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Abstract—Medical complications of pregnancy and 

pregnancy-related deaths continue to remain a major global 

challenge today. Internationally, about 830 maternal deaths 

occur every day due to pregnancy-related or childbirth-related 

complications. In fact, almost 99% of all maternal deaths occur 

in developing countries. In this research, an alternative and 

enhanced artificial intelligence approach is proposed for 

cardiotocographic diagnosis of fetal assessment based on 

multiclass morphologic pattern predictions, including 10 target 

classes with imbalanced samples, using deep learning 

classification models. The developed model is used to distinguish 

and classify the presence or absence of multiclass morphologic 

patterns for outcome predictions of complications during 

pregnancy. The testing results showed that the developed deep 

neural network model achieved an accuracy of 88.02%, a recall 

of 84.30%, a precision of 85.01%, and an F-score of 0.8508 in 

average. Thus, the developed model can provide highly accurate 

and consistent diagnoses for fetal assessment regarding 

complications during pregnancy, thereby preventing and/or 

reducing fetal mortality rate as well as maternal mortality rate 

during and following pregnancy and childbirth, especially in low-

resource settings and developing countries. 
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I. INTRODUCTION 

In 2012, approximately 213 million pregnancies occurred 
worldwide [1]. Of those pregnancies, 190 million (89%) 
occurred in developing countries and 23 million (11%) were in 
developed countries. In 2013, complications of pregnancy 
resulted in 293,336 deaths due to maternal bleeding, 
complications of abortion, high blood pressure, maternal 
sepsis, and obstructed labor [2]. According to the World Health 
Organization [3], roughly 303,000 women died during and 
following pregnancy and childbirth in 2015, and in 2016, about 
830 women died every day from pregnancy-related or 
childbirth-related complications around the world. 

Medical complications of pregnancy and pregnancy-related 
deaths, impacting mothers and/or their babies, continue to 
remain a major global challenge today. Maternal death rate is 
especially concentrated in several specific areas of the world. 
In fact, almost 99% of all maternal deaths occur in developing 
countries [3]. This high and uneven mortality distribution 
reflects global inequities of access to medical services and 

medical treatment. There are large mortality differences not 
only between countries but also within countries. These 
disparities in mortality rates persist even between high-income 
and low-income women, as well as between women living in 
rural areas and urban areas. Complications during pregnancy 
and childbirth are thus among the leading causes of death in 
developing countries [2], [3]. Most of these complications 
develop during pregnancy, while other complications may 
happen before pregnancy but are further worsened over the 
course of pregnancy. However, almost all of these maternal 
deaths during pregnancy occurred in low-resource settings, and 
most of them could have been prevented or treated. 

Complications of pregnancy may include disorders of high 
blood pressure, gestational diabetes, infections, preeclampsia, 
pregnancy loss and miscarriage, preterm labor, and stillbirth. 
Other complications include severe nausea, vomiting, and iron-
deficiency anemia [4], [5]. Thus, pregnancy may be affected 
due to these conditions, which require additional ways of 
assessing and evaluating fetal well-being. These conditions 
may involve medical problems in the mother that could impact 
on the fetus, pregnancy-specific problems, and diseases of the 
fetus [6]. In association with increased risk to the fetus, 
medical problems in the mother include essential hypertension, 
pre-eclampsia, renal and autoimmune disease, maternal 
diabetes, and thyroid disease [7]-[10]. Other medical problems 
in pregnancy, which pose increased risk to fetal health, are 
prolonged pregnancy, vaginal bleeding, reduced fetal 
movements, and prolonged ruptured membranes [11]. 
Additionally, intrauterine growth restriction, fetal infection, 
and multiple pregnancies increase the risks to the fetuses [11], 
[12]. As a result, these conditions could lead to 
neurodevelopmental problems in infancy, such as non-
ambulant cerebral palsy, developmental delay, auditory and 
visual impairment, and fetal compromise, which might lead to 
morbidity or mortality in the newborn. 

In order to assess fetal well-being and monitor for increased 
risk of complications of pregnancy, cardiotocography (CTG) is 
widely used as a technical method of continuously measuring 
and recording the fetal heart rate (FHR) and uterine 
contractions during pregnancy. This provides the possibility of 
monitoring the development of fetal hypoxia and intervening 
appropriately before severe asphyxia or death occurs [13]. In 
association with uterine contractions, the FHR along with its 
variability, reactivity, and possible decelerations are important 
measurements for assessment of fetal well-being [14]. The 
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FHR can be obtained via an ultrasound transducer placed on 
the mother’s abdomen. The CTG, which depends on FHR, 
uterine contractions, and fetal movement activity, is utilized to 
detect and identify dangerous situations for the fetus. During 
the antepartum and intrapartum periods in pregnancy and 
childbirth, the CTG is often used for assessment and evaluation 
of fetal conditions by obstetricians. 

Recently, advanced technologies in modern medical 
practices have successfully allowed robust and reliable 
machine learning and artificial intelligence techniques to be 
utilized in providing automated prognosis based on early 
detection outcomes in many medical applications [15]-[18]. 
The implementation and feasibility of machine learning tools 
can significantly aid medical practitioners in making informed 
medical decisions and diagnoses, potentially reducing maternal 
and fetal mortality and complications during pregnancy and 
childbirth and significantly aiding populations in both 
developing and developed countries. Diagnosing the FHR 
multiclass morphologic pattern is a challenging task, but 
computer-aided detection (CAD) based on machine learning 
technologies have been developed to provide automated 
classifications for fetal state during pregnancy [19]. Previous 
research reports used CAD approaches to diagnose the fetal 
state in pregnancy based on a method of support vector 
machines (SVM) with a Gaussian kernel function [20], [21]. 
Other research reports included classification of 
cardiotocograms using Neural Network and Random Forest 
classifiers [22], [23]. However, these above mentioned 
machine learning methods and approaches were designed and 
developed to classify and predict only binary outcomes of 
normal versus abnormal cases during medical diagnosis in 
patients or as normal versus pathological cases in pregnancy 
using clinical diagnostic datasets of patients and CTG data in 
pregnancy, respectively. 

In this research, an alternative and enhanced artificial 
intelligence approach is proposed for CTG diagnosis of fetal 
assessment based on multiclass morphologic pattern 
predictions, including 10 target classes, using deep learning 
classification models. The designed and developed deep 
learning classification and prediction models include two 
systems: a deep learning-based training classification model 
and a deep learning-based prediction model (also known as a 
diagnosis model). The training classification model is based on 
a multilayer perceptron with a multiclass softmax classification 
using deep learning technologies. The diagnosis model is used 
to distinguish and classify the presence or absence of 
multiclass morphologic patterns for outcome predictions of 
complications during pregnancy. By uniquely integrating 
multiclass morphologic patterns and predictions instead of 
binary predictions of normal versus pathological cases, the 
models provide a more reliable and specific diagnosis based on 
fetal health assessment with CTG. The performances of the 
deep learning-based classification and prediction model for 
diagnosing multiclass morphologic patterns in pregnancy were 
evaluated using multiclass measures based on averages of 
recalls (also known as sensitivities), precisions, F-scores, 
misclassification errors, and diagnostic accuracies. 

II. CARDIOTOCOGRAPHY DATA DESCRIPTION 

In this section, descriptions and characteristics of the CTG 
data sets regarding complications in pregnancy are introduced. 
The CTG data sets, which have been used in this research 
paper, were obtained from the CTG databases available in the 
UCI Machine Learning Repository [24]. These databases 
consist of data information on measurements of FHR and 
uterine contraction features during pregnancy based on 
Cardiotocograms, which were contributed by the Biomedical 
Engineering Institute, Porto, Portugal, and the Faculty of 
Medicine, University of Porto, Portugal in September 2010. 
These data sets were collected based on clinical instances in 
pregnancy in 1980 and periodically from 1995 to 1998, 
resulting in a constantly increasing dataset size. 

There are a total of 2,126 clinical instances, representing 
different complications of pregnancy on fetal cardiotocograms 
in the CTG dataset. The clinical instances on the fetal 
cardiotocograms were automatically processed, and their 
respective diagnostic features were measured. These clinical 
instances were also classified with respect to a morphologic 
pattern by three expert obstetricians and had consensus 
classification labels assigned to each of them. Each clinical 
instance in the CTG dataset contains 21 input attributes and 
one multiclass attribute as well as one fetal state. The 
multiclass attribute represents the multiclass morphologic 
patterns, which includes the 10 target classes. Additionally, this 
multiclass attribute is represented by an integer valued from 
“1” to “10”, where each of integers represents one of the 
morphologic patterns in pregnancy. The fetal state is assigned 
one of the 3 classes, including normal, suspect, or pathologic 
cases. Thus, the CTG dataset can be used for building 
classification and predictive models based on the 10-class, 3-
class, or even the 2-class classification experiments by 
eliminating the suspect class category in fetal state. In previous 
reports [20]-[23], several machine learning-based classification 
models eliminated all suspect cases in fetal state and were 
established based on only a binary classification of the fetal 
state in terms of normal and pathologic cases. 

In this research paper, the multiclass morphologic patterns, 
including all 10 of the target classes, have been utilized for 
developing the deep neural network classification and 
prediction models. Pattern recognition and prediction of 
multiple target outcomes is a challenging task in the field of 
machine learning and artificial intelligence; since multiclass 
morphologic patterns with imbalanced sample sizes of the 10 
target classes in the CTG data will be used, this task thus 
proves advanced. Ultimately, however, the integration of all 10 
target classes and multiclass morphologic patterns, compared 
to previous research model's use of binary classification, allows 
a more reliable and realistic diagnosis and prediction of 
multiclass outcomes, thus aiding patients with an accurate and 
more specific fetal health assessment. 

III. DEEP NEURAL NETWORK ARCHITECTURES AND 

CLASSIFIERS 

In this section, we present a CTG classification and 
diagnosis model for the multiclass morphologic pattern 
prediction, representing the 10 target classes for fetal outcome 
forecasting in pregnancy using the deep neural network 
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classification and prediction models along with corresponding 
algorithms, methods, approaches, and architecture. 
Furthermore, we discuss some of the special techniques that 
can be used to prevent overfitting and enhance the deep neural 
network classification and prediction model performances for 
multiclass morphologic pattern prediction and CTG diagnosis. 

Deep learning consists of neural networks that teach 
themselves and make decisions autonomously. Deep learning 
methods and architectures have gained significant attention in 
the area of artificial intelligence in recent years. It has recently 
expanded exponentially in both academic communities and 
global high-tech industries since 2011 [25]. One of the most 
important deep learning architectures is a Deep Belief 
Network, which is built by stacking a set of restricted 
Boltzmann machines (RBM) [26]-[28]. The RBM is a 
generative stochastic artificial neural network that can learn 
from a probability distribution over its input data. Depending 
on an objective task, the RBM can also be trained either for 
supervised learning or for unsupervised learning. Another 
important deep learning architecture is called deep auto-
encoder [29]. The deep auto-encoder is also an artificial neural 
network, usually used for unsupervised learning [29]-[31]. The 
deep auto-encoder is capable of learning an encoding 
representation based on a set of input data and has become 
more widely used for learning generative models of data. 

A traditional multilayer perceptron neural network model 
can be considered as a processor that acquires and stores 
experiential knowledge through a machine learning process 
during a training process [15], [17]. In order to retain the 
knowledge, synaptic weights that resemble interneuron 
connections are used. The training process of a learning 
algorithm involves the modification of the synaptic weights of 
the model in order to obtain a desired objective. The multilayer 
perceptron neural network model uses a back-propagation 
approach for training the neural network classification unit 
during the training process. The back-propagation approach 
based on the Widrow-Hoff learning rule [15], [17], [32] can be 
used to minimize the objective function for the neural network 
model. The input data and the corresponding output data are 
used to train the neural network classification model until the 
model appropriately approximated a function within a prior 
defined error value. During the training process, a learning 
algorithm is used to adjust weights and biases by utilizing the 
derivative vectors of errors back-propagated through the neural 
network classification unit. 

In theory, deep neural networks and the multilayer 
perceptron neural networks, which have the exact same 
network structure and computations, perform similarly if the 
deep neural networks and multilayer perceptron neural 
networks have been given the same conditions. Both deep 
neural networks and the multilayer perceptron neural networks 
consist of perceptrons in terms of linear and nonlinear 
transformation functions. The nonlinear transformation 
functions between layers of perceptrons enable neural networks 
to be used for modeling nonlinear behaviors. 

Deep neural networks differ from multilayer perceptron 
neural networks in terms of the network depth, which is 
determined according to the number of hidden layers in the 
network. In general, a neural network with three or more 
hidden layers is considered as a deep neural network. In that 
case, the higher layers are building new abstractions on top of 
previous layers, usually leading to learning a better solution 
with the deep neural network. On the other hand, the number of 
hidden layers in the network also entails difficulties to train the 
network in practice. This is because increasing the number of 
hidden layers in the networks leads to two major issues: 

1) Vanishing gradients: The back-propagation approach 

[15], [17] becomes less helpful in passing information from the 

higher layers to the lower layers. The gradients become small 

relative to the weights of the networks and begin to almost 

vanish when information is passed back. 

2) Overfitting: The deep neural network classification 

model performs very well with a training dataset, but the model 

shows poorer performances on a real testing dataset. 

Overfitting is the central problem in the field of machine 

learning and artificial intelligence. 

Fig. 1 shows the deep neural network architectures based 
on the multilayer perceptron neural networks in detail. 
Architecturally, the simplest form of the deep neural networks 
is a feedforward and non-recurrent neural network very similar 
to the multilayer perceptron neural network, which has an input 
layer (green color), an output layer (green color), and one or 
more hidden layers connecting them, but the number of hidden 
layers consist of a set of active nodes (blue color) and in-active 
nodes (red color). In this research paper, we have used this type 
of deep neural network architecture as a fundamental network 
system to develop the deep learning-based neural network 
classification and prediction models. The designed deep neural 
network architecture allows us to classify the multiclass 
morphologic patterns with imbalanced sample sizes of the 10 
target classes in the CTG data for fetal assessment during 
pregnancy. 

 
Fig. 1. A deep neural network architecture with an input layer, the number 

of hidden layers, and an output layer, where the blue cycles are active nodes, 

the red cycles are in-active nodes in the number of the hidden layers, and the 
green cycles present an input layer and an output layer. 
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The deep neural network architecture is composed of the 
multiple perceptrons, which are stacked one after the other in a 
layer-wise fashion. The input matrix data X is fed into the input 
layer, which is a multidimensional perceptron with a weight 

matrix W1, bias vector B1, and a transfer function 1. The 
output of the input layer is then fed into the first hidden layer, 
which is a perceptron with another weight matrix W2, bias 

vector B2, and a transfer function 2. This process continues 
for every one of the L hidden layers, which is again a 
perceptron with another weight matrix WL, bias vector BL, and 

a transfer function L until we reach the output layer. As can 
be seen, according to Fig. 1, we refer to the first layer as the 
input layer, the last layer as the output layer, and every other 
layer as a hidden layer in the network architecture. 

The deep neural network architecture with one hidden layer 
has a mathematical representation: 

                          (  (      )     )            (1) 

where Y is an output matrix data. The deep neural network 
architecture with two hidden layers computes a function in the 
following: 

          (  (  (      )     )     )           (2) 

and, in general, the deep neural network architecture with the 
number of (L-1) hidden  layers  calculates  an output function 
given by: 

       ((   (  (  (      )     )   
                                          ) )     )                               (3) 

where the transfer function n, n = 1, 2, …, L, can be either 
a linear or a nonlinear transfer function. 

A. Activation Function 

An activation function of a neural node in the neural 
network defines an output of that neural node given a set of 
inputs. In an artificial neural network or deep neural network 
architecture, this activation function is also called a transfer 
function, which can be a linear or non-linear transfer function. 
The most common transfer functions that are used in deep 
learning or deep neural network architectures are as follows: 

1) Scaled exponential linear unit 

 ( )   {
     

 (    )    
                       (4)                                              

where and λ are hyper-parameters to be adjusted,     

and λ  . When = 0 and λ= 1, (4) is called the Rectified 

linear unit (ReLU); where λ= 1, (4) is known as the 
exponential linear unit (ELU). 

2) Sigmoid function unit 

 ( )   
 

     
                                (5)                                         

Equation (5) is a sigmoid function, which is real-valued and 
differentiable, having a non-negative or non-positive first 
derivative, one local minimum, and one local maximum. In 
general, the sigmoid function exists as a range from 0 to 1 and 
is used for binary classification. It is especially used for 
classification models where we want to predict a probability as 
an output. 

3) Softmax function 

 (  )   
 
  

∑     
 

                                 (6) 

where x is a vector of the inputs to the output layer, and j = 
1, 2, …, K, indexes the output units. The softmax function is 
often used for any number of multiclass classifications. 

In this research paper, the ReLU function has been used in 
the input and hidden layers, and the softmax function is used in 
the output layer for the deep neural network architecture. 

B. Dropout 

One of the primary pitfalls of machine learning and 
artificial intelligence is overfitting when the model 
catastrophically sacrifices generalization performances for the 
purposes of minimizing training loss. In other words, a deep 
neural network model performs really well based on a training 
dataset. However, in practice, the deep neural network model 
performs much more poorly on testing data or real unseen 
testing data. Indeed, overfitting is one of the key critical 
problems in the field of machine learning and artificial 
intelligence. 

Deep neural networks, which consist of multiple linear and 
non-linear hidden layers, have a self-learning capability of 
capturing very complicated relationships between their inputs 
and outputs. However, with a limited size of a training dataset, 
many of these complicated relationships could be the result of 
sampling noise, that is, they may exist in the training set but 
not in the real testing data. This leads to overfitting. In 
addition, large deep neural networks are slow to train for use in 
applications, thereby making it difficult to handle overfitting 
by combining the predictions of many different large neural 
nets at testing time. 

Dropout is one of several effective and powerful 
regularization techniques to prevent deep neural network 
architectures from overfitting [33], [34]. The key idea of the 
dropout, based on a theory of the role of sex in evolution [35], 
is to randomly eliminate units along with their network 
connections from the deep neural networks during a training 
process. In other words, the central idea of the dropout is to 
take a deep neural network classification model, which overfits 
easily, and to train only smaller subsets of the classification 
models from the deep neural network architectures. As a result, 
the dropout technique can prevent the deep neural network 
units from co-adapting too much, thereby avoiding a single 
node specializing to a task. 

Additionally, a dropout technique for the deep neural 
networks can be viewed as an alternative form of ensemble 
learning, in which each member of the ensemble learning is 
trained based on a different subsample of the input data, 
thereby resulting in learning only a subset of the entire input 
feature space. At each training step within a batch size, the 
dropout technique creates a different deep neural network by 
randomly removing some of the neural units from the hidden 
layer and/or even input and output layers. Conceptually, the 
dropout technique actually achieves a similar outcome such 
that an ensemble learning system uses many different deep 
neural networks at each of the steps (or batch size) with a 
subset of input data during the training process. During the 
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testing process, the deep neural network is only used with the 
scaled down weights (or partial weights in the network) instead 
of using entire neural units. Thus, from a point of mathematical 
view, the dropout technique approximates ensemble averaging 
using the geometric mean as average [36]. 

The dropout technique for the deep neural networks has 
been especially successful in applications because of its 
simplicity and remarkable effectiveness as a regularization 
function as well as its interpretation as an exponentially large 
ensemble learning for the deep neural networks. As a result, 
this dropout technique implemented in the deep neural network 
model significantly reduces overfitting issues and provides 
major improvements over other regularization methods. 

C. Regularization 

Regularization is one of the key elements of machine 
learning and artificial intelligence, especially in deep learning. 
The regularization allows deep neural networks to generalize 
well to testing data even when the networks are trained based 
on a finite training set or an imperfect optimization procedure 
[37], [38]. In other words, regularization can be considered as 
any modification to a learning algorithm in which is intended 
to reduce its network test error but not its network training 
error. In essence, regularization is a supplementary technique 
that can be used to make the model performance better in 
general and to produce better results on the testing data [38]. In 
conjunction with the dropout technique, regularization is 
another mathematical method for combating overfitting for the 
deep neural networks. 

One of the most popular regularizations is L2 regularization 
also known as weight decay, which takes a more direct 
approach than the dropout technique for regularizing. 
Generally, a common underlying cause for overfitting is that 
the deep neural network classification model is too complex in 
terms of large parameters for the problem based on a training 
data set. In other words, the regularization can be used to 
decrease complexity of the deep neural network classification 
model while maintaining the same number of large parameters. 
Thus, in order to minimize a L2 norm, the regularization does 
so by penalizing weights with large magnitudes using a hyper-
parameter λ to specify the relative importance of the L2 norm 
for minimizing the loss on the training data set. 

Formally, training a deep neural network f is to find a 

weight function w, bwhere w and b denote weights and 
bias, respectively, such that the expected regularized loss can 
be minimized: 

 (   )         {
 

 
∑  (  (  )   )(     )  

}   ‖ ‖    (7)                                

where D is a training data and (     ) are samples in the 
training data D; the xi are inputs and ti are targets. The hyper-

parameter  can be used to control the relative importance of 
the regularization function. The first item and second item in 
(7) are referred to as an error function and a regularization 
error, where 

‖ ‖  (∑     
  

   )
 

                            (8)                             

which is the Lp norm of  If p = 1, (8) is L1 regularization. 
If p = 2, (8) is L2 regularization. Note that the error function in 

(7), which is dependent on the targets, assigns a penalty to 
model predictions according to whether or not the model 
predictions are consistent with the targets. The regularization 
error assigns a penalty to the model depending on anything 
except the targets. 

D. Initialization 

Training deep neural networks is difficult because of 
vanishing or exploding activations and gradients. The central 
challenge in training deep neural networks is about how to deal 
with the strong dependencies that exist during training between 
the parameters across a large number of hidden layers. This is 
because a solution to a non-convex optimization algorithm, 
such as the method of stochastic gradient descent, heavily 
depends on initialization weights in the deep neural networks. 
In other words, if the initialization weights in the deep neural 
networks start too small, then the initialization weights shrink 
as they pass through each of the hidden layers until they are too 
tiny to be useful. On the other hand, if the initialization weights 
in the deep neural networks begin too large, then the 
initialization weights quickly rise as they pass through each 
hidden layer until they are too large to be useful. These 
behaviors are referred to as saturation in training deep neural 
networks because of nonlinear activation functions embedded 
in the hidden layers. 

Note that deep neural networks with linear and/or nonlinear 
activation functions initialized from unsupervised pre-training 
methods, such as deep RBM and deep auto-encoder [39]-[41], 
do not suffer from these saturation behaviors. Consequently, 
another important note is that even in the presence of very 
large amounts of training data in a supervised learning, 
stochastic gradient descent (SGD) is still subject to a degree of 
overfitting to the training data. In that sense, unsupervised pre-
training method based on the deep RBM and deep auto-
encoder interacts intimately with the optimization process. The 
positive effect of the unsupervised pre-training method is seen 
not only in generalization error but also in training error when 
the amount of training data becomes large. 

Training deep RBM and deep auto-encoder as an 
unsupervised pre-training method for the deep neural networks 
can be considered a breakthrough in effective training 
strategies [26], [42]-[44]. The unsupervised pre-training 
method is generally based on greedy layer-wise unsupervised 
pre-training followed by supervised fine-tuning [41]. Each 
layer is pre-trained with an unsupervised learning algorithm by 
learning nonlinear activation functions of their inputs from the 
previous layers, which capture the major variations in their 
inputs. Lastly, the unsupervised pre-training method 
establishes the stage for a final training phase in which the 
deep neural networks is fine-tuned with respect to a supervised 
learning criterion of the gradient-based optimization. 

Another initialization method for the deep neural networks 
is known as Xavier initialization [39], which is used to make 
sure that the weights are in a reasonable range of values 
throughout many hidden layers. Assume that there is an input X 
with N components and a linear neuron (or combination) with 
random weights W: 

       ∑     
 
                                    (9)  
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The variance of this liner combination Y is given by [45]: 

   (∑     
 
   )  ∑   

    (  )
 
    ∑        (     ) 

 
                               

(10) 

If the random variables X1, …, XN are independent and 
identically distributed, this always leads to uncorrelated 
random variables such that  

   (     )                                   (11)                                                

Thus, (11) is rewritten to  

   (∑     
 
   )  ∑   

    (  ) 
 
                  (12)                               

In addition, we further assume that the deep neural network 
weights wi and inputs Xi are uncorrelated and both have zero-
mean: 

      ∑   
    (  )  ∑    ( )   ( )   

   
 
   

    ( )   ( )                            (13) 

Comparing (12) to (13), we obtain a result as follows: 

   (∑     
 
   )      ( )   ( ).           (14)                               

Equation (14) implies that the variance of the output is the 
variance of the input with a scaled function by NVar(W). If we 
further want to make the variance of the input to be the same as 

the variance of the output, it must hold    ( )   
 

 
 for the 

inputs so that we are able to preserve variance of the inputs 
after passing through a number of the hidden layers. For the 
backpropagation update, we also need to ensure that 

   ( )   
 

 
 for the outputs. Thus, in general, for 

implementation of the initialization on the deep neural 
networks, the variance of the weights for the deep neural 
networks can be set to their average based on the inputs and 
outputs, that is, 

    ( )   
 

   
.                               (15)                          

IV. MULTICLASS EVALUATION METHODS ON DEEP NEURAL 

NETWORK 

In this section, multiclass evaluation methods for the 
performances of the deep neural network classification model 
in multiclass morphologic pattern prediction based on the CTG 
data are discussed in detail. 

The evaluation of the model performances for the deep 
neural networks is typically based on testing data sets, rather 
than analytically in the field of machine learning and artificial 
intelligence. The classification effectiveness of machine 
learning models, deep neural networks, and/or any other type 
of models can usually be measured in terms of model 
sensitivity (also known as recall), specificity, precision, F-
score, accuracy, and misclassification error [45], [16]. In this 
section, we extend the evaluation methods for the effectiveness 
measurements of the deep neural network classification model 
from a binary classification to a multiclass classification 
problem. 

Let C1,…,CK be multiclass labels, in which we want to 
predict K labels using deep neural network classification 
models. For correct decisions, let TP be a decision to assign 
similar multiclass to the same cluster, and let TN be a decision 
to assign dissimilar multiclass to different clusters. On the 

other hand, for incorrect decisions, let FP be a decision to 
assign dissimilar multiclass to the same cluster, and let FN be a 
decision to assign similar multiclass to different clusters. 

For the effectiveness measurement of the deep neural 
network classification models, a global calculation of the TP, 
TN, FP, and FN can be computed in the following: 

    ∑    
 
   ,                               (16) 

    ∑    
 
   ,                              (17) 

    ∑    
 
   ,                               (18) 

and 

    ∑    
 
   ,                              (19) 

where TPi, FPi, TPi, and TPi denote the local measures, 
representing the number of true positive, false positive, true 
negative, and false negative test examples with respective to 
the i-th class label. This evaluation method is referred to as 
micro average [46], [47]. 

Then, sensitivity for the multiclass classification is defined 
as the probability of correctly identifying those with the true 
positive rate [16]: 

             
  

     
                             (20)  

where sensitivity is known as recall in the field of machine 
learning and deep learning. The specificity is defined as the 
probability of correctly identifying true negative rate: 

             
  

     
                             (21)  

The precision is defined as  

           
  

     
                               (22)  

In performance measures of the deep neural networks, the 
recall in (20) is a measure of quantity while the precision in 
(22) is a measure of quality. Both the recall and precision are in 
a mutual relationship based on the understanding and measure 
of relevance. 

Another method, which is similar to the one-vs-all 
classification technique, is to calculate all the local recalls Ri 
and precisions Pi for each Ci of the multiclass. This method is 
referred to as macro average. Then, the average of recalls is as 
follows: 

 ̅  
 

 
∑   
 
   ,                           (23)  

and average of precisions is given by, 

 ̅  
 

 
∑   
 
   .                                (24) 

Note that micro and macro average methods represent 
different calculation behaviors, thereby leading to different 
results in the multiclass evaluation of the classification model 
effectiveness for the deep neural networks. 

V. RESULTS 

In this research paper, the deep neural network 
classification model is proposed for accurate diagnosis of fetal 
state based on the CTG data and the multiclass morphologic 
pattern outcome predictions. The proposed deep neural 
network classification model has a deep neural network 
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architecture, including 21 input units, first and second hidden 
layers, and 11 binary output units. The 11 binary output units, 
which allow us to form 10 unique sequences, can be used to 
represent the 10 target classes in the morphologic pattern 
outcomes on fetal assessment for multiclass classifications and 
predictions. The first hidden layer contains 105 units with each 
of the ReLU activation functions and 25% dropout rate of the 
network. The second hidden layer has 42 units, also connected 
with the ReLU activation functions, and 20% dropout rate of 
the network. Each of the 11 output units in the last stage of the 
deep neural network architecture is connected to a softmax 
activation function. For each batch process during the training 
of the deep neural network, the dropout rates in the first and 
second hidden layer are randomly applied to the deep neural 
network, thereby resulting in random connections within the 
deep neural network architecture. Doing so allows us to 
generate an alternative form of ensemble learning as well as 
reduce and/or prevent overfitting issues for the deep neural 
network classification model. 

In the CTG data, each clinical instance consists of 40 raw 
attributes. Among all of the raw attributes, only 23 of them can 
be used for developing the deep neural network classification 
and prediction models. The other 13 attributes are not 
recommended to be used according to the attribute restriction 
in the CTG data. Table I lists the detailed 23 raw attributes, 
which had been used for the development of the deep neural 
network classification model. The variable of the “Class” in 
Table I is referred to as a target variable, which includes 10 
integers from 1 to 10, representing different morphologic 
pattern behaviors of complications in pregnancy. 

The proposed deep neural network classification and 
prediction models were applied to all clinical instances, which 
represent complications of pregnancy based on fetal 
assessments in the CTG data, and were used to predict the 
multiclass morphologic patterns with the 10 target class 
outcomes. Table II shows the details of the clinical instances in 
terms of the number of cases and percentages of the presence 
or absence of complications during pregnancy based on fetal 
assessments in each of the 10 morphologic pattern outcome 
data sets. 

As can be seen in Table II, there are large differences in 
terms of percentages of the number of cases within each of the 
multiclass morphologic pattern outcomes in the CTG data. 
Class C3 has the lowest percentage of number of cases at 
2.49%, while class C2 has the highest percentage of number of 
cases at 27.23%. As can be seen, the number of the sample 
distributions in the multiclass morphologic pattern outcomes 
would lead to a challenge in multiclass classification with 
imbalanced sample sizes for the CTG data in the field of 
machine learning and deep learning. 

In order to evaluate the effectiveness of the performances 
of the developed deep neural network classification and 
prediction models, the model accuracy and misclassification 
error as well as the recall, precision, and F-score were 
estimated using a nonparametric approach based on a holdout 
method [45]. The holdout method applied by partitioning the 
CTG data into two mutually exclusive data sets, training data 
and testing data, respectively. The deep neural network 

classification model was first trained using the training data, 
and then it was tested using the testing data. 

In this research, the entire CTG data was randomly 
separated into 70% training and 30% testing data sets using the 
holdout method. The deep neural network classification and 
prediction models were trained and tested by using the 70% 
training and 30% testing data sets, respectively. The training 
and testing processes for the deep neural network classification 
and prediction models were repeated 24 times based on the 
different 70% training and 30% testing data sets. Doing so 
would determine an average of the testing performance results 
for the deep neural network classification and prediction 
models. 

TABLE I. THE RAW ATTRIBUTES OF THE VARIABLE NAMES AND 

DESCRIPTIONS IN THE CTG DATA SET 

Variable 

Name 
Descriptions 

Variable 

Name 
Descriptions 

LB 
FHR baseline (beats 

per minute) 
Min 

Minimum of FHR 

histogram 

AC 

(Second) 

Number of 

accelerations 
Max 

Maximum of FHR 

histogram 

FM 

(Second) 

Number of fetal 

movements 
Nmax Number of histogram peaks 

UC 

(Second) 

Number of uterine 

contractions 
Nzeros Number of histogram zeros 

DL 

(Second) 

Number of light 

decelerations 
Mode Histogram mode 

DS 

(Second) 

Number of severe 

decelerations 
Mean Histogram mean 

DP 

(Second) 

Number of prolongued 

decelerations 
Median Histogram median 

ASTV 
Percentage of time 
with abnormal short 

term variability 

Variance Histogram variance 

MSTV 
Mean value of short 

term variability 
Tendency Histogram tendency 

ALTV 

Percentage of time 

with abnormal long 

term variability 

Class 

FHR pattern class code (1 

to 10): 

1-calm sleep 

2-REM sleep 

3-calm vigilance 

4-activevigilance 
5-shift pattern 

6-accelerative or 

decelerative pattern (stress 

situation) 

7-decelerative pattern 

(vagal stimulation) 

8-largely decelerative 

pattern;  
9-flat-sinusoidal pattern 

(pathological state)  

10-suspect pattern 

MLTV 
Mean value of long 

term variability 
NSP 

fetal state class code  

(N=normal; S=suspect; 

P=pathologic) 

Width 
Width of FHR 

histogram 
  

TABLE II. CLINICAL INSTANCES OF COMPLICATIONS DURING PREGNANCY 

BASED ON FETAL ASSESSMENTS OF THE MULTICLASS MORPHOLOGIC PATTERNS 

IN THE 10 TARGET CLASS OUTCOMES IN THE CTG DATA  

M
P 

C1 C2 C3 C4 C5 C6 C7 C8 C9 
C1
0 

NC 384 579 53 81 72 332 252 107 69 197 

% 
18.0

6 

27.2

3 

2.4

9 

3.8

1 

3.3

9 

15.6

2 

11.8

5 

5.0

3 

3.2

5 

9.2

7 
Note: MP means Morphologic patterns; NC means Number of cases. 
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Fig. 2 shows a graph plot of the designed and developed 
deep neural network classification model performances using 
the training dataset at each of the epochs for 80,000 iterations 
during the training process. The accuracy of the deep neural 
network classification model is 97.32% based on the training 
dataset. Furthermore, Fig. 3 illustrates a graph plot of the deep 
neural network classification model loss function error 
throughout the 80,000 iterations during the training process. 
The loss function error of the deep neural network 
classification model is 0.0941 in an optimal sense of minimum 
mean square error (MMSE). In general, the higher the accuracy 
that the deep neural network classification model can achieve 
the lower the loss function error is obtained during the training 
process. 

 
Fig. 2. A graph plot of the deep neural network classification model 

performance in terms of accuracy at each of the epochs for 80,000 iterations 

during the training process, where x-axis denotes each of the epochs and y-

axis represents the model accuracy (the value of 1.0 at the y-axis represents a 
trained model with 100% accuracy). 

 
Fig. 3. A graph plot of the deep neural network classification model loss 

function error at each of the epochs for 80,000 iterations during the training 

process, where x-axis denotes each of the epochs and y-axis represents the 

model loss function error in MMSE. 

 
Fig. 4. A graph plot of the deep neural network classification model 

performances for 24 accuracy measures based on the 24 different testing data 
sets, where x-axis represents each of the 24 tests and y-axis is the tested 

model accuracy in percentage. 

 
Fig. 5. A graph plot of the deep neural network classification model 

performances with 24 loss function error measures based on the 24 different 
testing data sets, where x-axis represents each of the 24 tests and y-axis is the 

tested model loss function error. 

In this research paper, we repeated the same training and 
testing processes 24 times for the deep neural network 
classification model. For each of the 24 times, the entire CTG 
data was randomly divided into 70% training and 30% testing 
data sets. Then the deep neural network classification and 
prediction models were trained using the training data sets and 
tested using the testing data sets, respectively. The deep neural 
network classification model performances were recorded 
based on the 24 testing data sets. Displaying the results, Fig. 4 
shows a graph plot of the deep neural network classification 
model performances in terms of 24 accuracy measures based 
on the 24 different testing data sets. As can be seen, the highest 
testing accuracy of the deep neural network classification 
model is 89.44%; the lowest testing accuracy is 86.48%. This 
leads to an average model accuracy of 88.02% with a standard 
deviation of 0.67%. The average misclassification error of the 
model is 11.98%. Correspondingly, Fig. 5 is a graph plot of the 
deep neural network classification model performances 
regarding the 24 loss function error measures based on the 24 
different testing data sets as well. The best MMSE of the loss 
function error is 0.70 while the worst MMSE is 0.92. The 
average MMSE of the loss function errors is 0.84 with a 
standard deviation of 0.05. 

In general, according to the training and testing results, 
whether the deep neural network classification model falls into 
a global or local minimum in an optimal sense is 
inconsequential. If the deep neural network overfitting in a 
minimum sense can be controlled, this deep neural network 
classification model would be determined to have realistically 
accurate diagnoses for fetal assessment during pregnancy based 
on the multiclass morphologic patterns of the 10 target class 
predictions. 

Thus, in order to optimize the deep neural network 
classification model, the “rmsprop” method was used during 
the training process in this research. The “rmsprop” method is 
one of the mini-batch learning methods, which divides the 
learning rate for a weight by a running average of the 
magnitudes of recent gradients for the weight [48] and keeps a 
moving average of the squared gradient for each weight. In this 
research, a mini-batch size of 80 was used along with a 
learning rate of 0.00005 during the training processes. 

Table III shows a combined confusion matrix (also known 
as an error matrix), which is a special table, using a summation 
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of the 24 individual confusion matrices based on 24 
independently individual testing results. This combined 
confusion matrix allows us to visualize the deep neural 
network classification model performances in detail. Each row 
of the combined confusion matrix represents the number of 
clinical instances in a predicted class, while each of the 
columns represents the number of clinical instances in an 
actual multiclass. In statistics, this combined confusion matrix 
can also be called a contingency table along with two 
dimensions in terms of “actual” and “predicted” as well as 
identical sets of “classes” in both dimensions. 

Based on results of the combined confusion matrix in 
Table III, corresponding values of recall, precision, and F-
score for each of the multiclass morphologic patterns based on 
the 10 target classes using the deep neural network 
classification model were estimated as shown in Table IV. As 
can be seen, the averages of recall and precision are 84.30% 
and 84.91% along with standard deviations 8.39% and 6.89%, 
respectively. This leads to an average of the F-scores that is 
equal to 0.8453 with a standard deviation of 0.0737. 

TABLE III. A COMBINED CONFUSION MATRIX BASED ON THE 24 

INDEPENDENTLY INDIVIDUAL CONFUSION MATRICES USING THE 24 

DIFFERENT TESTING DATA SETS 

 Actual Multiclass Cases 

 

 

 

 

 

P
C 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

2584 97 12
7 

0 12
3 

22 27 0 3 154 

101 4736 0 60 14 140 0 0 10 0 

126 3 37
1 

0 0 2 4 0 0 0 

0 110 0 54
0 

1 0 0 0 0 0 

31 27 0 0 45
7 

3 9 0 9 28 

24 67 0 0 0 2278 55 1 4 0 

15 40 6 0 0 28 1798 75 4 0 

0 0 0 0 0 47 0 61
7 

32 0 

0 0 0 0 0 0 0 1 55
6 

100 

143 8 0 0 29 0 3 2 12
6 

1062 

Note: PC means predicted cases. 

TABLE IV. RECALL, PRECISION, AND F-SCORE FOR EACH OF THE 

MULTICLASS MORPHOLOGIC PATTERNS 

Multiclass Recall Precision F-Score 

C1 0.8545 0.8237 0.8388 

C2 0.9308 0.9358 0.9333 

C3 0.7361 0.7332 0.7347 

C4 0.9000 0.8295 0.8633 

C5 0.7324 0.8103 0.7694 

C6 0.9040 0.9378 0.9206 

C7 0.9483 0.9145 0.9311 

C8 0.8865 0.8865 0.8865 

C9 0.7473 0.8463 0.7937 

C10 0.7902 0.7735 0.7817 

Average 0.8430 0.8491 0.8453 

Standard 
Deviations 

0.0839 0.0689 0.0727 

 
Fig. 6. A graphic plot of the macro average of recall, precision, and F-score 

based on the 24 individual confusion matrices for the deep neural network 

classification model using the 24 different testing data sets. 

In this research, another method utilizing the macro 
average, which is the one-vs-all classification technique, was 
also used to estimate recall, precision, and F-score. Fig. 6 
shows a graphic plot regarding the estimated values of recall, 
precision, and F-score based on the 24 independently 
individual confusion matrices. The macro average was used to 
compute all of the local recall and precision values for each of 
the multiclass morphologic patterns based on each of the 24 
confusion matrices. The averages of recall and precision were 
then calculated according to (23) and (24) based on each of the 
confusion matrices, thereby leading to the 24 estimated values 
of recall, precision, and F-score as shown in Fig. 6. Based on 
the macro average, the averages of the recall, precision, and F-
score are 84.30%, 85.01%, and 0.8508, respectively. 
Correspondingly, the standard deviations for the averaged 
recall, precision, and F-score are 1.13%, 1.14%, and 0.0100, 
respectively. As can be seen, in general, the F-score curve is 
displayed between the recall and precision curves. 

Furthermore, it is noted that there are some differences in 
terms of averages and standard deviations of the recall, 
precision, and F-score for the deep neural network 
classification model using the combined confusion matrix as 
shown in Tables III and IV as well as using the macro average 
as shown in Fig. 6. However, generally speaking, there are no 
significant differences for the averages and standard deviations 
of the recall, precision, and F-score for the deep neural network 
classification model using the methods of micro and macro 
averages. Utilizing the 24 independently individual confusion 
matrices based on the 24 different testing data sets for 
estimating the deep neural network classification model 
performances allows us to establish and demonstrate a new and 
alternative way of representing the model recall, precision, and 
F-score in a dynamic representation. 

VI. CONCLUSION AND FUTURE WORK 

In this research paper, the deep neural network 
classification and prediction models were designed and 
developed for CTG diagnosis and prediction based on fetal 
assessment in pregnancy with the multiclass morphologic 
patterns of the 10 target classes with imbalanced samples. In 
conjunction with the dropout technique, regularization was 
applied to combat overfitting for the deep neural networks 
during the training process. As a result, the developed deep 
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neural network architecture allowed us to not only show a 
strong, alternative form of largely exponential ensemble 
learning but also reduce overfitting issues for the deep neural 
network classification and prediction models. Therefore, the 
developed deep neural network classification and prediction 
models can provide highly accurate and consistent diagnoses 
for fetal assessment regarding complications during pregnancy 
based on the multiclass morphologic patterns, thereby 
preventing and/or reducing fetal morbidity or mortality rate as 
well as maternal mortality rate during and following pregnancy 
and childbirth, especially in developing countries or in low-
resource settings. 

The dropout technique was used to enable us to randomly 
drop neural units with their connections in the deep neural 
network architecture. It can be treated as a large exponential 
ensemble learning for the deep neural networks. This 
significantly reduces overfitting and provides major 
improvements over traditional regularization methods. 
However, one of the problems with the dropout technique is 
that the training period is typically longer than that of a 
standard deep neural network architecture. This is because the 
parameter updates in the networks are very noisy. Moreover, 
the dropout technique can be considered as an alternative way 
of adding noise to the hidden units in the networks. This 
becomes a trade-off requirement between overfitting and 
training time. In other words, by increasing training time, one 
can already use a high dropout rate and encounter fewer 
overfitting problems for the deep neural network architectures. 
Thus, for future work, an interesting direction to take is to 
speed up the dropout technique during the training processes 
despite the large deep neural network architecture. 
Furthermore, another future direction is to use the dropout 
technique as an adaptive regularization for adaptive ensemble 
learning to further prevent overfitting, thereby enhancing the 
model performances of the deep neural network architectures 
and diagnoses of fetal health assessment with cardiotocography 
in clinical cases. 
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