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Abstract—We resolve the control problem for a class of
dynamic hybrid systems (DHS) considering electrical systems as
case study. The objective is to guarantee that the plan never
reaches unsafe states. We consider a subclass class of DHS
called Cumulative Preemptive Event-driven DHS (CPE-DHS).
This class is distinguished by the dominance of its discrete aspect
characterized by features as cumulative continuous variables
combined with actions behavior that may be interrupted and
restarted. We utilize a subclass of Rectangular Hybrid Automata
(RHA), named Constant Slope RHA (CSRHA), as a solution
framework to resolve the control problem. The main contribution
is a control Algorithm for the class of systems described above.
This algorithm ensures that the system meet the requirement
specifications by forcing some events. The forcing action is given
in the form of restrictions on the transition guards of the
CSRHA. The termination/decidability as well as correctness of
the algorithm is given by theorems and formal proofs. This
contribution ensures that the system will always be safe states
and avoid failure due to the reachability of unsafe states. Our
approach can be applied to a large category of industrial systems,
especially electrical systems that we consider as case study.

Keywords—Dynamic hybrid systems; supervisory control; hybrid
automata; electrical systems; safety

I. INTRODUCTION

Dynamic hybrid systems [1]–[4] (DHS) are systems char-
acterized by the interaction of both discrete and continu-
ous components. A large variety of real-time and embedded
systems and many computer automated systems as well as
industrial and electrical systems are described by both con-
tinuous and discrete aspects. In this paper, we concentrate in
a particular class of dynamic hybrid systems where system
behavior is captured essentially by preemptive activities which
can be produced sequentially or in parallel. Besides, these
systems are depicted by an interaction of dominant discrete
component with a slight continuous one.

DHS are modeled by a large variety of modeling frame-
works. We distinguish essentially several timed and hybrid
extensions of finite state automata [5] as well as Petri nets [6],
[7]. Petri nets extensions benefit a salient graphical modeling
power. However, computations are mostly based on similar

automata extension. On the other hand, there are many exten-
sions of finite state machines, such as time transition systems
[8], timed automata [5] and stop watch automata [9]. In these
frameworks, time is included in configurations and transitions
in the form of constraints and/or speed rate. In order to deal
with dynamic hybrid systems, we consider essentially hybrid
automata, linear hybrid automata, and rectangular automata
[10]. All the previous frameworks capture various aspects of
DHS depending on their modelling power which is generally
inversely proportional with the decidability of the accessibility
problem. In fact, models that cover more classes of systems
become more difficult to manage by a computer due to the
undecidability problems [11].

In our case, we use a subclass of RHA: the CSRHA to
model our systems. This subclass is better managed from
decidability side. The control problem, as one of the highly
studied problems in literature [12], will be resolved using
CSRHA formalism. One of the important problems in the DHS
control theory is related to safety verification. This problem
states that the controller has to ensure that all the trajectories
of the system do not reach any “unsafe” state. In order to
guarantee this safety property, the controller may restrict the
scope of some controllable events. By taking such decision,
the controller avoids that system trajectories interfere with any
undesired state induced by uncontrollable events. However, in
this paper, we consider that the computational power of the
controller is limited to narrowing time intervals on transitions
related to controllable events. Technically speaking, this action
is similar to modifying guards on transitions associated to
controllable events in the CSRHA model.

This paper is organized as follows. The next section
provides background of hybrid automata and a description of
the CSRHA. In Section 3, we present and solve the supervisory
control problem. We note that throughout this paper we use
the same case study of an electrical system to illustrate our
supervisory control approach.
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II. BACKGROUND ON HYBRID AUTOMATA

In the following, we define the retained subclass of RHA:
the CSRHA.

A. Constant Piece-wise Rectangular Hybrid Automata

We consider these notations: X = {x1, x2, . . . , xn} is a
finite set of real valued clocks (variables). Ẋ = {ẋ, x ∈ X}
denotes the set of first derivative variables of X . A variable
x is considered piece-wise linear variable if ẋ ∈ R. ∼
denotes an element of operator’s set {<,≤,=,≥, >, 6=}. A
rectangular inequality over X , is an inequality of the form,
x ∼ c, where c ∈ R, and x ∈ X . A rectangular predicate
over X is a conjunction of rectangular inequalities over X .
Rect(X ) denotes the set of rectangular predicates over X .
A polyhedral inequality over X is an inequality of the form
c1x1 + · · · + ckxk ∼ c, where c, c1, . . . , ck ∈ R, and
x1, . . . , xk ∈ X . A polyhedral predicate over X is boolean
combination of polyhedral inequalities over X . Ψ(X ) is the set
of polyhedral predicates over X . v = ( v1, . . . , vn ) denotes an
element of Rn that captures clocks valuation, vi ∈ R, of every
clock xi ∈ X . v(xi) = vi corresponds to the value of xi. We
denote by region, a subset of Rn. For a region z and xi ∈ X ,
z(xi) = {vi|v ∈ z}. ψ(v) denotes the boolean function which
equals true if the predicate ψ is satisfied by the input vector
v and false if not. We denote by [[ψ]], the region composed
by the set of vectors v ∈ Rn, where the predicate ψ is true
when we substitute each xi by its corresponding vi. [[ψ]](xi)
denotes the interval of values captured by vi, ∀v ∈ [[ψ]].

Definition 1: In [13]–[15] A constant piece-wise linear
hybrid automata (CSRHA) is a tuple A = (X ,Q, T ∪
{e0}, inv, dyn, guard, assign, l0) where:

• X , is a finite set of variables.

• Q, is a finite set of locations.

• T , is a finite set of transitions. A transition e = (l, l′) ∈
T , leads the system from the source location l ∈ Q, to the
end location l′ ∈ Q. The entry transition of the initial state l0
is denoted by e0.

• inv: Q −→ Ψ(X ) is the location invariant, it associates
a predicate to each location.

• dyn: Q×X −→ R, is a function describing the evolution
of variables. This evolution is usually of the form l, ẋ = k, k ∈
R or simply ẋ = k in the location l. Ẋ (l) denotes the evolution
of all variables in the location l.

• guard: T −→ Ψ(X ) is the guard function. It associates
a predicate, Ce to each transition, e. The guard, Ce should
equals true to allow the execution of the transition e.

• assign, is the initialization function. It associates a
relation, assigne to each transition e defining the clocks to
be reset.

• l0 ∈ Q, is the initial location. �

The semantic of a constant piece-wise linear hybrid au-
tomata (CSRHA) is given by the following definition:

Definition 2: The semantic of a CSRHA A = (X ,Q, T
∪ {e0}, inv, dyn, guard, assign, l0) is defined by a timed
transition system SA = (Q, q0,−→) with

• Q = Q× Rn with n = |X |.

• q0 = (l0, init) is the initial state.

• −→∈
(
Q× (T ∪ R+)×Q

)
is defined by:

◦ (l, v) a
−→ (l′, v′)(jump transition) if ∃ e = (l, l′) ∈

A s.t.
a = e

guard(e)(v) = true

v′ = assigne(v)

inv(l′)(v′) = true

◦ (l, v) ε(t)−→ (l′, v′)(flow transition) if
l = l′

v′ = v + t ∗ Ẋ (l)

inv(l′)(v′) = true �

A run of CSRHA A is a path in SA started
from q0. [[A]] denotes the set of all runs of A.
We note (l, v) ε(t)−→ (l′, v′) a

−→ (l′′, v′′) is equivalent to
(l, v)−→ε(t)

a (l′′, v′′). A state (li, vi) is considered as
reachable, if ∃(l0, v0)−→ε(t0)

a0 (l1, v1)−→ε(t1)
a1 (l2, v2)−→ε(t2)

a2

. . .−→ε(ti)
ai (li, vi) where (l0, v0) = q0. A

run (l0, v0)−→ε(t0)
a0 (l1, v1)−→ε(t1)

a1 (l2, v2)−→ε(t2)
a2

. . .−→ε(ti)
ai (li, vi) . . . starting from q0 = (l0, v0) is a

timed trace, denoted as w = (a0 = e0, δ0) → (a1, δ1) →
(a2, δ2) → . . . (a2, δ2) . . . , where w is a sequence of pairs
(ai, δi), with ai ∈ T ∪ {e0} a transition, and δi+1 ∈ R+

is the delay between the two successive events ai and ai+1,
where : δ0 = 0, and ∀i ≥ 1, δi = ε(ti)− ε(ti−1).

2cm3/s

90l

4cm3/s

cc
70l

50l

30l

Fig. 1. Electrical system for blending chemical solution.

Example 2.1: Consider the electrical system for mixing
chemical solution given in Fig. 1. Filling action is composed
of two stages. Firstly, a tray is replenished by a chemical
solution with a rate of 2cm3/s. We assume that initially the
tray is filled by 10dm3 of a neutral liquid. This phase is
accomplished when the current content of the tray is bounded
by 30 and 50 liters. The next phase should be fulfilled before a
deadline of 18s, elapses in order to avoid the risk of obtaining
improper solution. An authorization at a random time prompts
the second stage which has a deadline of 16s once started.

When the next stage is activated, a second chemical solu-
tion is replenished with the rate of 4cm3/s. The filling process
is accomplished when the total content of the tray is bounded
by 70dm3 and 90dm3. The CSRHA modeling of this electrical
system is illustrated in Fig. 2.
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P1, P3

P1, P4 P2, P4

P2, P3

30 ≤ x1 ≤ 50

t3 := 0

t3 := 0
x4 := x1

t3 == 18

30 ≤ x1 ≤ 50

t3 == 18

70 ≤ x4 ≤ 90

t5 == 16

t5 == 16

t2 ≥ 0t5 := 0

t5 := 0

x4 := x1
t2 ≥ 0

T1

T1

T3

T3
T4

T5 T5

T2
T2

L9 ?

?
-

L10

T1 T3

T5

T2
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Fig. 2. The CSRHA of the electrical system.

III. CONTROL OF CPE-DHS

In the following, we describe our contribution to resolve
the control problem. Our solution define a derived space where
all trajectories satisfy the requested specifications to avoid
system failure. Thus, all unsafe locations will be inaccessible.
The safety specification is considered as the set of forbidden
locations. The control action acts by reducing transition guard
intervals. By nature, some events are not eligible for narrow-
ing their time occurrence scope. Such events are considered
uncontrollable from the controller perspective. An event is
controllable if the controller has the power to reduce its
occurrence time slot. In general, event connected to forbidden
locations are uncontrollable, otherwise it becomes trivial to
define the control solution. Moreover, the restriction action on
the time intervals should be minimalist.

A. Specification of the Control Problem

The inputs are the set of unsafe locations and the partition
of events as controllable/uncontrollable. The main steps that
we propose to resolve the control problem are as follows:

Steps:

1) Mark all unsafe locations considering the safety spec-
ification.

2) Mark all transitions as controllable and uncontrollable
considering the input events partition.

3) Perform a computation of the desired space adopted
by the controller in all the locations to ensure that
the system is not accessing forbidden locations.

4) Reassign the restricted guards of transition related to
controllable events and update any necessary location
invariant to force that the system remains in safe
states.

B. Control Algorithm

Let A = (L, l0, X,Σ, E, inv,Dif) the CSRHA model
of the system to be controlled. Ad represents the output
(controlled) CSRHA. We consider these notations:

• LF represents the set of forbidden locations (given by
the safety specification).

• EF represents the set of CSRHA transitions where the
output location is a forbidden.

EF = {e ∈ E|e = (l, δ, α,Aff, ρ, l′), l′ ∈ LF }

• el,l′ represents a transition e = (l, δ, α,Aff, ρ, l′)
where the source location is l and the destination
location is l′.

• El represents the set of transitions having l as source
location.

El = {e ∈ E|e = (l, δ, α,Aff, ρ, l′), l′ ∈ L}

• EFl = El ∩ EF represents the forbidden transitions
having l as source location.

• EFl = El − EF represents the non forbidden transi-
tions having l as source location.

• In Algorithm III.1, we consider that |El| = |EFl ∪
EFl | = |EFl | ∪ |EFl | = m such as |EFl | = k, |EFl | =
m− k. El is parted into EFl and EFl as follows:
◦ EFl = {e1 = (l, δ1, α1, Aff1, ρ1, l1), e2 =

(l, δ2, α2, Aff2, ρ2, l2), . . . , ek =
(l, δk, αk, Affk, ρk, lk)}

◦ EFl = {ek+1 =
(l, δk+1, αk+1, Affk+1, ρk+1, lk+1), ek+2 =
(l, δk+2, αk+2, Affk+2, ρk+2, lk+2), . . . , em =
(l, δm, αm, Affm, ρm, lm)}

• LR ∈ (2L)L represents the set of reachable locations
from l in −A1. In other words, a location l′ ∈ LR(l)
if it exists a run from l′ to l. Formally, LR(l) = {l ∈
L,∃k ∈ N, (l′, v′)

t1,e1−→ (l1, v1)
t2,e2−→ (l2, v2) . . .

tk,ek−→
(lk, vk), lk = l}. This corresponds to the closure
of the set {l} under the relation {(p, q) : there is a
transition e = (p, δ, α,Aff, ρ, q) ∈ E, q ∈ LR(l)}.

• LR(l) represents L− LR(l).

Algorithm III.1 Control Algorithm

1−A is the reversed automate of A ( [16]).
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1: function Control(A,MF ):Ad
2: initialize the output CSRHA by the entry CSRHA. Ad :=
A

3: function initialize()
4: calculate the set EF :
5: for all el,l′ ∈ E with l′ ∈ LF do
6: EF := EF ∪ {el,l′}
7: end for
8: calculate LR(l)
9: initialize LR(l) := {l}

10: while ∃e = (l′, δ, α,Aff, ρ, l′′) ∈ E, with l′′ ∈ LR(l) and
l′ 6∈ LR(l) do

11: LR(l) := LR(l) ∪ {l′}.
12: end while
13: for all location l ∈ L\LF do
14: calculate EFl and EFl :
15: for all el,l′ ∈ EF , l′ ∈ L do
16: EFl := EFl ∪ {el,l′}
17: end for
18: calculate EFl := El − EF
19: if EFl = ∅ then
20: LF := LF ∪ {l}
21: end if
22: end for
23: if LF is modified then
24: re-invoke initialize() to reconsider the new forbidden

locations
25: end if
26: if LF = L then
27: exit (there is no solution)
28: end if
29: end function
30: for all location l where EFl 6= ∅ do
31: recalculate the guard predicates of all the transitions

included into the set EFl :
32: for all ei ∈ EFl , i ∈ [[k + 1,m]] do
33: calculate the new guard δni regarding δi and guards

of transitions in EFl : 2

δni := δi ∧¬δ1 ∧¬δ2 . . . ∧¬δk

34: end for
35: end for
36: do a forward analysis, started at the initial location. We

note by Sforwardl the reachable space3 calculated by
forward analysis at location l.

37: for all location l where EFl 6= ∅ do
38: do a backward analysis started at location l considering

δnk+1 ∨ δnk+2 ∨ . . . ∨ δnm as initial entry space. We
note by par Sbackwardl,l′ the space calculated by backward
analysis (from location l′) in the location l ∈ LRl

39: end for
40: for all l′ ∈ LR(l) where EFl 6= ∅ do
41: calculate the final space of backward analysis at loca-

2Our goal is to reduce the state space in order to avoid the possibility of
occurrence of prohibited events.

3The reachable space at a given location is a polyhedron with dimension
|X| defined the inequalities system A.XR≺b, with A ∈Ma,|X|(R) a matrix
with a lines and |X| columns, and X ∈ Rn the vector of CSRHA variables.

tion l′ :

Sbackward
l′ :=

∧
l∈EF

l

Sbackward
l,l′

42: end for
43: for all location li do
44: calculate the desired space Sdl at location l

Sd
l = Sbackward

l ∧ Sforward
l

45: calculate the new location invariant l given by
invd(l) := inv(l)∧ Sd

l

46: for all transition el,l′ ∈ EFl do
47: redefine the guards : δdl,l := δl,l′ ∧ Sd

l
48: end for
49: end for
50: end function

The CSRHA modelling a CPE-DHS system is the input of
the Algorithm III.1. Algorithm III.1 produces the output as an
updated CSRHA where forbidden states can never be reached.
The control algorithm computes the new transition guards and
the new location invariants.

Theorem 1: The Algorithm III.1 terminates if the entry
CSRHA has no loop.

Proof: 1 The Algorithm III.1 terminates if the computa-
tion of reachable space (both backward and forward) termi-
nates. This analysis use discrete and continuous predecessor
and successor operators which perform certain geometric cal-
culus on regions [14]. Software like PHAVer [17] and SpaceEx
[18], [19] implement such region operations, using polyhedral
libraries, to accomplish the reachable space computation. We
note that these analysis terminate if the CSRHA is acyclic.
Nevertheless, for more general forms, the accessibility problem
is known as undecidable [14], [20].

In the following, we present some particular and interesting
cases where this problem is decidable.

Theorem 2: The Algorithm III.1 terminates if the input
CSRHA satisfies the following proprieties:

1) All derivative variables in the locations are non
negative or null.

2) Guards and invariants are defined by single non
negative constraints.

3) Assignments are of the form x′ := x or x′ = c.

Proof: This is ensured due to the decidability of accessi-
bility problems in that case [21].

Furthermore, we can ensure the algorithm decidability for
these interesting classes of CSRHA:

1) CSRHA where each loop contains at least one ini-
tialization of all clocks [22].

2) CSRHA where each loop contains at most one tran-
sition guard in the form of “dangerous” test [22].

3) CSRHA where the dynamic changing (the derivative
value) of a variable between two locations is accom-
panied by resetting the variable assignment at the
transition between the two locations [16].
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Theorem 3: The automaton Ad obtained by applying Al-
gorithm III.1 ensures that all reachable spaces respect the
safety specification while being maximal permissive.

Proof: Consider the CSRHA A =
(L, l0, X,Σ, E, inv,Dif).

Part 1: We demonstrate (by contradiction) that the reach-
able space meets the safety specification.

Suppose that ∃l ∈ LF such as it exists a run in Ad from
initial state:

(l0, v0)
t0,e0−→ (l1, v1) . . . (la, va)

ta,ea−→ (l, v)

We have l ∈ LF =⇒ ea ∈ EF . Suppose that ea =
(la, δa, αa, Affa, ρa, l). According to the TTS of Ad, we have
inv(l)(va) = true and δ(va) = true. However, according to
Algorithm III.1, the calculation of Sbackwardl conclude that
invd(l) = inv(l)∧¬δ1 ∧¬δ2 . . .∧¬δk, ∀ei ∈ EFla , i ∈ [[1, k]].
According to the construction of the set EFla in the Algorithm,
we have ea ∈ EFla . Thus, ∃j ∈ [[1, k]] such as ea = ej . This
implies that inv(l′)(v) = false, which contradicts the starting
assumption.

Part 2: We demonstrate (by contradiction) that the reach-
able space at Ad is maximal permissive.

To do this, let us suppose that there is a location (l, v) ∈
QA such that (l, v) 6∈ QAd and l 6∈ LF . Also suppose that
(l, v) do not lead to forbidden locations by the specification.
As (l, v) 6∈ QAd , we obtain invd(l)(v) = false. Similarly
(l, v) ∈ QA =⇒ invd(l)(v) = true.

The fact that (l, v) does not lead to unauthorized locations,
means that there is no run from (l, v) leading to a state (l′, v′)
with l′ ∈ LF .

Let lf ∈ LF a location such that l ∈ LR(lf ). Since there is
no run from (l, v) leading to forbidden location, thus, (lf , vf )
is not reachable since (l, v), and that, for any vf ∈ R|X|.
Similarly, (l, v) is not reachable from (lf , vf ) at the reverse
automaton −A (or by backward analysis). Let S′backwardl,lf

the
obtained space at l by backward analysis from (lf , vf ). Thus,
we have S′backwardl,lf

(v) = false.

According to Algorithm III.1, Sdl start by the initial space
¬δ1 ∧ ¬δ2 . . . ∧ ¬δk ∀ei ∈ EFlf , i ∈ [[1, k]], k = |EFlf |. Thus,
Sdl (v) = true. Moreover, according to the calculation formula
of location invariant, we have invd(l)(v) = true.

=⇒ (l, v) ∈ Qd. Thus, any location leading exclusively to
locations respecting the specification is in the reachable space
of Ad. Consequently, Ad is maximal permissive.

Example 3.1: We reconsider the CSRHA of the electrical
system illustrated in Fig. 2. According to the safety speci-
fication, we consider the following unsafe locations: SF =
{l7, l8, l10, l4, l6}. The results related to the reachable space
computation by forward and backward analysis are performed
by PHAVeR [17] and SpaceEx [18], [19] software. The inter-
section between backward and forward spaces is illustrated
in Table I. The results meets with the safety specification.
Thus, the controller defines a derived CSRHA where invariant
locations and transition guards are truncated by the new
obtained polyhedral equations in each location. This derived

TABLE I. INTERSECTION SPACE

l5 Ec
5 = (−x4 − 4t2 + 4t3 ≥ −130) ∧ (−x4 ≥ −90) ∧

(−x4 + 4t3 ≥ −50) ∧ (−x4 + 2t2 + 4t3 > −42) ∧
(x4 − 4t3 > −2) ∧ (−t5 > −16) ∧ (t3 ≥ 0) ∧ (t2 ≥
0)∧ (x4 − 4t5 > 6)∧ (x4 − 2t2 +2t3 ≥ 10)∧ (x4 ≥
30) ∧ (7x4 + 18t2 − 28t3 ≥ 210) ∧ (−t3 > −18)

l4 Ec
4 = (x1 − 2t2 − 2t5 == 10) ∧ (−x1 ≥ −50) ∧

(−x1 + 2t2 > −42) ∧ (t2 ≥ 0) ∧ (x1 − 2t2 ≥ 10)
l1 Ec

1 = (x1−2t2 == 10)∧ (−x1 ≥ −50)∧ (x1 ≥ 10)
l9 Ec

9 = (−x4 − 4t2 + 4t3 ≥ −130) ∧ (−x4 ≥ −90) ∧
(−x4 + 4t3 ≥ −50) ∧ (−x4 + 2t2 + 4t3 > −42) ∧
(−t3 > −18) ∧ (−t5 > −16) ∧ (t2 ≥ 0) ∧ (x4 ≥
70) ∧ (7x4 + 18t2 − 28t3 ≥ 210)

l2 Ec
2 = (x1 − 2t2 + 2t3 == 10) ∧ (−x1 ≥ −50) ∧

(−x1 + 2t2 ≥ −10)∧ (3x1 − 4t2 > 18)∧ (x1 ≥ 30)

automaton is maximal permissive and describes all possible
trajectories that obey to the requirements.

Table I illustrates the intersection space, obtained by
PHAVer and SpaceEx. This allows capturing the maximal
polyhedron that meet with requirements. For example, the
updated location invariant of l4 is given by Ic4 = I4 ∧ (x1 −
2t2−2t5 == 10)∧(−x1 ≥ −50)∧(−x1+2t2 > −42)∧(t2 ≥
0)∧(x1−2t2 ≥ 10). Besides, the updated guard of transition of
T4,5 is gc4,5 = g4,5∧t5 < 16∧(x1−2t2−2t5 == 10)∧(−x1 ≥
−50) ∧ (−x1 + 2t2 > −42) ∧ (t2 ≥ 0) ∧ (x1 − 2t2 ≥ 10).
Similarly, all guards and invariants will be updated according
to the results given by the intersection space. Furthermore, we
omit any outgoing transition from a forbidden location (since
it becomes unreachable).

IV. CONCLUSION

In this paper, our main contribution is to solve the problem
of supervisory control of the particular class of dynamic
hybrid systems (DHS) called Cumulative Preemptive Event-
driven DHS (CPE-DHS) by narrowing guards and invariants
of transitions relative to controllable events in a way that
forbidden states remain inaccessible. Our proposed solution
can be applied in a systematic way to any system that fits
with our requirements. Then we applied this approach to an
electrical system as case study. Generally speaking, the control
problem is known to be undecidable for this class of complex
systems. Nevertheless, in quest of decidability, we propose
some restrictions that makes the problem decidable. In our
future directions, we will focus on the supervisor generation
while considering uncontrollable variables.
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[18] G. F. Alexandre Donzé, “Modular, hierarchical models of control sys-
tems in spaceex,” in Proc. European Control Conf. (ECC’13), Zurich,
Switzerland, 2013.

[19] G. Frehse, R. Kateja, and C. Le Guernic, “Flowpipe approximation
and clustering in space-time,” in Proceedings of the 16th International
Conference on Hybrid Systems: Computation and Control, ser. HSCC
’13. New York, NY, USA: ACM, 2013, pp. 203–212. [Online].
Available: http://doi.acm.org/10.1145/2461328.2461361

[20] R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho, “Hybrid automata:
An algorithmic approach to the specification and verification of hybrid
systems,” in Hybrid Systems, ser. Lecture Notes in Computer Science,
R. Grossman, A. Nerode, A. Ravn, and H. Rischel, Eds. Springer
Berlin, Heidelberg, 1993, vol. 736, pp. 209–229, 10.1007/3-540-57318-
6-30. [Online]. Available: http://dx.doi.org/10.1007/3-540-57318-6-30

[21] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine, “Integration graphs: A
class of decidable hybrid systems,” in Hybrid Systems, volume 736 of
Lecture Notes in Computer Science. Springer-Verlag, 1993, pp. 179–
208, (appeared in In Proceedings of Workshop on Theory of Hybrid
Systems , Lyngby, Denmark, June 1992).

[22] Y. Kesten, A. Pnueli, J. Sifakis, and S.Yovine, “Decidable integration
graphs,” in Information and Computation, volume 150(2), 1999, pp.
209–243.

www.ijacsa.thesai.org 470 | P a g e


