
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 5, 2018 

116 | P a g e  

www.ijacsa.thesai.org 

New Techniques to Enhance Data Deduplication 

using Content based-TTTD Chunking Algorithm 

Hala AbdulSalam Jasim, Assmaa A. Fahad 

Department of Computer Science, College of Science 

University of Baghdad 

Baghdad, Iraq 

 

 
Abstract—Due to the fast indiscriminate increase of digital 

data, data reduction has acquired increasing concentration and 

became a popular approach in large-scale storage systems. One 

of the most effective approaches for data reduction is Data 

Deduplication technique in which the redundant data at the file 

or sub-file level is detected and identifies by using a hash 

algorithm. Data Deduplication showed that it was much more 

efficient than the conventional compression technique in large-

scale storage systems in terms of space reduction. Two Threshold 

Two Divisor (TTTD) chunking algorithm is one of the popular 

chunking algorithm used in deduplication. This algorithm needs 

time and many system resources to compute its chunk boundary. 

This paper presents new techniques to enhance TTTD chunking 

algorithm using a new fingerprint function, a multi-level hashing 

and matching technique, new indexing technique to store the 

Metadata. These new techniques consist of four hashing 

algorithm to solve the collision problem and adding a new chunk 

condition to the TTTD chunking conditions in order to increase 

the number of the small chunks which leads to increasing the 

Deduplication Ratio. This enhancement improves the 

Deduplication Ratio produced by TTTD algorithm and reduces 

the system resources needed by this algorithm. The proposed 

algorithm is tested in terms of Deduplication Ratio, execution 

time, and Metadata size. 

Keywords—Data deduplication; big data compression; data 

reduction; Two Threshold Two Divisor (TTTD); chunking 

algorithm 

I. INTRODUCTION  

There is an explosion on the amount of digital data in the 
world right now, as manifest by the considerable growth in the 
measured amount of stored data in 2010 and 2011 from 1.2 
zettabytes to 1.8 zettabytes

1
, respectively [1], and the 

prophesied amount of data to be created in 2020 is 44 
zettabytes [2], [3]. So manage the storage which is cost-
effectively, has become an important task of the most 
challenging in the big data era. The workload studies 
performed by an American multinational corporation Dell, 
EMC, (Richard Egan, Roger Marino & John Curly the E, M & 
C in EMC) and Microsoft, suggest that approximately 50% 
and 85% of the data are redundant in their primary and 
secondary storage systems, respectively.  

                                                           
1 IDC, “The 2011 digital universe study,” Tech. Rep., Jun. 2010, [Online]. 

Available: http://www.emc.com/collateral/analystreports/idc-extracting-value-

fromchaos-ar.pdf 

According to International Data Corporation (IDC) recent 
study, almost 80% of the surveyed corporations indicated that 
they are using in their storage systems to reduce redundant 
data kind of data deduplication technologies, which increased 
storage in an efficient way and reduced the costs of storage 
spaces [4]. 

Data deduplication does not only reduced storage space, 
but also decreased the transmission rate by eliminating 
redundant data in low bandwidth network environments. A 
sub file-level chunking deduplication system breaks the input 
data stream into multiple data “chunks” that are individually 
distinguished by a hash signature (e.g., SHA-1), and detects 
the duplicate ones by some kind of comparison method. 
Deduplication systems remove duplicate chunks, and store or 
transfer only one copy of them to achieve the goal of saving 
storage space or network bandwidth. In the other hand 
Deduplication system, suffers from the long execution time 
and the need of many CPU resources on its job. 

Teng-Sheng Moh [5] in 2010 adds a new switch condition 
to enhance the execution time of TTTD algorithm with the 
same deduplication ratio. He reduced the value of the main 
divisor (D) and the second divisor (Ddash) to the half when 
the break point was not found before 1600 byte, this condition 
reduced about 6% of the running time and 50% of the large-
sized chunks. 

Manogar and Abirami [6] in 2014 first examined and 
compared different deduplication techniques, and then they 
concluded that variable size data deduplication is more 
efficient than the rest of the deduplication techniques. 

AbdulSalam and Fahad [7], in 2017 performed a survey on 
different chunking algorithms of data deduplication. They 
discussed, studied the most popular chunking algorithm 
TTTD, and evaluated this algorithm using three different 
hashing functions; Rabin Finger print, Adler, and SHA1 
implemented each one as a fingerprinting and hashing 
algorithm and then compared the execution time and 
deduplication elimination ratio. 

In this paper a new chunking condition is added to enhance 
the deduplication ratio and a new four hashing function is 
proposed to improve the matching process by reducing the 
probability of hash collision occurrence. In addition, a 
searching technique suggested in order to reducing the time 
needed for deduplication process. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 5, 2018 

117 | P a g e  

www.ijacsa.thesai.org 

TABLE I. CHARACTERISTICS OF THE USED DATA SET 

Data Set On Line Link 
Number of Files 

and Folders 

Total 

Size 

Versions of 
Emacs of GNU 

http://www.gnu.org 
16,296 Files, 
327 Folders 

580 MB 

Versions of  

3DLDF of GNU 
https://www.kernel.org 

5,795 Files, 63 

Folders 
1.27 GB 

The input data to the system consists of a number of files 
with diverse sizes and types. The system process theses files 
as one file at a time. The proposed system is developed and 
tested on two data sets, which belongs to the GNU file system 
in order to show the efficiency of the proposed system. Table I 
shows the characteristic of each data set.  

II. DATA DEDUPLICATION SYSTEM USING TTTD 

CHUNKING ALGORITHM  

In general, any deduplication system will pass into three 
stages: (Chunking, Hashing and Indexing, and Matching 
stage). The theory of each part will explain briefly:  

A. Chunking 

The first step of data deduplication is chunking, it 
partitioning the input data stream (file) into small and non-
overlapping parts named chunks. The chunking operation is 
performed using certain type of rolling hash that depends on 
the contents of the text itself so that for two strings with the 
same contents it will produce the same hash value. This stage 
is a very important stage; the deduplication ratio depends on 
the chunks produced from this stage [7]. 

TTTD is a variable size-chunking algorithm [8], it use 
Rabin Fingerprint to find the hash value of substring with 
predefined window size (48 byte). If the hash of this substring 
satisfy the condition of TTTD it will considered as a 
breakpoint otherwise slide the window size one byte [9].  

Formula (1) used to compute Rabin Fingerprint for the 
first substring. Then, Formula (2) used for the rest substring, 
worked by remove first character, and added the new one [4]. 

  D Mod })P*B({=) ...B ,B,Rabin(B
0i

1-i-

i21 






                     (1) 

  ModDiBPPi 


 


 *
1

*iB -) 1...B ,1iB,iRabin(B     (2) 

Here: D is the average chunk size [7], Bx is the ASCII 
code for the substring characters, P is a prime number α is the 
size of the sliding window. 

B. Hashing and Indexing 

The main target of hashing and indexing stage is to 
compute the hash value for whole chunk and adding it to the 
lookup table or index table. When the finger print satisfy one 
of TTTD conditions then the whole chunk of text will be sent 
to the Hash function (like SHA-1 or MD5).The hash value 
result from the hash function will be used to compare between 
the chunks. The name of the chunk is the location that saved 
with inside the chunk container. The content of the lookup 
table will be a set of records consist of two fields, the first 
field contain the chunk name, and the second field will be 
contain its hash value: 

D:\DataBase_test\emacs-22.1\AUTHORS\Chunk-0.txt 
123456 

C. Matching  

In original systems, the chunk of new file will compared to 
the chunk of the files that have the same name and type. If 
there is a matching then the system will retrieve its lookup 
table, and compare all the chunks of the new file with the 
chunks of the old one. For the duplicated chunks, delete the 
new chunk and perform a logical reference to the old one in a 
final lookup table of the new file, otherwise save the chunk, 
and add its name and its hash to the final lookup table. A 
collision problem may occur during the matching operations, 
to solve the collision problem a byte-to-byte comparison must 
be performed [10]. The number of collision reduces the 
performance of the system due to the time needed to solve it. 
Reducing the number of collision is one of the aims of a good 
deduplication system. 

III. PROPOSED SYSTEM AND METHOD 

In this paper, a Content Based Two Threshold Two 
Divisor with Multi-Level Hashing Technique (CB-TTTD-
Multi-Level Hashing Technique) based on TTTD algorithm 
suggested to enhance deduplication technique by speed up the 
deduplication operation and increase its compression ratio. 

A. Chunking 

CB-TTTD-Multi-Level Hashing Technique introduces a 
new hash functions to compute the fingerprints for each tested 
data stream. For each character in the first string of window 
size (36 byte) the fingerprint value is calculated using (3). 
Then for each of the following substrings, fingerprint value is 
calculated using (4).  

 }2*] Val[B{=) ...B ,B,(Bt  FingerPrin
1

0i

1i 

i20 








                 (3) 

1α

1αii

αii1αi1i

2*]Val[B]  2  ]}Val[B -                        

),...Bint(B[{FingerPr=)B ... ,(Bt  FingerPrin New









       (4) 

Here: α is Substring Size, B1 … Bα: are the substring 
characters, Val [Bi]: is the value of index [Bi] in Fingerprint-
array. The value of character taken from an array of 256 
position that represent the printable characters filled with 
random value of (1, 2) to produce an array as in Fig. 1: 

Unlike Rabin fingerprint CB-TTTD-Multi-Level Hashing 
Technique, uses a value retrieved from the fingerprint array 
instead of using the ASCII code of the character, this step 
speed up the computation and reduce the overhead of CPU 
needed for each fingerprint because it uses very small values. 
The system test different values for the fingerprint array such 
as:  

[0,1] , [1,0] , [0 , 0, 1,1] , [1,1,0,0] , [1,2] , [1,2,3,1,2,3] , 

[1,2,3,4,…. 255]. 

Array [0] Array [1]                                                                                          Array [255] 

1 2 1 2 1 ……… 2 

Fig. 1. Fingerprint array. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 5, 2018 

118 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 2. Input to output data ratio of the two-compared algorithms. 

The most efficient values that produces a high 
deduplication ratio was the sequence of [1, 2] values. This 
technique helps to produce different hash values for different 
substrings that helps in detection more redundant data and 
increase the deduplication ratio. 

In addition, CB-TTTD-Multi-Level Hashing Technique 
gives a weight to the characters in the data stream. The system 
considers the Dot character („.‟), as a new condition, in 
addition to the main and second divisor condition of TTTD. 
When a „.‟ character is found followed by a (space) or (end of 
line) this paragraph is considered as a separated chunk. The 
advantage of this condition appears in case of two paragraphs 
considered as one chunk, then any change in one paragraph 
may affect the next one, but in this case, the effect will be 
limited with the changed paragraph only. Adding this 
condition increased the deduplication ratio and with the same 
chunking time, because it does not need any extra processing 
steps to compute the chunk boundary. Fig. 2 illustrates the 
output size using original TTTD chunking algorithm and CB-
TTTD-Multi-Level Hashing Technique on the same dataset as 
input and the differences between them. Table II shows the 
result produced by implementing CB-TTTD-Multi-Level 
Hashing Technique on Dataset1 compared with TTTD 
algorithm.  

B. Hashing and Indexing 

The old deduplication system is suffering from the wasted 
time needed to solve the collision problem. CB-TTTD-Multi-
Level Hashing Technique suggests a new method that uses 
four hashing functions rather than one to solve the collision 
problem. The technique will compute and save four hash 
values for each chunk, as shown in Table III Using the hash 
functions shown below:  









 




1

0

)2*][1()(1
s

i

k

BiArraychunkHash                    (5) 









 




1

0

0&)1*][()(2
s

i

xFFFFFFFFABiStringchunkHash             (6) 









 




1

0

)2*][3()(3
s

i

k

BiArraychunkHash                 (7) 









 




1

0

0&)2*][()(4
s

i

xFFFFFFFFABiStringchunkHash

         (8) 

TABLE II. THE EFFECT OF DOT CONDITION ON EACH SYSTEM 

Algorithm 

Number 

of 

Chunks 

Deduplication 

Ratio 

Size of 

Metadata 

in MB 

Time in 

second 

TTTD 

without Dot 
621861 1.78300 82.1 2304 

TTTD with 
Dot 

1542374 1.81176 124 3349 

Proposed 

System 

without Dot 
Condition 

644933 2.03845 16.7 458 

Proposed 

System with 

Dot Condition 

960091 2.1386 24.1 582 

TABLE III. ARRAY1 AND ARRAY2 VALUES 

Array [0] [1] [2] [3] [4] … [255] 

Array1 0 1 2 3 4 … 256 

Array2 0 1 0 1 0 … 1 

Here: S is the chunk size, Array1 and Array2 is an array of 
255 value as shown in Table III, K is an integer value equals to 
(i mod 8),  A1 and A2 values is 5, 11 respectively, their values 
increased by one every iterator, 0xFFFFFFFF used to get 
limited range of value. 

Using these hash functions reduces matching time by 
solving the collision problem in an efficient  way, Also the 
number of bits needed to store these four hashes are about to 
32 bits maximum, which is less than the number of bites 
needed to save the hash value in SHA-1and MD5 which yields 
hexadecimal digits, SHA-1 returning 160 bit. 4 bit per 
character and thus equals to 40 character, and the output of 
MD5 hash which is 128 bits equals to 32 characters [11]. 

The name, the size, and the four hashes values for each 
chunk must save in Index-Table. The name of the chunks in 
CB-TTTD-Multi-Level Hashing Technique is an integer 
number from zero to N, where N is unlimited number 
increased with each chunk in the system. This information 
must be ordered in the Index table as shown in Table IV. 

CB-TTTD-Multi-Level Hashing Technique also creates a 
log file for each file in the dataset. This log file will be used in 
reconstruction operations of the files. 

TABLE IV. THE STRUCTURE OF THE INDEX-TABLE 

Chunk 

Name 

Chunk 

Size  
Hash1  Hash2 

Hash

3 
Hash4 

0 1268 
357315

1 

7173770

3 
19983 

7241537

3 

1 466 
129976
9 

9843858 6961 
1009266
6 

2 480 
133838

6 

1050308

0 
7454 

1076210

0 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 5, 2018 

119 | P a g e  

www.ijacsa.thesai.org 

TABLE V. TIME AND INDEX TABLE IMPACT OF EACH HASH 

Number of Hash Used 
1- 

Hash 

2-

Hashes 

3-

Hashes 

4 -

Hashes 

Chunking Time in Second 353 342 321 336 

Deduplication Time in Sec 1050 656 627 562 

Size of Log File in MB 6.048 6.048 6.048 6.048 

Size of Index Table in MB 10.915 13.802 15.177 18.075 

Final Meta Data Size in MB 16.963 19.85 21.225 24.123 

Number of Hash Collision 21372 0 0 0 

C. Matching 

In deduplication matching steps, when a new file comes 
and passes the two previews stages, the system must detect 
and eliminate the duplicated chunks. It first check the hash 
values of the chunks, if the hash values are similar, then the 
algorithm will compare the two chunks byte to byte, if they 
are identical the system will delete the new one and add a 
logical reference to the location of the old one. Otherwise a 
collision was occurs; the chunks are difference; the system 
will save the new one as a new chunk. This operation takes a 
lot of time and overhead the system. Therefore, a new method 
has to add to deduplication matching process, to enhance the 
throughput, i.e., saving execution time and reduce CPU 
resources usage.  

In this paper, the Multi-Level Hashing Technique was 
suggest to enhancing the matching process by using the four 
hash functions that already computed in hashing stage. If a 
collision occur in first hash values of the compared chunks 
then compare the second, third and fourth hash. The test result 
shows a significantly noteworthy improvement with the time 
needed by matching process, because comparing four numbers 
is faster than comparing the whole compared chunks byte-to-
byte. 

This solution tested with dataset1 and dataset2, the 
collision founds in first hash function will reduced to zero by 
the second hash function. For dataset1 with the first hash 
function the collision number was 21372 for total chunk 
number 960091, by using the second hash function, the 
number is reduce to zero. Third and fourth hash functions are 
uses as an extra step to be assurance the collision is 
determined, if a chunk overpasses the first two hashes. For 
each hash in the system the elapsed time and collision number 
is computed as shown in Table V, the proposed system found 
that four hashes is a balanced number between time and the 
size of index table. 

When a new file comes, it must be chunked and hashed, 
and then each chunk will be compared with all chunks within 
the database. The previews deduplication systems search for 
the similarity of the chunks within a file name or type in the 
dataset, the proposed system search for the similarity of the 
chunk within the whole files in the dataset. The side effect of 
this method is the time needed to complete the matching 
operation. To enhance this method, the size of the chunk is 
utilized as the searching parameter, and a binary search 
technique is used instead of linear searching method. Because 
when using liner search, the system will be with O (N) 
complexity while using the binary search reduce the 
complexity to O (log N) [12].  

To implement a binary search in an efficient way, the new 
matching algorithm that proposed in this paper, divide the 
chunks in the workspace into 16 groups, depending on the 
chunk size as shown in Table VI. The first group contains the 
chunks with size (0 – 462) byte, and the second group is for 
the chunks with size (463 – 471) byte, and so on. The number 
of the chunks in each group is approximately equal. 

Fig. 3 shows chunks distribution, the minimum chunk size 
of the algorithm is 460 byte and the maximum chunk size is 
2800 byte as the TTTD algorithm suggested [9]. However, 
there are special cases where the chunk size is less than 460 
byte. These cases are: 

 The size of the file is smaller than the minimum chunk 
size (460 byte) or less than window size (36 byte). 

 The size of the rest of the file from the last breakpoint is 
less than 460 byte or 36 byte. 

 The breakpoint could not found after the last breakpoint 
to the end of the file. 

In this paper the data in the above three cases will be 
preserved as one chunk. 

Working with large amount of the chunk as groups is 
easier and faster than working with it as a one large search 
space Table VII shows the effect of the searching techniques 
with respect to time.  

TABLE VI. CHUNK DISTRIBUTION ACCORDING TO PARTITIONING  
METHOD 

Index  From To 

0 0 462 

1 463 471 

2 472 481 

3 482 491 

4 491 503 

5 504 515 

6 516 530 

7 531 547 

8 548 570 

9 571 598 

10 599 636 

11 637 691 

12 692 775 

13 776 920 

14 921 1291 

15 1292 2800 

 
Fig. 3. Distribution of chunk with respect to size. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 5, 2018 

120 | P a g e  

www.ijacsa.thesai.org 

TABLE VII. COMPARISON BETWEEN SEARCHING WITH ONE BIG SEARCH 

SPACE AND PARTITIONS METHOD 

Benchmarks 
One Large 

Search Space 

16 - Parts 

Search Space 

Number of Chunk 960091 960091 

Deduplication Ratio 2.1386 2.1386 

Chunking Time in Second 320 339 

Whole Program Time (Matching and 

Chunking)  in Second 
3230 629 

To represent the chunk of dataset with a distribution-based 
representation that summarizes scalar information into much-
reduced groups, one of statistical distribution methods should 
be used [13]. In this paper, CB-TTTD with Multi hashing 
Technique used the histogram. The disadvantages of used 
statistical distributions method is that the distribution 
representing the chunks in one dataset differs from another 
one.  

However, in the proposed case the parts boundaries was 
approximately equals for all tested datasets. The histogram 
steps that used to rearrange the chunks in to range from (0 
to16) parts depending on chunks size instead of (0-2800) 
range are:  

 Count number of chunk for each size of range (0 – 
2800). 

 Compute the probability of each size with respect to 
other; i.e.: P (i) = (count (i)/∑ count (i)). 

 Compute the Probability Ratio for each size using the 
formal: PA (i) = (∑ P (i)). 

 Multiply the PA column with Density Slicing number 
which in our case is (15) and round the result to nearest 
integer number, that give as range from (0-15) only, see 
Table VI. 

IV. RESULTS AND DISCUSSION  

Proposed technique is implemented on a machine with 
configuration Intel i7 CPU with Installed memory 4.00 GB on 
64bit windows OS. To implement proposed technique dataset 
is collected as mentioned in Table I. TTTD chunking 
algorithm with Rabin fingerprint and SHA-1 hashing 
algorithm implemented also in the same environment to 
compare the result of the proposed system with it.  

To analyze CB-TTTD-Multi-Level Hashing Technique the 
following performance metrics are used. Table VII shows the 
result of the two algorithms. 

 Data Size after Deduplication: It describes how many 
data remains after the data deduplication eliminates all 
redundant data. 

 Deduplication Gain: It indicates how much unique 
content is present in the dataset. In this paper, it 
calculated as in (9). 

The Size of Deduplicated Data Detected
Deduplication Gain =                (9)

Total Output Data Size After Deduplication

 

TABLE VIII. COMPARISON TTTD AND CB-TTTD-MULTI-LEVEL  
HASHING 

 Evaluation Metrics 
DataSet-1 DataSet-2 

TTTD CB-TTTD TTTD 
CB-

TTTD 

Input Data (MB) 580.33 580.33 2329.13 2329.13 

Data Size after 

Deduplication (MB) 
329.19 271.36 820.49 200.33 

Duplicated Data Detected 

(MB) 
251.14 308.97 1508.64 2128.8 

Deduplication Rate 1.7628 2.1386 2.8387 11.6264 

Deduplication Gain 0.4327 0.5324 0.6477 0.9139 

Chunking Time in Sec 727 462 3747 1075 

Deduplication Time in Sec 2632 532 9083 1539 

Total Number of chunk 621861 960091 2468026 2611322 

Average Chunk size 978.55 633.82 989.56 935.26 

 Deduplication Ratio: The data deduplication ratio 
measures the effectiveness of the deduplication process, 
it is expressed as in (10). 

Total Input Data Size Before Deduplication
Deduplication Ratio =        (10)

Total Input Data Size After Deduplication

 

 Average Chunk size: Calculated as in (11) 

Total Input Data Size
Average Chunk Size =                       (11)

Total Number of Chunks

 

 Chunking and Hashing time:  It is the total time taken 
to perform hashing and chunking operation.  

Experimental results are shown in Table VIII. These 
results clearly demonstrate that CB-TTTD-Multi-Level 
Hashing Technique satisfactorily reduces the deduplication 
processing time and increases its ratio.  

Result charts also clearly demonstrate that our proposed 
approach perform better than original approach for small and 
big data sets, the deduplication gain is also increased. 

The proposed finger print equation used in chunking stage 
is more efficient than Rabin fingerprint equation; it increase 
the number of the chunks by the way it works, especially 
small chunk sizes, with less CPU overhead cost which 
increase the deduplication ratio. In addition, using Content 
Based condition (Dot character), also increased the number of 
the small chunks leading to increasing deduplication ratio 
without influence chunking time Fig. 4 illustrate the average 
chunks size of the two algorithms. 

 

Fig. 4. Average chunk size. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 5, 2018 

121 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 5. Deduplication and chunking time. 

 

Fig. 6. Deduplication ratio and gain for both system.  

The suggested comparing method improved deduplication 
ratio, but the execution time was increased. Nevertheless, this 
disadvantage of comparison was solved by partitioning the 
search space, and the use of mathematical modules to 
overcome the collision problem, which is an efficient solution 
that enhanced the execution time of matching process. As 
shown in Fig. 5, the time of chunking and the overall time 
(deduplication time) is less than the time of TTTD algorithm. 

Fig. 6 depicts data deduplication gain and ratio. In 
proposed CB-TTTD-Multi-Level Hashing technique, data 
deduplication ratio and its gain is high as compared to 
traditional deduplication methods. 

V. CONCLUSIONS AND FUTURE WORK 

In big data storage, data is too large and efficiently store 
data is difficult task. To efficiently stores and de-duplicate the 
data, this paper suggest a new technique to reduce the 
deduplication ratio. This technique examined the 
deduplication detection and elimination system performance 
and explained the rationale parts, data deduplication consist of 
three stages, the enhancement operation involved all stages 
that leads to good deduplication ratio and fast execution time, 
The Metadata produced by CB-TTTD with Multi hashing 
technique is less than the one that produced by traditional 

algorithms. The effectiveness of the proposed method was 
evaluated using two relative datasets; the preliminary results 
are encouraging to go forward toward developing new method 
for detection and elimination deduplication algorithms to meet 
the challenges and demands of fast and efficient deduplication 
systems. Moreover, we can use some kind of fast compression 
with the Meta data (Index Table and Log file) to saving more 
disk space. 

REFERENCES  

[1] D. Stevenson and N. J. Wagoner, “Bargaining in the shadow of big 
data,” Fla. Law Rev., vol. 66, no. 5, p. 66, 2014. 

[2] Gantz, John, and David Reinsel. "The digital universe in 2020: Big data, 
bigger digital shadows, and biggest growth in the far east." IDC iView: 
IDC Analyze the future 2007.2012, pp 1-16 , 2012.  

[3] Turner, V., Gantz, J. F., Reinsel, D., & Minton, S. “The digital universe 
of opportunities: Rich data and the increasing value of the internet of 
things”. IDC Analyze the Future,p. 5, 2014.  

[4] Xia, Wen and Jiang, Hong and Feng, Dan and Douglis, Fred and 
Shilane, Philip and Hua, Yu and Fu, Min and Zhang, Yucheng and 
Zhou, Yukun, “A comprehensive study of the past, present, and future of 
data deduplication,” Proc. IEEE, vol. 104, no. 9, pp. 1681–1710, 2016. 

[5] T.-S. Moh and B. Chang, “A running time improvement for the two 
thresholds two divisors algorithm,” Proceedings of the 48th Annual 
Southeast Regional Conference on - ACM SE ‟10. p. 1, 2010. 

[6] E. Manogar and S. Abirami, “A study on data deduplication techniques 
for optimized storage,” 6th Int. Conf. Adv. Comput. ICoAC 2014, pp. 
161–166, 2015. 

[7] H. Abdulsalam and A. Fahad, "Evaluation of Two Thresholds Two 
Divisor chunking algorithm using Rabin fingerprint, Adler, and SHA-1 
hashing algorithms," The Iraqi Journal of Science,. paper 4C.58, 2017. 

[8] Nisha, T. R., S. Abirami, and E. Manohar. "Experimental study on 
chunking algorithms of data deduplication system on large scale data." 
In Proceedings of the International Conference on Soft Computing 
Systems, pp. 91-98. Springer India, 2016. 

[9] K. Eshghi and H. K. Tang, “A framework for analyzing and improving 
content-based chunking algorithms,” Hewlett-Packard Labs Tech. Rep. 
TR, 2005. 

[10] Chen, Zhengguo and Chen, Zhiguang and Xiao, Nong and Liu, Fang, 
“Nf-dedupe: a novel no-fingerprint deduplication scheme for flash-based 
ssds,” in 2015 IEEE Symposium on Computers and Communication 
(ISCC), pp. 588–594. 

[11] Zhang, Yang and Wu, Yongwei and Yang, Guangwen, "Droplet: A 
distributed solution of data deduplication," in Proc - IEEE/ACM Int 
Work Grid Comput. 2012;114–21.  

[12] D. S. KUSHWAHA and A. K. MISRA, “Data structures a programming 
approach with C,”  2nd ed. PHI Learning Pvt. Ltd., 2014. 

[13] Wang, Ko-Chih and Lu, Kewei and Wei, Tzu-Hsuan and Shareef, 
Naeemand Shen, Han-Wei, “Statistical visualization and analysis of 
large data using a value-based spatial distribution,” in 2017 IEEE Pacific 
Visualization Symposium (PacificVis), 2017, pp. 161–170. 

 


