ OS1,4,6 OS2,5,6 ≤ OS4,5,6

OS1,3,6 ≤ OS1,4,6 OS3,5,6 ≤ OS4,5,6

In addition, we can derive the following:

OS2,4,7 ≤ OS4,6,7 OS2,3,4 ≤ OS3,4,6

OS2,6,7 ≤ OS4,6,7 OS2,3,6 ≤ OS3,4,6

OS3,6,7 ≤ OS4,6,7 OS2,3,6 ≤ OS2,4,6

For OS1,4, OS2,4, OS2,7, OS3,4, OS3,7, OS4,5, OS4,6 ≤
OS4,7, the following relationships can be derived.

OS1,2,4 ≤ OS2,4,7 OS1,3,4 ≤ OS3,4,7

OS1,4,5 ≤ OS4,5,7 OS1,4,6 ≤ OS4,6,7

OS1,2,4 ≤ OS1,4,7 OS2,3,4 ≤ OS3,4,7

OS2,4,5 ≤ OS4,5,7 OS2,4,6 ≤ OS4,6,7

OS1,2,7 ≤ OS1,4,7 OS2,3,7 ≤ OS3,4,7

OS2,5,7 ≤ OS4,5,7 OS2,6,7 ≤ OS4,6,7

OS1,3,4 ≤ OS1,4,7 OS2,3,4 ≤ OS2,4,7

OS3,4,5 ≤ OS4,5,7 OS3,4,6 ≤ OS4,6,7

OS1,3,7 ≤ OS1,4,7 OS2,3,7 ≤ OS2,4,7

OS3,5,7 ≤ OS4,5,7 OS3,6,7 ≤ OS4,6,7

OS1,4,5 ≤ OS1,4,7 OS2,4,5 ≤ OS2,4,7

OS3,4,5 ≤ OS3,4,7 OS4,5,6 ≤ OS4,6,7

OS1,4,6 ≤ OS1,4,7 OS2,4,6 ≤ OS2,4,7

OS3,4,5 ≤ OS3,4,7 OS4,5,6 ≤ OS4,5,7

For OS2,5, OS2,6 ≤ OS5,6 and the relationships with
{O1, O3, O4, O7}, we can derive the following:

OS1,2,5 ≤ OS1,5,6 OS1,2,6 ≤ OS1,5,6

OS2,3,5 ≤ OS3,5,6 OS2,3,6 ≤ OS3,5,6

OS2,4,5 ≤ OS4,5,6 OS2,4,6 ≤ OS4,5,6

OS2,5,7 ≤ OS5,6,7 OS2,6,7 ≤ OS5,6,7

For OS1,5, OS2,5, OS2,7, OS3,5, OS4,5, OS5,6, OS6,7 ≤
OS5,7, the following relationships can be derived:

OS1,2,5 ≤ OS2,5,7 OS1,2,5 ≤ OS1,5,7

OS1,2,7 ≤ OS1,5,7 OS1,3,5 ≤ OS1,5,7

OS1,4,5 ≤ OS1,5,7 OS1,5,6 ≤ OS1,5,7

OS1,6,7 ≤ OS1,5,7 OS1,3,5 ≤ OS3,5,7

OS2,3,5 ≤ OS3,5,7 OS2,3,7 ≤ OS3,5,7

OS2,3,5 ≤ OS2,5,7 OS2,4,5 ≤ OS2,5,7

OS2,5,6 ≤ OS2,5,7 OS2,6,7 ≤ OS2,5,7

OS1,4,5 ≤ OS4,5,7 OS2,4,5 ≤ OS4,5,7

OS2,4,7 ≤ OS4,5,7 OS3,4,5 ≤ OS4,5,7

OS3,4,5 ≤ OS3,5,7 OS3,5,6 ≤ OS3,5,7

OS3,6,7 ≤ OS3,5,7 OS1,5,6 ≤ OS5,6,7

OS2,5,6 ≤ OS5,6,7 OS2,6,7 ≤ OS5,6,7

OS3,5,6 ≤ OS5,6,7 OS4,5,6 ≤ OS5,6,7

OS4,5,6 ≤ OS4,5,7 OS4,6,7 ≤ OS4,5,7

Finally, for OS1,6, OS2,6, OS2,7, OS3,6, OS4,6, OS5,6 ≤
OS6,7, the following relationships can be derived:

OS1,2,6 ≤ OS2,6,7 OS1,2,6 ≤ OS1,6,7

OS1,2,7 ≤ OS1,6,7 OS1,3,6 ≤ OS1,6,7

OS1,4,6 ≤ OS1,6,7 OS1,5,6 ≤ OS1,6,7

OS1,3,6 ≤ OS3,6,7 OS2,3,6 ≤ OS3,6,7

OS2,3,7 ≤ OS3,6,7 OS2,3,6 ≤ OS2,6,7

OS2,4,6 ≤ OS2,6,7 OS2,5,6 ≤ OS2,6,7

OS1,4,6 ≤ OS4,6,7 OS2,4,6 ≤ OS4,6,7

OS2,4,7 ≤ OS4,6,7 OS3,4,6 ≤ OS4,6,7

OS3,4,6 ≤ OS3,6,7 OS3,5,6 ≤ OS3,6,7

OS1,5,6 ≤ OS5,6,7 OS2,5,6 ≤ OS5,6,7

OS2,5,7 ≤ OS5,6,7 OS3,5,6 ≤ OS5,6,7

OS4,5,6 ≤ OS5,6,7 OS4,5,6 ≤ OS4,6,7

Now, by using all of the relationships given above, we
can compute “Dominance Relationship Table” for s = 3 from
“Dominance Relationship Table” for s = 2, as shown in
Table IV.

To compute the skyband for s = 3 and k = 1, it is sufficient
to compare {OS1,2,3, OS1,2,6, OS2,3,4, OS2,3,6, OS2,5,6}.
We find that OS1,2,6 ≤ OS2,5,6 and the skyband set query
retrieves the results of {OS1,2,3, OS1,2,6, OS2,3,4, OS2,3,6}.
Similarly, for s = 3 and k = 2, the proposed method will re-
trieve {OS1,2,3, OS1,2,5, OS1,2,6, OS2,3,4, OS2,3,5, OS2,3,6}.
Again, for k = 3, the proposed method retrieves {OS1,2,3,
OS1,2,5, OS1,2,6, OS2,3,4, OS2,3,5, OS2,3,6, OS2,4,6} as the
objectset skyband results.

Now, if a user wants to select the top-3 objectsets for s = 3,
then our proposed algorithm will examine the µ score of each
objectset in the skyband set results and select OS1,2,3, OS2,3,6,
and OS1,2,6 with µ scores of 8, 7, and 6, respectively, which
are the top-3 scores in the database. By applying the same
procedure, the proposed method constructs the dominance
relation table for higher objectsets, i.e., for higher values of
s, in order to answer skyband-set queries and to provide the
top-k objectset for any value of s.

V. PERFORMANCE EVALUATION

We have examined the proposed method through intensive
experiments in a simulated environment on a computer with
the Windows 64-bit operating system. The configuration of
this computer comprised a core i7 CPU 3.4 GHz, 4 GB RAM,
and 250 GB SATA disk. No existing approach can discover
the skyband set, so we adapted the SFS method to calculate
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Fig. 6. Performance with different cardinalities.

the skyband set and compared the performance of our method
with the skyband-set algorithm proposed in [3].

To ensure that the comparison was fair, we ignored the ob-
jectset computation cost for the SFS algorithm. We performed
the experiments with different data cardinalities (n), objectset
sizes (s), and dimensionalities (m) in order to compare the
efficiency and performance of our proposed method. Each
experiment was conducted five times. We determined the
average output to assess the performance.

A. Performance Based on Synthetic Data Sets

We used benchmark synthetic data sets with three different
data distributions, i.e., anti-correlated, correlated, and indepen-
dent, as proposed in [1].

Correlated: This type of phenomenon occurs in an envi-
ronment where an objectset is good in one dimension but it
also has a better value in other dimensions. In this relationship,
a small number of objectsets can dominate a large volume of
other objectsets.
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Fig. 7. Performance with different data dimensions.

Anti-Correlated: In this relationship, an objectset with
small coordinate values on some dimensions is expected to
have higher coordinate values on other dimensions or at least
in another dimension.

Independent: In this data distribution, the values of all
dimensions are generated independently. In this relationship,
the total non-dominant objectsets lie between the resulting
objectsets of the correlated and anti-correlated data sets. All of
the experimental results obtained based on the synthetic data
set are shown in Fig. 6, 7, and 8. The total number of objectsets
for synthetic data sets ranged from 2 k to 10 k depending on
the data cardinality (n).

1) Cardinality Effect: We studied the impact of the car-
dinality by keeping the data dimensionality m as 6 and the
objectset size s as 3, but we changed the data set cardinality
n from 2 k to 10 k. Fig. 6 (a), (b), and (c) shows the result
obtained with the anti-correlated, independent, and correlated
data sets, respectively.

The x-axis and y-axis represent the data cardinality and
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execution time, respectively. The graphs show clearly that both
techniques were affected by the data cardinality n. As the
data cardinality value increased, the execution time increased
considerably with both methods. However, our method per-
formed better compared with SFS. For the anti-correlated data
distribution, the performance of SFS declined dramatically as
the data set size increased. Thus, the proposed method did not
require the composition of all the objectsets and it also avoided
many unnecessary comparisons.

2) Dimensionality Effect: We also assessed the impact
of the dimensionality on our proposed method. The dataset
dimensionality m was varied from 2 to 8, but we kept
the data cardinality n as 10 k and the objectset size s as
3. Fig. 7 (a), (b), and (c) show the runtime requirements
for the anti-correlated, independent, and correlated data sets,
respectively. The performance of both methods became slower
as the dimension size increased because the non-dominant
objectset increased with higher dimensions. The graphs show
that the proposed method performed better than SFS in all
cases, where it was 15 and 10 times faster than SFS with the
anti-correlated and independent data sets, respectively.

3) Objectset Size Effect: We examined the performance
of the proposed method with different objectset size of s in
this experiments. We fixed the data set dimensionality m to
6 and the data cardinality n to 10 k. The results are shown
in Fig. 8 (a), (b), and (c), where the x-axis represents the
objectset size s and the y-axis represents the runtime. The
performance of both methods decreased as the objectset size
became higher. The results indicated that when the objectset
size became s > 1, the performance of the SFS method was
much worse than our method. This is because when s = 1, the
proposed method needed to construct domRelationTable as
well as performing domination checks for all of the objects.
However, it was not necessary to calculate all of the objectsets
subsequently, thereby avoiding numerous dimension checks.

The experimental results suggested that for synthetic data
sets, our proposed method was efficient in terms of the runtime
as well as being highly scalable. The results indicated that our
method was 4-10 times faster than SFS. This is because the
skyband set number for anti-correlated data sets was greater
than that for independent data sets, which was also true for
the correlated data sets. Therefore, both techniques required
more computational time for the anti-correlated distribution
than other two distributions.

B. Performance Based on a Real Data Set

We also observed the impact of the proposed algorithm
using a real data set, where we selected the FUEL data set,
which can be downloaded from “www.fueleconomy.gov”.
The volume of the FUEL data set was 24 k and it contained
six-dimensional objects, where each object represented the per-
formance attribute of a vehicle, e.g., mileage/gallon gasoline in
a city and on a highway. The domain of each attribute varied
from 8–89.

We conducted experiments similar to those using the
synthetic data set based on the FUEL data set. Initially,
we observed the effect of the dimension. We set the data
cardinality n to 10 k, the objectset size s to 3, and varied the
data set dimensionality m from 2–8. Fig. 9(a) shows the results
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Fig. 8. Performance with different objectset sizes.

obtained for the skyband set queries with various dimension
sizes. There was a positive correlation between the dimension
size and runtime. However, the proposed method had a shorter
runtime than the SFS technique.

Next, we conducted an experiment where we varied the
data cardinality n. We fixed the dimensionality m to 4, the
objectset size s to 3, and varied the data set cardinality n
from 2 k to 10 k. Fig. 9(b) shows the results obtained.
The computational time required by both algorithms increased
rapidly with the data cardinality. The results in Fig. 9(b) show
that our method performed better than the SFS method.

In the final experiment, we studied the performance by
varying the objectset size s. We set the dimensionality m to
4 and the data cardinality n to 10 k. The outputs are shown
in Fig. 9(c). For both methods, the execution time increased
with the objectset size s. The computational time required by
the proposed method was much shorter than that by SFS. We
obtained similar standardized outputs such as an independent
data distribution, thereby confirming the scalability of our
technique with the FUEL data set, which was also the case
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Fig. 9. Experiments based on the FUEL data set.

in all of the experiments.

All of the experiments confirmed that the proposed method
was much more efficient than the SFS technique for synthetic
and real data sets. Thus, the experiments confirmed the effec-
tiveness and scalability of the proposed method.

VI. CONCLUSION

In this study, we proposed a query method for sets of ob-
jects called a “skyband-set.” We proposed an efficient method
for calculating the skyband-set output. Our proposed method
allows the objectset size to be varied from 1 to s and the
skyband size from 1 to k. Furthermore, in order to filter out a
large search space and to enhance efficiency, we also developed

domRelationTable, which allows the proposed method to prune
out large portions of the search space. We validated our method
using synthetic and real data sets. The results in Fig. 6, 7, 8,
and 9 confirm the usefulness and superior performance of the
proposed method.

In addition to the contributions above, the proposed method
has preferable property in privacy-aware environment. In
privacy-aware environment, we are not allowed to disclose
individual record’s values. This is a significant restriction to
analyze a database. Our set-based database analysis does not
have to disclose individual record’s values, which implies that
the proposed method can be an effective database analysis
measure in privacy-aware environment.

In the future, we aim to enhance our proposed algorithm
in various areas. In particular, more effective calculations of
the objectsets can be performed with a parallel distributed
architecture such as MapReduce.
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