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Abstract—Community detection is a principle tool for
analysing and studying of a network structure. Label Propagation
Algorithm (LPA) is a simple and fast community detection algo-
rithm which is not accurate enough because of its randomness.
However, some advanced versions of LPA have been presented
in recent years, but their accuracy need to be improved. In this
paper, an improved version of label propagation algorithm for
community detection called WILPAS is presented. The proposed
algorithm for community detection considers both nodes and
links important. WILPAS is a parameter-free algorithm and
so requires no prior knowledge. Experiments and benchmarks
demonstrate that WILPAS is a pretty fast algorithm and out-
performs other representative methods in community detection
on both synthetic and real-world networks. More specifically,
experiments show that the proposed method can detect the true
community structure of real-world networks with higher accuracy
than other representative label propagation-based algorithms.
Finally, experimental results on the networks with millions of
links reveal that the proposed algorithm preserve nearly linear
time complexity of traditional LPA. Therefore, the proposed
algorithm can efficiently detect communities of large-scale social
networks.
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I. INTRODUCTION

Many complex systems can be modelled as networks with
nodes for entities and edges for the connections between
them. Many real-world networks have community structure.
Communities can be found in many complex systems such as
social and biological networks, the internet, food webs and so
on. Nodes of a community have often several characteristics
in common.

By now, many different methods have been proposed for
community detection. In 2002, Newman and Girvan devised a
divisive algorithms using centrality indices to find community
boundaries [1]. This index called edge betweenness and it
refers to the number of shortest paths between all pairs of
nodes that run along the edge. The edge with highest edge be-
tweenness is removed in iterative steps until no edges remain.
This process takes O(m2n) which makes it impractical to be
run on the networks with more than 30,000 nodes. In 2004, a
measure called modularity was introduced to evaluate a given
partition of a network into communities [2]. So many methods
were presented for modularity optimization [3], [4], [5]. Aside
from modularity optimization, a variety of different algorithms
such as graph partition-based methods [6], [7], [8] and density-
based methods[9], [10] and label propagation algorithm (LPA)

[11] have been presented for community detection.

Among all the community detection methods, LPA is one
of the fastest algorithms. LPA algorithm is simple and its
time complexity is nearly linear time. However because of
randomness, the detected communities have poor stability. That
is, LPA may find different communities in different runs.
In some runs, small communities are merged with big ones
forming “monster” communities which is a drawback of LPA
[12].

The LPA can be described as follows. Initially, each node
is assigned a unique numeric label. At each iterative step,
each node updates its label to the most frequent label from
its neighbours in a random order. When there are multiple
most frequent labels, the node will randomly pick one of them.
Relabeling continues until the label of each node is its most
frequent label among its neighbours. Finally, the nodes with
the same label are considered in the same community. In fact,
there are two sources of randomness in LPA which make it
unstable and inaccurate. First source is random update order
of nodes and the second one is randomly selecting one label
when there are multiple most frequent labels to choose.

In this paper, a novel label propagation method for com-
munity detection called WILPAS is introduced. WILPAS al-
gorithm has two stages. Let l(v) be the label of node v. In the
first stage, two sources of randomness of LPA are eliminated
to increase accuracy. That is, firstly, random node sequence for
label updating of LPA is replace by one specific update order.
Secondly, WILPAS presents a novel label updating mechanism
based on both node importance and link strength which makes
the second source of randomness very unlikely to happen. The
first stage of WILPAS is called weighted importance label
propagation algorithm (WILPA).

Resulted communities from the first stage (WILPA) might
be sub-communities of real ones. Therefore, in stage two of
WILPAS, detected labels of nodes during the first stage are
injected as a seed into a method called LPAd. In fact, LPAd is
the same as traditional LPA in using random update order and
the traditional label updating formula, but with one difference.
When half of the neighbours of a node v have label l(v), LPAd
does not update its current label l(v). As it will be shown later,
this change can avoid possible label oscillations in stage two
of WILPAS.

Extensive experimental studies demonstrate that WILPAS
is a pretty fast algorithm and it can get better community
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detection results comparing with several label propagation
based algorithms on both synthetic and real-world networks.

This paper is structured as follows. In Section II, related
works in the field are listed. Some notions are defined in
Section III. In Section IV the proposed method (WILPAS) is
presented. The time complexity of proposed method is stated
in Section V. Experimental results of comparing the proposed
method with some famous methods in this area are discussed
in Section VI. Finally, conclusion is given in Section VII.

II. RELATED WORKS

In 2007, Raghaval et al.[11] proposed Label Propagation
Algorithm (LPA) for community detection. LPA can be sum-
marized as four following steps:

1) Initialize every node with a unique label.

2) Arrange the nodes in a random order.

3) For every node in that random order, set its label with
the one which is the most frequent label among its neighbours.

4) If every node has a label that the maximum number
of their neighbours have, then stop the algorithm; else go to
step 2.

The formula of label updating for LPA is as follows:

l(v) = argmax
l

∑
u∈N l(v)

1 , (1)

where N l(v) indicates the set of neighbours of node v with
label l. This is LPA’s asynchronous version. Since synchronous
version has potential label oscillations as discussed in [11],
this version is not considered. As discussed earlier LPA has
two types of randomness. Unfortunately, randomness of LPA
may result in missing small communities and even getting
trivial solution in which all nodes are assigned the same label
[12]. Moreover, it makes the algorithm unstable such that
different communities may be detected in different runs of the
algorithm.

Zhang et al. generalized LPA to weighted networks by
calculating the probability value of every label [13]. The label
updating formula in this case is changed as follows:

l(v) = argmax
l

∑
u∈N l(v)

wvu , (2)

where wvu indicates the weight of the edge between nodes
v and u.

Barber and Clark proposed modularity-specialized algo-
rithm (LPAm) to constrain the label propagation process [14].
Their algorithm is near-linear time, but it may get stuck
in poor local maxima in the modularity space. To scape
local maxima, Liu et al. introduced an advanced modularity-
specialized label propagation algorithm called LPAm+ [15].
LPAm+ combines LPAm with multistep greedy agglomerative
algorithm to get higher modularity values. Thus, LPAm+ doest
not guarantee near-linear time complexity [16]. Xing et al.
presented a node influence based label propagation algorithm
called NIBLPA [17]. NIBLPA defines two concepts node

influence and label influence for specifying node orders and
label choosing mechanism respectively. Zhang et al. proposed
a label propagation algorithm with prediction of percolation
transition named LPAp [16]. They transformed the process
of label propagation into network construction process. Using
this prediction process of percolation transition, they tried to
delay the occurrence of trivial solutions. Sun et al. proposed
a centrality-based label propagation called CenLP [18]. They
presented a new measure for computing the centrality of nodes.
Based on these centrality values, one specific update order in
addition to node preference values are specified in order to
improve traditional LPA.

III. TERMINOLOGY

Let G = (V,E) be an undirected network. The number of
nodes and links of G is denoted by n and m, respectively. Let
dv be the degree of node v in the network. Degrees of node
v within and outside of its community are denoted by dinv
and doutv , respectively. Mixing parameter µ for each node v is
defined as dout

v

dv
. The set of all neighbours of node v is denoted

by N(v). Internal and external links respectively refers to the
links within and between communities.

IV. PROPOSED METHOD (WILPAS)

The proposed algorithm has two stages. At first stage,
in order to increase the quality of detected communities of
LPA, one specific node order for label updating and a novel
formula for selecting labels for nodes is introduced. The novel
formula for label updating is based on the weights of links
and importance of nodes. Therefore, the first stage of the
proposed algorithm using these two modifications in traditional
LPA is called weighted importance label propagation algorithm
(WILPA). The detected communities resulted from stage one
might be sub-communities of real ones. Therefore, in stage
two, found labels of nodes resulted from stage one (WILPA)
will be injected as a seed into a method similar to traditional
LPA. The second stage which has a slight difference with
traditional LPA is called LPAd. By presenting these two
stages, the proposed method is completed. Since detected
labels of WILPA algorithm are injected as a seed into LPAd
algorithm, the proposed method is called WILPAS.

A. Weighting Measure for Links

There are several normalized similarity measure to assign
weights to an edge (u,v) such as cosine [19]. Cosine similarity
measure between two nodes u and v is defined as follows:

cosine(u, v) =
| N(u) ∩N(v) |√
| N(u) || N(v) |

, (3)

Where || indicates the cardinality of a set. Using cosine
may result in assigning zero values to some links. Thus, instead
an extended version of cosine [18] is chosen to assign non-zero
weights to links. This measure is called structural similarity
and is defined as follows:

σ(u, v) =
| Γ(u) ∩ Γ(v) |√
| Γ(u) || Γ(v) |

, (4)

where Γ(u) = N(u) ∪ {u}.
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B. Stage One of WILPAS (WILPA)

The stage one of WILPAS (WILPA) improves traditional
LPA with two modifications: The first modification is pre-
senting one specific node order for updating labels instead of
random order. The second one is presenting a novel formula
for selecting new labels of nodes. This novel label updating
formula considers both importance values of neighbour nodes
and weights of neighbour links of a node to select its new
label.

1) Specific update order: In the proposed method, nodes
are rearranged such that important nodes update their labels
first. The degree of each node v (i.e dv) is chosen as its impor-
tance value. Among several nodes with equal degrees, those
whose neighbours have higher degrees are more important.
Thus, an extended version of importance value of each node
v (EI(v)) is defined as follows:

EI(v) = dv +
∑

u∈N(v)

du (5)

Therefore, order of nodes for label updating in the pro-
posed method is specified in descending order of extended
importance values of nodes.

2) Novel label updating formula: In WILPA, instead of
selecting the most frequent label among neighbours of a node
as its new label, a novel label choosing mechanism is adopted.
This mechanism considers both node importance and link
importance for selecting the new label.

Fig. 1. Two sample networks.

Consider Fig. 1 a with two real communities {1, 2, 3, 4}
and {5, 6, 7, 8}. Suppose that during traditional label prop-
agation process (using label updating formula 1) nodes 1-
4 have label 1 and nodes 5-8 have a label equal to their
own numbers. That is, denoting label of node v by l(v):
l(1) = l(2) = l(3) = l(4) = 1 and l(5) = 5, l(6) = 6,
l(7) = 7, l(8) = 8. Moreover, suppose that the update order
of nodes is 8, 5, 6,7. That is, node 8 should update its label
first, then node 5 and so on. Node 8 has four neighbours with
labels 1, 5, 6 and 7. If node 8 selects label 1 randomly, then
labels of nodes 5, 6 and 7 will be 1 as well, since label 1 will
be the most frequent neighbour label for them. Thus, trivial
solution (forming one big community) will be obtained.

To avoid trivial solution, the chance of propagation of
labels between different communities should be decreased.
One way to do this is using weights of links in the label
propagation process. The idea behind using weights is that
two endpoints of an internal link share more common friends
to each other than two endpoints of an external link. Thus,
if weight of a link is defined based on the ratio of common
friends between its two endpoint nodes, then internal links are
more likely to get higher weight than external ones. Thus, by
considering the weights of links in label propagation process,
one can expect that propagation of labels between two different
communities will be less likely.

In Fig. 1(a), let this time take into account the structural
similarity weight 4 of links and choose formula 2 as label
updating mechanism. In this situation, the weights of the links
connecting labels 1, 5, 6 and 7 to node 8 are 0.40, 0.80, 0.89
and 0.89. Therefore, node 8 will select one of two labels 6 or 7,
because their corresponding weight 0.89 is maximum. Either
of two labels 6 or 7 is chosen by node 8, the other three nodes
5, 6 and 7 will choose that label as well. Therefore, two real
communities will be detected correctly.

However, using weighted label propagation can decrease
the chance of propagation of labels between different com-
munities, but in sparse real-world networks, this strategy
may cause real communities to break apart into several sub-
communities. For example, consider the network in Fig. 1(b)
with one single community. Like previous example, let con-
sider nodes 1-4 have label 1 and other nodes have label equal to
their own numbers. Using weighted label propagation strategy
will result in finding three communities {1, 2, 3, 4}, {5, 6},
{7, 8}. This is because the weights of two links (5, 6) an
(7, 8) are greater than their neighbour links. Therefore, nodes
5 and 6 will choose the labels of each other. Similarly, both
nodes 7 and 8 will adopt the same label 7 or 8 as their
final label. Therefore, weighted label propagation strategy may
divide some communities of a real-world network into several
sub-communities.

To resolve the mentioned problem, one idea is to consider
degrees of nodes as their importance values in label updating
formula. This solution is based on this intuitive idea that
in each network, there are some important nodes with high
degree which play crucial role in spreading information, viral
marketing, etc. Therefore, nodes with higher degrees are more
likely to be centers of communities [18]. It is obvious that
in social networks, a famous person or a celebrity with more
friends and connections has more impact on each of his friends
than a person with just a few friends.

Therefore, on the one hand, with weighted label propaga-
tion external links would have low effect in spreading labels
between different communities. Thus, this idea can reduce
the formation of monster communities. On the other hand,
most important nodes (such as nodes with high degrees) play
very crucial role in formation of communities. Therefore,
the degrees of nodes should be considered in label updating
formula as well. By taking into consideration both weights of
links and degrees of nodes, the label updating formula of the
proposed method is defined as follows:
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l(v) = argmax
l

∑
u∈N l(v)

wvu ∗ du (6)

Therefore, each neighbour u of node v has an impact in
defining l(v) based on its importance value (du) and the weight
of corresponding link (wvu). As discussed above, the degree of
each node is considered as its importance value. Therefore, the
first stage of the proposed method is completed. The pseudo-
code of WILPA is presented in Algorithm 1.

C. Stage Two of WILPAS (LPAd)

Resulted communities from the first stage (WILPA) might
be sub-communities of real ones. Therefore, in stage two of
WILPAS, detected labels of nodes during the first stage are
injected as a seed into a method similar to original label
propagation algorithm. To be more accurate, LPAd is the
same as original LPA in using random update order and label
updating formula, but with one difference. When half of the
neighbours of a node v is the same as l(v), LPAd keeps its
current label.

Consider the network in Fig. 2. WILPA algorithm as the
stage one of WILPAS method detects two communities on
this network which are shaded with colors green and yellow.
If original LPA is applied on these found labels, final labels
of two nodes 6 and 11 will be either green or yellow. This
is because of the fact that two nodes 6 and 11 are connected
to two different communities with equal number of links. In
this situation, if LPAd algorithm is used instead of traditional
LPA, then labels of two nodes 6 and 11 will be fixed as
green. Hence, LPAd algorithm by avoiding possible label
oscillations and unnecessary iterations can increase stability
of detected communities and reduce the number of iterations
of the proposed method.

Fig. 2. A network with two detected communities by stage one of WILPAS.

D. Pseudo-code for WILPAS

Pseudo-code of WILPA, LPAd and WILPAS are presented
in Algorithms 1, 2 and 3, respectively.

V. TIME COMPLEXITY

In this section, the time complexity of the proposed method
is discussed.

1 For each node v set l(v) = v /* Initialization of labels. */
2 Arrange nodes based on descending order of their EI values

(formula 5) and put them into array X.
3 repeat
4 foreach vertex v in X do
5 Update l(v) using novel proposed label updating

formula 6
6 end
7 until labels of nodes do not change any more;

Algorithm 1: WILPA

1 Arrange nodes randomly and put them into array Y.
2 repeat
3 foreach vertex v in Y do
4 if |N l(v)(v)| < dv

2
then

5 Update l(v) using traditional label updating
formula 1

6 end
7 end
8 until labels of nodes do not change any more;

Algorithm 2: LPAd algorithm

1 Compute structural weights of all links using formula 4
(e.g. Algorithm 4 can be used for computing weights).

2 WILPA()( Algorithm 1 ) /* Stage 1*/
3 LPAd() (Algorithm 2) /* Stage 2*/

Algorithm 3: WILPAS Algorithm

A. Time complexity of weighting all links

For computing the weight of a link, the number of common
friends between its two endpoints should be counted. Algo-
rithm 4 is a simple algorithm to do that. As it can be seen
from the algorithm, for computing the weight of link (v, u)
it is enough to explore the set C of u’s neighbours and then
count the number of nodes in C which are neighbours to v
as well. This is done in O(du). Since there are du neighbour
links for u, computing the weights of all of its neighbour links
can be done in O(d2u). Therefore, total time complexity of this
simple weighting algorithm is

n∑
u=1

d2u (7)

Space complexity of this algorithm using adjacency list is

O(m) (8)

Checking whether two nodes z and v are neighbours can
be done in O(dz) using adjacency list. But, in order to do
that in O(1), an extra array named ‘mark’ is used as follows.
For each node v, at first, in line 3 of Algorithm 4, each of
its neighbour u is marked as v. Then, in line 8 the adjacency
of two nodes z and v is checked in O(1) by comparing the
content of ‘mark’ array of index z with v.

B. Time Complexity of Two Stages of WILPAS

In the first stage (WILPA), at first, all nodes are arranged
based on their EI values. This can be done with time com-
plexity O(n log n). Time complexity of each iteration of label
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1 foreach vertex v do
2 foreach neighbor u of v do
3 mark[u]=v
4 end
5 foreach neighbor u of v do
6 Cfriends=0;
7 foreach neighbor z of u do
8 if mark[z]==v then
9 ++Cfriends;

10 end
11 end
12 /* compute weight of edge(u,v) using equation 4 */
13 end
14 end

Algorithm 4: A Simple Weighting Algorithm

updating in WILPA is the same as traditional LPA which is
O(m) [11]. This is because time complexity of computing new
label l(v) in formula 6 and formula 1 is the same. Therefore,
time complexity of WILPA is

O(n log n) +O(R1m), (9)

where R1 is the number of iterations of WILPA. Similarly,
each iteration of LPAd requires O(m) time. Thus, time
complexity of LPAd is

O(R2m), (10)

where R2 is the number of iterations of LPAd.

C. Total Time Complexity of WILPAS

Total time complexity of WILPAS is the summation of time
complexities of computing weights, WILPA and LPAd which
is as follows:

O(n log n) +O(R1m) +O(R2m) +O(

n∑
u=1

d2u) (11)

It is important to note that in practice in most cases both
R1 and R2 are less than 10. Moreover, real networks are often
sparse, i.e. m = O(n). In addition, as it will be shown in
experiments section, the weighting Algorithm 4 consumes less
than 25 seconds for finding the weights of all links of a network
with 500, 000 nodes and around 10 million links. Therefore, as
it will be demonstrated later, WILPAS is pretty fast in practice,
even with existing term

∑n
u=1 d

2
u.

VI. EXPERIMENTS

This section evaluates the effectiveness and the efficiency
of the proposed algorithm. Several experiments on both syn-
thetic networks and well-known real-world networks are con-
ducted. Moreover, the performance of WILPAS with LPA,
CenLP, LPAp, LPAm and NIBLPA are compared. All the
simulations are carried out in a desktop pc with Pentium Core2,
1.8 GHZ processor and 4GB of RAM under Windows 8.1 OS.

In this paper, normalized mutual information (NMI) [20]
is used as the evaluation measure which is currently widely
used in measuring the quality of detected communities. NMI
allows us to measure the amount of information common to

two different network partitions. Accordingly, if a network has
a known community structure, one can explore the efficacy
of the algorithm by comparing known real partition with the
partition found by that algorithm. When the found partition
matches the real one, then NMI=1, and when two partitions
are independent of each other, then NMI=0.

A. Test on Synthetic Networks

In this section, LFR benchmark networks [21] are cho-
sen which are currently the most commonly used synthetic
networks in community detection. The parameters of LFR
benchmark networks are as follows: number of nodes n, the
average degree k, maximum degree maxk, mixing parameter
µ. Moreover, minc and maxc refer to the minimum and
maximum values for community sizes, respectively.

Three ranges for different community sizes are used which
are indicated by the letters S (stays for small), B (stays for big)
and VB (stays for very big). The ranges of community sizes
for three letters S, B and VB are [cmin, cmax] = [10, 50],
[cmin, cmax] = [20, 100] and [cmin, cmax] = [200, 1000],
respectively. For each type of networks, 10 samples are gener-
ated and on each sample, each tested label propagation-based
algorithm is run 10 times. Then, the average of these 100 NMI
values are reported as output. In this paper for all the networks
with n ≥ 100, 000, the average degree k = 40 and the letter
VB are used, i.e. community sizes of these networks range
between 200 and 1000 where average degree of nodes is 40.

Fig. 3 and 4 show the accuracy of the mentioned methods
on the networks with size of 1000. One can observe that
for n = 1000, when µ ≤ 0.50 three methods WILPAS,
LPAm and CenLP find communities pretty well. However,
when communities are big, for µ > 0.50, LPAm gets better
results (see Fig. 4).

Fig. 5 and 6 show the accuracy of methods when n =
10, 000. From these two figures it can be observed that when
n = 10, 000, WILPAS outperforms other methods. CenLP is
the second most accurate method for community detection on
this network. On this network, NIBLPA shows poor perfor-
mance in community detection.

Fig. 7 demonstrates the NMI results for the three most
accurate tested label propagation methods i.e. WILPAS, CenLP
and LPAm for a network with n = 100, 000, k = 40,
[cmin, cmax] = [200, 1000]. As it can be observed from
this figure, WILPAS achieves higher NMI values than CenLP
and LPAm. CenLP shows more accuracy than LPAm except
for µ = 0.70. The detailed information about the results is
displayed in Table I.

TABLE I. NMI RESULTS OF THREE METHODS WILPAS , CenLP
AND LPAm ON THE NETWORK WITH n = 100, 000

µ LPAm CenLP WILPAS
0.40 0.9963 1 1
0.45 0.9955 1 1
0.50 0.9946 1 1
0.55 0.9927 1 1
0.60 0.9818 0.9999 1
0.65 0.9527 0.9970 1
0.70 0.8277 0 0.9997
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Fig. 3. Comparing different label propagation-based algorithms on the
network with n = 1, 000 where communities are small.

Fig. 4. Comparing different label propagation-based algorithms on the
network with n = 1, 000 where communities are big.

Fig. 5. Comparing different label propagation-based algorithms on the
network with n = 10, 000 where communities are small.

B. Experiment on Real-world Networks

In this section, the evaluation of the above methods on real-
world networks which their communities are already known is
discussed. Zachary Karate club [22], American college football
[1], Dolphin social network [23] and Polblog [24] are four
famous networks in the field. The details of these networks

Fig. 6. Comparing different label propagation-based algorithms on the
network with n = 10, 000 where communities are big.

Fig. 7. Comparing different label propagation-based algorithms on the
network with n = 100, 000 where communities are very big.

are shown in Table II. The NMI results of all tested label
propagation-based methods are displayed in Table III.

Each method is run 10 times on each real network, then the
average NMI results are reported. The number in the {} for
CenLP, NIBLPA and WILPAS in Table III shows the number
of found communities by these three deterministic methods.
Since LPA, LPAp and LPAm detect different partitions on the
same network for each run, they are ignored. The maximum
resulted NMI values on each network has been bold in
Table III.

TABLE II. REAL-WORLD NETWORKS WITH KNOWN COMMUNITY
STRUCTURES

Network Nodes Links Communities
Karate [22] 34 78 2

Dolphin [23] 62 159 2
Football [1] 115 615 12
Polblog [24] 1490 16715 2

1) Zachary Karate club: The well-known Karate club net-
work of Zachary [22] is a standard benchmark for community
detection. Zachary observed 34 members of a karate club in
the United States over two years. Because of a disagreement
between administrator and instructor of the club, a new club
was formed by the instructor by taking about the half of the
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original club members. The edge between nodes (members)
of this network represent the social interactions between the
members outside the club. These two original communities are
specified with the shapes ‘square’ and ‘circle’ in Fig. 8.

As it can be observed from Table III, WILPAS is the only
method that finds exactly the two real communities of Karate
club network with NMI=1. CenLP is the second best method
with NMI=0.60 with finding four communities. NIBLPA has
poor performance on Karate network with NMI=0.21. The sets
of sizes of detected communities by WILPAS, CenLP and
NIBLPA are {16, 18}, {12, 5, 4, 13} and {2, 3, 29}, respec-
tively. Fig. 8 shows the two detected communities by WILPAS
on Karate club network with different colors.

Fig. 8. Result of community detection by WILPAS on Karate network. Two
real communities are specified with shapes ‘circle’ and ‘square’. Two found
communities are shaded with different colours. WILPAS method detects the
two real communities exactly as it is.

2) American college football: Another well known bench-
mark for community detection is American college football
network compiled by Girvan and Newman [1]. This network
represents Division I games for the 2000 season. Nodes
represent teams and the edges represent the games between
teams. The teams belong to the conferences with 8 to 12 teams
each. Since, games between the teams of the same conference
are usually more frequent than the games between the teams of
different communities, this network has community structure.
As one can see from Table III both WILPAS and CenLP finds
13 communities on this network. In fact, both WILPAS and
CenLP gain the maximum NMI value 0.90 on this network.
After these two methods, LPAm is the third accurate method
with NMI=0.89.

3) Dolphin social network: Dolphin network [23] shows
the frequent associations between 62 dolphins living in Doubt-
ful Sound, New Zealand. Nodes are dolphins and the edges
between nodes shows that the two corresponding dolphin were
seen together more than expected by chance. After leaving one
of dolphins, they separated in two communities. Two original
communities are specified with shapes ‘circle’ and ‘square’ in
Fig. 9. Three communities which are detected by WILPAS are
specified with different colors.

From Table III one can observe that WILPAS achieves
higher NMI value than other methods on the Dolphin network.
Moreover, the number of detected communities by WILPAS
is more close to two real communities of Dolphin network.
LPAm fails to detect true communities with getting lowest
NMI value 0.45.

Fig. 9. Result of community detection by WILPAS on Dolphin network.
Two real communities are specified with shapes ‘circle’ and ‘square’. Three
found communities are shaded with different colours.

4) Polblogs network: This network represents the links be-
tween weblogs about US politics preceding the US Presidential
Election of 2004 [24]. The links were automatically extracted
from a crawl of the front page of the weblogs. Each blog is
labelled with ‘0’ or ‘1’ to indicate whether they are “liberal” or
“conservative”. This network can be considered both directed
or undirected. In this paper, the undirected version of this
network which has 1490 nodes and 16715 links is considered.
Since nodes with degree zero makes this network disconnected,
when comparing the performance of methods, these nodes are
ignored. Thus, by removing 266 nodes with degree zero, the
resulted network with 1224 nodes is considered for testing and
comparing community detection methods. By doing this, the
sizes of two real communities of Polblog are 588 and 636.

CenLP and WILPAS achieve NMI values 0.71 and 0.70
on Polblog network respectively. However CenLP gets a little
more NMI value than WILPAS, but the number of detected
communities of WILPAS is more close to two real com-
munities of Polblog network. The sets of sizes of detected
communities by WILPAS and CenLP are {552, 2, 670} and
{559, 2, 4, 659}, respectively.

In summary, when dealing with community detection on
real networks, WILPAS outperforms other methods on Karate
and Dolphin network, while CenLP has a little better accuracy
than WILPAS on Polblog network. Both of these two methods
has the same accuracy on Football network with finding
13 communities. The superiority of WILPAS on Karate and
Dolphin networks is remarkable while superiority of CenLP
on Polblog network is negligible. Moreover, while both of
these two methods find 13 communities on Football network,
the numbers of found communities of WILPAS on Karate,
Dophin and Polblog networks are more close to the numbers of
real communities of these networks. These show that the pro-
posed method WILPAS is the most accurate label propagation
method in comparison to other tested methods for community
detection on the real networks.

TABLE III. NMI RESULTS OF THE METHODS ON FOUR REAL
NETWORKS WITH KNOWN COMMUNITY STRUCTURES

Networks/ methods LPAm LPAp WILPAS LPA NIBLPA CenLP
Karate 0.55 0.56 1,{2} 0.70 0.21 {3} 0.60, {4}

Dolphin 0.45 0.55 0.66,{3} 0.52 0.50 {5} 0.61,{4}
Polblog 0.45 0.61 0.70,{3} 0.70 0.20 {9} 0.71 ,{4}
Football 0.89 0.88 0.90,{13} 0.87 0.78 {9} 0.90{13}
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C. Efficiency Analysis

To illustrate the running time of the proposed algorithm
WILPAS and compare it with other algorithms, 10 networks
using LFR software are produced, where the number of
nodes n = 100, 000 and the average degree k = 40 and
[minc,maxc] = [200, 1000]. Fig. 10 plots the average running
time of the proposed method WILPAS on these 10 synthetic
networks compared with other five label propagation algo-
rithms: LPA, LPAm, LPAp, CenLP and NIBLPA. As one can
see from Fig. 10, method WILPAS is faster than LPAm but
slower than LPA, LPAp and NIBLPA. In addition, it has a
comparative execution time with CenLP.

Fig. 11 illustrates the running time of the weighting Algo-
rithm 4 where n ranges from 100,000 to 500,000. As it can
be seen from this figure, the weighting Algorithm 4 consumes
less than 3.1 seconds for finding weights of this network with
100,000 nodes and around 2 million links. With increasing the
number of node n to 500,000, the consumed time increase near
linearly. Therefore, finding weights of all links of a network
with 500,000 nodes and around 10 million links requires less
than 25 seconds.

Similarly, for evaluating the scalability of WILPAS, the
average running time of WILPAS on 10 LFR networks is
reported where n ranges from 100,000 to 500,000. From Fig.
12 one can observe that the execution time of WILPAS scales
approximately linearly with n, while it is less than double of
execution time of LPA. As one can see from Fig. 12, WILPAS
consumes less than 104 seconds for community detection
on the network with 500, 000 nodes and around 10 million
links. This shows the efficiency and scalability of WILPAS in
community detection.

Fig. 10. The execution times of different methods on a network with
n=100,000, k=40, [minc,maxc] = [200, 1000].

VII. CONCLUSION

In this paper, a new label propagation algorithm called
WILPAS is proposed. WILPAS presents specific update order
and a novel label choosing formula in order to increase the
accuracy of community detection. WILPAS is parameter-free
that requires no prior knowledge. Experimental results on
both synthetic and real-world tested networks demonstrate that
WILPAS is the most accurate label propagation algorithm,
while it is pretty fast. Moreover, finding communities of
networks with around 10 million links in less than two minutes

Fig. 11. The execution time of simple weighting Algorithm 4 with increasing
n. The average degree k=40, [minc,maxc] = [200, 1000]. The number of
nodes n ranges from 100,000 to 500,000.

Fig. 12. The execution time in second for LPA and WILPAS on LFR
benchmark with k=40, [minc,maxc] = [200, 1000]. The number of nodes
n ranges from 100,000 to 500,000.

shows its scalability. Finally, experiments on several well-
known real-world networks demonstrate that WILPAS outper-
forms other tested label propagation algorithms in finding true
community structures of networks. In this paper, the commu-
nities should be distinct from each other. As future work, this
algorithm can be extended to be used for overlapping (or fuzzy)
community detection where each node may belong to several
different communities.
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