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Abstract—The capacitated p-median location problem is one 

of the famous problems widely discussed in the literature, but its 

generalization to a multi-capacity case has not. This 

generalization, called multi-capacitated location problem, is 

characterized by allowing facilities to use one of several capacity 

levels. For this purpose, a predefined list of capacity levels 

supported by all potential facilities is established. In this paper, 

we will detail the mathematical formulation and propose a new 

solving method. We try to construct, indeed, a multi-stage 

heuristic algorithm that will be called BDF (Biggest Demand 

First). This new method appears in two approaches: Integrated 

BDF (IBDF) and Hybridized BDF (HBDF) will be improved by 

using a local search optimization. A valid lower bound to the 

optimal solution value is obtained by solving a lagrangian 

relaxation dual of the exact formulation. Computational results 

are presented at the end using new instances with higher ratio 

between the number of customers, facilities and capacity levels or 

adapted from those of p-median drawn from the literature. The 

obtained results show that the IBDF is much faster with medium 

quality solution while HBDF is slower but provides very good 

solutions close to the optimality. 

Keywords—Location; p-median; multi-capacity; heuristic; 

LNS; lagrangian relaxation; lower bound 

I. INTRODUCTION 

The location of facilities is a major problem for strategic or 
tactical decisions. It is much encountered in the industry as 
well as in the real life. Many interesting applications fields 
were its direct result, such as network design, 
telecommunications and customer distribution services. The 
objective is to propose an optimal assignment of customers to 
potential facilities subject to a number of constraints such as 
capacity and budget. 

The CPMP (Capacitated P-Median location Problem) is a 
well-known variant that is characterized by the capacity 
constraints and the number p of medians predefined initially. It 
is hugely studied in the literature and constitutes several 
research studies in combinatorial optimization and operations 
research fields. 

Let G (N, M, E) be a bipartite graph where N represents the 
set of customers, M is the set of potential sites to install the 
medians, and E is the set of edges that connect each vertex of 
N to a node of M. The p-median graph is in the form of a set of 
clusters, each one is composed of one facility (black triangle) 
connected to a set of customers (points) or only a closed 
facility (white triangle) (Fig. 1). 

 
Fig. 1. Graphical representation of basic p-median. 

In the industrial fields, service costs generally increase with 
the capacity used, and as this capacity could exceed in some 
cases the customers' demands, applying a basic CPMP can 
present a significant waste of capacity resources. In order to 
generalize the CPMP for more real problems and for more 
efficient resolution, we propose in this paper a new variant 
using different capacity levels. Thus, each facility is prepared 
to support several capacity levels and to use at the end one 
level at most. The total of the assigned customers’ demands 
defines the adequate level of capacity, where each level has a 
corresponding cost. This new variant is called: Budget 
constraint Multi-Capacitated Location Problem (BMCLP). 

The BMCLP’s applications can appeared in many 
industrial areas, such as telecommunications, energy 
management, and several other fields. The goal of this problem 
is to minimize the overall cost of assigning customers to 
facilities. This cost is a multiplication of the unit cost measured 
by the distance and the demand of the served customer. The 
total opening costs of facilities is limited by a predefined 
budget. 

The BMCLP is a new variant of location problems family, 
first time studied by the same authors in [10]. The CPMP 
problem is NP-complete according to the proof of [11], so its 
generalization BMCLP is too. Several other variants of CPMP 
are treated by [18], [3], [1] and [7]. Dynamic location problems 
are solved by [2], [8] and [6]. Network problems are appeared 
in [16], [9], [13] and [19]. For the resolution of the problem 
and its variants, several exact and approximate approaches are 
tested: the reference [3] applies a cutting plane algorithm based 
on the Fenchel cuts, references [18], [5] and [4] have chosen to 
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use the Branch & Price and branch & Bound methods based on 
Lagrangian relaxation, a resolution with column generation is 
applied by [4] and references [6], [15] and [12] used different 
approaches and techniques. 

In this work, we will apply the Branch and Cut, a classical 
resolution method; it is an exact approach that consists of 
generating cuts at each node of the Branch and Bound tree. 
Then, we will build a heuristic, more adapted to this location 
problem variant called BDF (bigger demand first). To improve 
the solution quality, a local search LNS (Local Neighborhood 
Search) algorithm, used by [17], will complete the BDF 
approach. 

The BDF, a method in the form of a multi-stage algorithm, 
is presented in two approaches. Firstly, by using it alone for the 
solution construction and it will be called IBDF for an 
Integrated BDF. Secondly by hybridizing it with the 
application of the branch and cut on a well-defined sub-
problem, and it will be called HBDF for a Hybridized BDF. 

In order to obtain a valid lower bound to the BMCLP, we 
use a heuristic procedure to solve the dual problem of our 
initial formulation. This heuristic procedure combines two 
different approaches A1 and A2, namely the relaxation of 
capacity constraints and the decomposition of the problem in 
two independent sub-problems. Procedure A1 is based on a 
lagrangian relaxation and sub-gradient optimization, while 
procedure A2 is based on an independent decomposition 
starting from the relaxed problem obtained in A1. Indeed, after 
the relaxation of the capacity constraints and putting them in 
the objective function, the problem becomes decomposable in 
two sub-problems, one with variables (   ) and the second with 

(  
 ). These variables are defined in the next section below. 

This paper is organized as follows. After the introduction, 
we discuss, in section two, the formulation of the new BMCLP. 
The third section is devoted to the solving methods, namely the 
new heuristic approaches, the Lagrange heuristic and the LNS 
algorithm. The computation of a valid lower bound is detailed 
in section four. Finally, computational results are presented in 
the penultimate section before the conclusion. 

II. FORMULATION 

The BMCLP is a new variant of capacitated location 
problem that is characterized by capacity levels, each facility 
can be used at one level at most. The concept of capacity levels 
appears in the mathematical formulation with new variables 
and additional constraints such that each facility must respect 
the capacity of the level used. 

Let G (N, M, E) be a bipartite graph where N represents the 
set of customers, M is the set of potential sites to install the 
medians, and E is the set of edges that connect each vertex of 
N to a node of M. 

The BMCLP’s graph is in the form of a number of clusters 
(Fig. 2); each one is composed of one median facility (colorful 
triangle) connected to a partition of customers set (points). It 
could also contain only a closed facility (white triangle). Colors 
represent capacity levels used (           and uncolored 
triangle represents therefore unused facility. 

 
Fig. 2. Graphical representation of BMCLP. 

The starting point for building the BMCLP mathematical 
formulation is the CPMP problem that is defined as follows: 
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Where    is a demand of customer i,     represents the 

assignment cost of customer i to facility j, u is the capacity of 
medians. We assume that all facilities have the same capacity 
u. p is the pre-known number of medians to use from the |M| 
available facilities. 

    is a binary decision variable which equals to 1 if and 

only if the customer i is assigned to the facility j. 

   is also a binary decision variable that is 1 if and only if 

the facility j is open. 

The objective function (1) contains only assignment costs, 
which can be in the form of transportation costs or response 
time. In this variant, the opening costs of facilities are 
determined by the number p. in (5). Constraints (2) ensure that 
each customer is assigned to one and only one median. The 
constraints (3) require a capacity for each facility. The 
constraints (4) prohibit the assignment of a customer to a 
closed facility. The constraints (6) and (7) are the integrality 
constraints. 

The constraints (4) are covered by capacity constraints (3) 
combined with the integrality ones. 

Indeed, let’s prove that: 

 ∑       

     

                                      
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Let j    M and       {   } 

If     = 1  then 

                      Because       {   }            

Otherwise      = 0 then 

           ∑       

     

  

As             So              

Hence     = 0   

And finally,           

NB. We keep the redundant constraints in the formulation 
because it increases the efficiency of the Cplex solver. Indeed, 
Cplex works with branch and cut methods after the relaxation 
of integrality constraints, these constraints (4) then constitute 
valid inequalities that decrease the search area, so the algorithm 
converges more quickly. 

The BMCLP is a generalized p-median problem. This 
generalization concerns facilities that can be operated at several 
levels of capacity. To do this we must redefine the variable y 
and use other additional data. We will also have a change in the 
constraints, the constraint requiring a number p of facilities to 
open is replaced by a budget constraint limiting the opening 
costs of factories. 

Let K denotes the set of levels,    the capacity of level k, 

   the opening cost associated with each level k, and B the 
limit budget on the sum of facilities opening costs. 

Let   
  be a binary decision variable that is 1 if and only if 

the facility j is open and used at the level k. 

The mathematical formulation is as follows: 

In this formulation, the constraints now take into account 
the multi-capacity concept. Constraints (9) represent valid 
inequalities that cut the feasible region. Constraints (10) force 

the facility to be opened at one level at most.  Constraint (11) is 
used to limit the opening budget of facilities. 

The BMCLP problem allowed to modeling more real 
situations by opening facilities on several capacity levels. 
However, this generalization also increases the number of 
constraints and variables and made its resolution more difficult 
with a solver such as CPLEX, especially for the big size 
problems. It is for this reason that we seek in the next section a 
new heuristic approach more suitable to solve the problem. 
This new approach, called BDF, is in the form of multi-stage 
algorithm. 

III. SOLVING METHODS 

In this section, we describe a heuristic procedure (BDF) for 
finding a good feasible solution to BMCLP that is based on the 
following two ideas. 

- The customer with the highest demand has priority in an 
assignment to the same facility.  

- The nearest facility is favored for the assignment of any 
customer. 

The main idea of this method is to assign the customers, 
iteratively, to the nearest facility while satisfying the capacity 
constraint, the budget constraint is a priori ignored. When 
assigning customers, we give priority, as implies the name of 
the BDF, to customers with greater demands. However, the 
real factor considered is not the demand value alone but its 
multiplication at the distance to facility (factors appeared in 
objective function). As the assignment of customers to the 
nearest facility can create a cluster with violated capacity 
constraints, we keep only the first customers with the biggest 
demands. The customers not assigned to this facility will be re-
assigned to the second nearest facility. 

In order to be more accurate, we will create a new priority 
factor for customers against the same facility. 

Let i be a customer,    its nearest first facility and    the 
second nearest one. 

The dissimilarity factor called DF is defined as follows. 

                    

This factor calculates the additional cost when a customer 
transfers his assignment from a facility to next one. The 
objective of this method is to minimize the DF factors so as to 
minimize the overall cost. 

 The BDF, a method in the form of a multi-stage 
algorithm, is presented in two approaches: 

- By using it alone for the solution construction and it will 
be called IBDF, for an Integrated BDF. 

- By hybridizing it with the application of the branch and 
cut on a well-defined sub-problem, and it will be called HBDF 
for a Hybridized BDF. 

We use the notation IBDF0 and HBDF0 for IBDF and 
HBDF respectively without applying the LH and LNS 
algorithms. 
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Both approaches provide solutions that are generally not 
feasible; therefore, a Lagrange heuristic (LH) will be applied 
for the solution feasibility. The approaches will be improved 
later by using LNS, (Large neighborhood search) a local 
optimization method. 

Given that the method consists of several sub-methods, we 
will start by developing them before establishing both 
algorithms. 

A. Branch and Cut (B&C) 

The Branch and cut is a combination of two algorithms into 
one, namely the Branch and Bound and cutting planes. We will 
not be interested in this algorithm because we use it implicitly 
through the Cplex solver. It will be still used for comparison 
with the solution obtained by our method for smaller instances. 

B. Integrated Biggest Demand First (IBDF0) 

The IBDF0 is an integrated method that can find for several 
instances very good solutions and sometimes optimal ones. 
However, this heuristic method remains unreliable and does 
not guarantee the feasibility. For this reason, we propose to use 
Lagrange heuristic to make the solution feasible. 

IBDF0 Algorithm 

1) For each customer, 

 Sorting facilities by distances to this customer in 
ascending order. 

2) p←1; UC←N (UC for unassigned customers set) 

3) Assigning each customer, from the UC set, to its     

nearest facility; p←p+1 

4) For each facility, 

 Sorting customers according to theirs DF in descending 
order. 

 Keeping the maximum customers without exceeding the 
higher capacity level. The remaining customers will be 
put in UC set. 

 Updating the capacity resources; the new capacity is the 
one available after satisfying the customers’ demands. 

5) If  UC = ∅ Then break 

 Else go to 3- 

C. Hybridized Biggest Demand First (HBDF0) 

The HBDF0 is the first iteration of the IBDF0 method 
hybridized with the B&C, its principle is to reduce the problem 
size. Indeed, it proposes assignments for certain customers 
considered to have important demands. After the application of 
this method, we set the corresponding variables to the assigned 
customers and start the execution of the B&C on the 
unassigned customers’ sub-problem. 

1) For each customer, 

 Sorting facilities by distances to this customer in 
ascending order. 

2) UC←N (UC for unassigned customers) 

3) Assigning each customer to its nearest facility. 

4) For each facility, 

 Sorting customers according to theirs DF in descending 
order. 

 Keeping the maximum customers without exceeding the 
higher capacity level. The remaining customers will be 
put in UC set. 

 Updating the capacity resources; the new capacity is the 
one available after satisfying the customers’ demands. 

5) Updating the budget; the new budget is the one 

available after subtracting the corresponding costs at all levels 

used in all open facilities. 

6) If  UC = ∅ then break 
Else applying the formulation of the problem with the new 

updated data (UC, capacities, budget …), using Branch and 
Cut. 

D. Lagrange Heuristic (LH) 

The resolution, with violated constraints, gives generally 
unfeasible solution. To have a feasible solution, we need to 
apply some existing heuristics. We decided to use the Lagrange 
heuristic, which consists of setting some variables of the 
problem, and re-solve the initial problem. 

Let’s set the variables   
  to their values obtained from the 

unfeasible solution and reconstruct the problem. 

The new formulation after setting   
  is as follows: 

Where     ∑     
 

      is a dependent constant on 

facility  . 

The previous problem is linear and contains a reduced 
number of constraints and variables. It is in the form of 
knapsack problem with additional demand constraints. 
Therefore, the problem can be easily solved with Cplex. The 
solution of this problem is feasible but approximate. 

E. Large Neighborhood Search (LNS) 

To improve the solution obtained, we propose to use one of 
the local optimization methods. Among those that have 
demonstrated their effectiveness in combinatorial optimization 
and particularly in location and transportation problems, we 
mention LNS (Large Neighborhood Search). This method has 
the advantage of ensuring optimality for instances of small or 
medium size when the selected sample is also the problem 
studied. 

LNS is a meta-heuristic used for local optimization. From a 
first solution, the search algorithm will try to improve it by 
successive samplings in its neighborhood. At each iteration, 
one or more clusters (facility and connected customers) are 
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deconstructed to obtain a sub-problem that is supposed to be 
easy to solve. Then we solve it using Branch and Cut algorithm 
to rebuild the solution. A stochastic element defines the sample 
used for each application of the method. 

LNS Algorithm 

Repeat until the stopping criterion. 

1) Randomly selecting a part of the solution (i.e a set of 

clusters), this part will constitute a sub-problem easy to solve 

using Cplex. 

2) Destroying the clusters of the sub-problem under 

consideration. 

3) Executing Cplex and recovering the obtained partial 

solution. 

4) Integrating the solution of the sub-problem found to 

the solution of the initial problem. 

5) If during 10 iterations, no significant improvement is 

recorded, we declare the stopping criterion. 

BDF Algorithms 

After having defined all steps of the BDF method, we can 
then implement the following two algorithms: 

IBDF: 

1) IBDF0 

2) If the obtained solution is feasible 

 LSN  

 Exit 

3) Else 

 LH 

 LNS 

 Exit 

HBDF: 

1) HBDF0 

2) If the obtained solution is feasible 

 LSN  

 Exit 

3) Else 

 LH 

 LNS 

 Exit 

IV. COMPUTATION OF THE LOWER BOUND 

In this section, we will present a method based on 
lagrangian relaxation to determine a good lower bound. The 
calculation of this will allow us to evaluate the quality of the 
solution obtained. It can be noted that the formulation contains 
three different constraints’ blocks; the first one with variables 

    (constraints 2), the second with variables   
  (constraints 10 

and 11) and the third which contains a combination of both 
(constraints 8 and 9). Eliminating the third block, the 
formulation becomes decomposable into two independent sub-

problems, one with variable     and the second with 

variables   
 . 

As we have mentioned above, constraints (9) are facultative 
and its violation has no impact on solution feasibility. In order 
to get the latter decomposition, we will forget constraints (9) 
and relax constraints (8).  

The new relaxed problem is as follows: 

 

This problem is decomposable into two sub-problems: 

Problem x: 

Problem y: 

These two problems are independent and can be solved in 
parallel using sub-gradient algorithm. However, we propose 
that at each iteration, we start with the problem x, we obtain the 
variables’ values x which give information on the facilities that 
must be open then we add it as constraint in problem y before 
solving it. At each iteration of the sub-gradient algorithm, we 
can have a solution that present a lower bound for our problem; 
this bound will be improved from one iteration to another. 

V. COMPUTATIONAL RESULTS 

The BMCLP is a new problem that has not been found in 
the literature. Therefore, we cannot find instances for the test or 
for comparison. For this reason, we decide within this research 
to create instances using semi-random values based on justified 
choices and whose difficulty is measurable. We will also use p-
median instances adapted to our problem to complete the 
calculation tests. 
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We turn both algorithms on an i7-2600 CPU @ 3.40 GHz 
machine with 8GB RAM. We use the programming language 
java version 7 and version 12.3 of Cplex. 

The test set consists of five classes of instances 
representing five levels of difficulty (easy, medium, difficult, 
very difficult and complex). The difficulty of these instances is 
based on the size of the problem, which is generally measured 
by the number of customers, facilities, and capacity levels. 
However these two last numbers have a small impact on the 
problem's size. Each level of difficulty contains several test 
instances. Other difficulty factors are taken into account, 
namely the dispersion of customers against facilities and the 
available resources. Experience shows that the difficulty of the 
problem varies in proportion to the variance of customers' 
distances and their demands. At the same time, it varies 
inversely with the budget allocated for opening facilities and 
their capacity levels. Thus, by increasing the difficulty, while 

keeping the feasibility, we multiply the number of iterations 
necessary to find the optimal solution. 

These are the parameters used in the following result’s 
table: 

- LD: Level of Difficulty 
- NC: Number of Customers 
- NF: Number of Facilities 
- NL: Number of Levels 
- LB: Lower Bound 
- Obj: Objective function value 
- CPU: Execution time 
- GAB: = Min(GAB1,GAB2) 

GAB1: = (BDF- B&C)/BDF 
GAB2: = (BDF- LB)/BDF 

The following table shows the different instances used and 
the execution results of the IBDH and HBDF methods as well 
as the lower bound (Table I): 

TABLE I. COMPUTATIONAL RESULTS TABLE 

In
st

a

n
c
e 

LD NC NF NL Branch & Cut LB IBDF  HBDF 

Obj CPU(s) Obj CPU(s) GAP  Obj CPU(s) GAP 

F1 

E
as

y
 

10 3 2 184 0.02 183 184 0.001 0,00%  184 1.521 0.00% 

F2 10 5 2 230 1.57 228 230 0.001 0,00%  230 2.932 0.00% 

F3 20 5 3 430 3.88 426 430 0.006 0,00%  430 5.875 0.00% 

F4 30 8 3 372 8.75 361 386 0.011 3,63%  372 9.104 0.00% 

M1 

M
ed

iu
m

 

50 4 3 2120 159.45 2073 2423 1.013 12,51%  2158 12.187 1.76% 

M2 50 6 4 8429 132.31 8269 8697 5.012 3,08%  8501 16.345 0.85% 

M3 70 6 4 5915 234.71 5758 7079 4.004 16,44%  6002 29.297 1.45% 

D1 

D
if

fi
cu

lt
 

100 10 5 12602 5991.1 12494 13923 11.105 9,49%  12802 136.548 1.56% 

D2 100 15 5 - - 14138 15572 12.435 9,21%  14435 24.364 2,06% 

D3 200 15 8 - - 835569 863935 13.432 3,28%  854112 51.784 2,17% 

V1 

V
er

y
 D

if
fi

cu
lt

 

300 25 10 - - 318418 345808 12.726 7,92%  319853 36.273 0,45% 

V2 300 30 10 - - 194222 227616 15.762 14,67%  202615 77.238 4,14% 

V3 402 30 12 - - 369834 390885 21.253 5,39%  387483 83.684 4,55% 

V4 402 40 12 - - 405420 432915 23.932 6,35%  406778 91.105 0,33% 

C1 

C
o

m
p

le
x
 

500 50 4 - - 259809 299221 37.317 13,17%  261644 117.634 0,70% 

C2 1000 100 4 - - 430119 471794 51.265 8,83%  451432 136.721 4,72% 

C3 3038 600 10 - - 94725 105740 56.216 10,42%  99801 294.364 5,09% 

C4 3038 700 10 - - 85082 116380 54.823 26,89%  89801 5011.784 5,25% 

C5 3038 1000 10 - - 297208 347564 47.823 14,49%  298053 3456.273 0,28% 
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From the numerical results, we note that the BDF method 
has yielded good results in most cases and across both 
approaches. However, we find that IBDF is much faster but 
less effective, while HBDF gives very good results. Although it 
is slower, it still works for a reasonable time. The local search 
LNS, improving the quality of the solution, allows in some 
cases and for small instances to reach the optimal solution. 
This is justified by the fact that the selected sub-problem to 
destroy coincides with global problem. 

VI. CONCLUSION 

In this paper we introduced the budget constraint multi-
capacity location problem. We proposed the BDF method in 
the integrated BDF and Hybridized BDF approaches, Lagrange 
heuristic to ensure the solution feasibility and for the 
improvement step, the local LNS search. To evaluate the 
solution quality, a valid lower bound to the optimal solution 
value is obtained by solving a lagrangian relaxation dual 
problem. 

The solution achieved might not be an optimal BMCLP 
solution, however the branch and cut, used for small instances, 
allows to estimate its maximum distance from optimality. For 
large instances, a valid lower bound is calculated. 
Computational tests on problems adapted from those proposed 
in the literature and on new test problems with large 
dimensions show the effectiveness of the proposed multi-stage 
algorithm. As a perspective we propose to test other solving 
methods that ensure the optimality and work on much large 
scale problems. 
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