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Abstract—Link prediction is of particular interest to the data 

mining and machine learning communities. Until recently all 

approaches to the problem used embedding-based methods 

which leverage either node similarities or latent group 

memberships towards link prediction. Chen and Zhang recently 

developed a class of non-embedding approaches called 

Weisfeiler-Leman (WL) Models.  WL-Models extract subgraphs 

around links and then encode subgraph patterns via adjacency 

matrices using the so-called Palette-WL algorithm. A training 

stage then learns nonlinear graph topological features for link 

prediction. Chen and Zhang compared two WL-Models – a 

linear regression model (―WLLR‖) and a neural networks model 

(―WLNM‖) – against 12 different common link prediction 

schemes. In this paper, all author claims are validated for 

WLLR. Additionally, WLLR is tested against 22 additional 

embedding-based link prediction techniques arising from 

common neighbor-, path- and random walk-based schemes.  

WLLR is shown not to be superior when calculable. In fact, in 

80% of the datasets where comparisons were possible, one of our 

added implementations proved superior. 
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I. INTRODUCTION 

Improvement in effective link prediction has been of 
particular interest to the data mining and machine learning 
communities. Much interest arises from diverse real-world 
applications. Particular applications include friend 
recommendation in social networks [2], product 
recommendation in e-commerce [3], knowledge graph 
completion [4], finding interactions between proteins [5], and 
recovering missing reactions in metabolic networks [6].  
Additional interests arise from the search to overcoming a 
central challenge for researchers: determining which method is 
best for a particular situation, especially when each scheme is 
grounded in a particular heuristic. 

Heuristics range in complexity from the more complex (e.g. 
stochastic block models [5], probabilistic matrix factorization 
[7]) to the more simplistic (e.g. common neighbors (CN) [1], 
Katz index [9]).  Heuristics with mid-level complexities 
include methods which calculate node proximity scores via 
network topologies or random walks.  Amongst the diverse 
methods which exist, the following two challenges have always 
persisted. 

1) Heuristic complexity does not often translate into 

corresponding performance. The more simplistic often work 

well, are more interpretable, and scalable. The Katz and CN 

indices are exemplary examples.  The latter asserts higher link 

probability as the number of common neighbors increases and 

is reasonably accurate with respect to links on social networks. 

2) All known heuristics lack universal applicability to 

different kinds of networks. CN is again a prime example: its 

performance electrical grids and biological networks is quite 

poor [10] notwithstanding its excellent aforementioned 

successes. Resistance distance (RN) is a converse example: it 

performs poor where CN thrives [11]. A study of over 20 

different heuristics found flaws in each, making none 

universally effective performance models [10]. 

Hitherto, the only resolutions to (1) and (2) have been 
expert selection or trial-and-error. 

A recent KDD paper [40] modifies the Weisfeiler-Leman 
(WL) algorithm from graph theory towards making link 
predictions.  The modified algorithm is called Palette-WL.  
Additional algorithmic additional machinery is then built on 
top which allow for machine learning implements to operate.  
The authors claim an establishment of new universal model 
which learns a suitable heuristic directly from a given network, 
thereby demolishing challenge 2.  In addition, reported results 
demonstrate a superior performance over a wide variety of 
known link prediction methods, thereby ensuring the 
demolishment of challenge 1. 

In this paper, we implement Palette-WL in MATLAB and 
train a linear regression model (i.e., the authors‟ WLLR model) 
towards validating author claims which the authors test on 12 
common link prediction schemes.  We also expand testing 
scope and implement 22 additional tests towards developing a 
more complete picture of author claims. All 34 aforementioned 
link prediction schemes are “lean” – that is, they do not require 
a neural network or advanced support for parallelism or 
distributed computing.  The goal of this work, then, is to test 
author claims on lean prediction schemes contra WLLR. To 
that end, we test five of the authors‟ lean data sets (USAir, NS, 
PB, Yeast, C.ele). These are described in Section II with results 
presented in Table V. Three of the authors data sets (Power, 
Router, and E.coli) are not tested in this paper as these are not 
“lean”. Our future work will perform the same type of analysis 
on the full WLNM model, and additional non-lean data sets.  
See Section VI on Future Work. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 6, 2018 

17 | P a g e  

www.ijacsa.thesai.org 

This paper is organized as follows.  In Section II, a high-
level overview of link prediction is presented.  In Section III, 
we present Palette-WL and the implementation of WL-Models.  
Section IV details the many specific link prediction models 
implemented in this paper along with the key results that were 
obtained.  Section V gives a conclusion, while Section VI 
presents directions for future work.  The tail end of this work, 
following the References Section, includes an Appendix where 
the full set of computation results from this paper is presented 
in various tables. 

II. OVERVIEW OF LINK PREDICTION 

Historically, link prediction models have been feature-
based (a.k.a. embedding-based) arising either from (1) 
topological features or (2) latent features. 

1) Topological feature models. These models leverage 

node similarities, either locally or globally. Topological 

models do not perform well when similarity scores do not 

capture the network formation mechanisms. Common 

neighbor-based methods (e.g. CN [1], Adamic-Adar [2]), 

Path-based methods (e.g., Katz [9]), and random-walk based 

methods (e.g. PageRank [1]) all fall within this category.  A 

breakdown of each of these categories is given in Section IV. 

2) Latent feature Models. These models assume that latent 

groups exist for nodes and that links are determined by group 

memberships. Latent models extract group memberships via 

the low-rank decomposition of a network adjacency matrix [3] 

or via training which fits probabilistic models [5]. Given these 

models‟ focus on individual nodes, a central weakness arises 

in understanding how networks are formed. Popular methods 

include ranking methods [17], learning to rank methods [17], 

matrix factorization [16], and stochastic block methods [5], 

[18].  This paper implements methods from the latter two. 

Weisfeiler-Leman models for link prediction are not 
feature-based. The ideas which motivated its implementation 
arose from two research areas related to graph classification: 
design of efficient graph kernels [14], [19], and effective graph 
labeling schemes [15] arising from impositions of vertex 
orderings.  Niepert et al. [15], in particular, focus on orderings 
towards defining receptive fields around node pixels; the fields 
are then used to learn a convolutional neural network for graph 
classification. WL-models [40] work by instead extracting 
subgraphs around links instead of node pixels, and by focusing 
on link prediction rather than on graph classification. 

WL-models are new to the link prediction landscape being 
only formally published in the recent Chen-Zhang paper [40] 
which this paper tests. Chen and Zhang, in particular, 
implement two key WL-Models, WLLR and WLNM, along 
with a third, Palette-WLNM, an extension of WLNM. Among 
the two, WLNM is superior. Area Under the receiver operating 
characteristic Curve (AUC) Results are listed in Table I, split 
in two parts, for five datasets and twelve non-WL methods. In 
short, WLNM outperforms nine state-of-the-art link-prediction 
methods developed by heuristic means (e.g. Katz, PageRank, 
SimRank, etc.), and three latent feature models (stochastic 
model block, and two matrix factorization methods); a full 
explanation of all methods will be given in Section IV. \WLLR 
is less successful, but nonetheless a strong adversarial method. 
Palette-WLNM is tested elsewhere in their paper, but not 
considered in this present paper given this paper‟s focus on 
WLLR. 

The five datasets used above are USAir, NS, PB, Yeast, 
and C.ele. USAir is a network of US airlines. NS is a 
collaboration network of researchers who publish papers on 
network science.  PB is a network of US political blogs.  Yeast 
is a protein-protein interaction network in yeast. C.ele is a 
neural network of C. elegans. All evaluation methods (CN, Jac, 
AA, etc., will be described in full detail in Section IV. 

TABLE I. RESULTS FROM [40] 

Data CN Jac AA RA PA Katz RD PR SR SBM MF-c MF-r WLLR10 WLNM10 

USAir 0.940 0.903 0.950 0.956 0.894 0.931 0.898 0.944 0.782 0.944 0.918 0.849 0.896 0.958 

NS 0.938 0.938 0.938 0.938 0.682 0.940 0.582 0.940 0.940 0.920 0.636 0.720 0.862 0.984 

PB 0.919 0.873 0.922 0.923 0.901 0.928 0.883 0.935 0.773 0.938 0.930 0.943 0.827 0.933 

Yeast 0.891 0.890 0.891 0.892 0.824 0.921 0.880 0.927 0.914 0.914 0.831 0.881 0.854 0.956 

C.ele 0.848 0.792 0.864 0.868 0.755 0.864 0.740 0.901 0.760 0.867 0.832 0.844 0.803 0.859 

Rank 7.875 10.625 7.500 6.875 12.875 7.125 10.375 5.125 11.000 5.625 10.500 9.500 10.125 2.500 
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IV. PALETTE-WL AND WL-MODELS 

WL-models use a modified version of the WL-algorithm, 
called Palette-WL, from graph theory towards making link 
predictions. Additional algorithmic additional machinery is 
then built on top which allow for machine learning implements 
to operate. Three steps, in particular, flesh out an entire WL-
Model. 

1) Extract enclosing subgraphs: generates K-vertex 

neighboring subgraphs. 

2) Encode subgraph patterns: via adjacency matrices with 

vertex ordering given by Palette-WL. 

3) Training: learns nonlinear graph topological features 

for link prediction. 

To understand each step, a review of graph labeling 
functions, along with the base WL-Algorithm is in order.  A 

graph labeling function is a map L: V → C from vertices V to 

an ordered set of colors C = {1, ..., n}.  C uniquely determines 
the vertex order in an adjacency matrix whenever L is one-to-
one.  The WL-algorithm (“WL”), then, is a color refinement 
algorithm which iteratively updates vertex colors on a 
particular graph labeling function, specified below, until a 
fixed point is reached. (Palette-WL, discussed later, further 
ensures that the converged function is one-to-one.) 

WL specifically works by iteratively augmenting vertex 
labels using neighbors‟ labels.  It then compresses augmented 
labels into new “signature” labels until convergence.  At first, 
all vertices are set to the same color “1”.  Each vertex gets its 
new signature string by concatenating its own color and the 
sorted colors of its immediate neighbors. Vertices are then 
sorted by the ascending order of their signature strings and 
assigned new colors 1, 2, 3. Vertices with the same signature 
strings get the same color. WL is formally presented below.  
See Fig. 1 for an example of the process. 

 

Fig. 1. An example of WL. 

WL-Algorithm 

1: input: graph G = (V, E), initial colors c0(v) = 1,  v ∈ V 

2: output: final colors c (v) for all v ∈ V 

3: let c(v) = c0(v) for all v ∈ V 

4: while c(v) has not converged do 

5:       for each v ∈ V do 

6:  collect a multiset {c (v′) |v′ ∈ Γ(v)}  

                      containing its neighbors’ colors 

7:  sort the multiset in ascending order 

8:  concatenate the sorted multiset to c (v) 

                      to generate a signature string  

               s(v) = ⟨c (v), {c (v′) | v′ ∈ Γ(v)}sort⟩ 

9:         end for 

10:       sort all s(v) in lexicographical ascending order 

11:       map all s(v) to new colors 1, 2, 3... sequentially;  

    same strings get the same color 

12: end while 

WL ensures that final colors encode the structural roles of 
vertices inside a graph.  It also defines a relative ordering for 
vertices, with ties that is consistent across graphs. More 
specifically, vertices with the same final color share the same 
structural role within a graph. 

We now fully outline the three-step (1-3) process for 
implementing a WL-model.  Step 1 extracts K-vertex enclosing 
subgraphs via the “Extract Enclosing Subgraphs Algorithm” 
below.  Step 2 then encodes subgraph patterns via adjacency 
matrices with vertex ordering given by the Palette-WL, also 
noted below. Fig. 2 gives an overview of these steps in action.  
Step 3, training, is via any viable machine learning algorithm.  
The authors use a neural network, WLNM, to achieve superior 
results. They also train via linear regression, in a method called 
WLLR. 

Extract Enclosing Subgraphs Algorithm 

1: input: target link (x,y), network G, integer K 

2: output: enclosing subgraph G(VK) for (x,y) 

3: VK = {x,y} 

4: fringe = {x,y} 

5: while |VK| < K and |fringe| > 0 do 

6:  fringe = (∪v ∈ fringe Γ(v)) \ VK 

7:  VK = VK ∪ fringe 

8: end while 

9: return enclosing subgraph G(VK) 

Palette-WL Algorithm 

1: input: enclosing subgraph G(VK) centered at link (x, y),  

            which is extracted by the EES Algorithm 

2: output: final colors c (v) for all v ∈ VK 

3: calculate d(v) = sqrt[d(v,x)* d(v, y)] for all v in VK 
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4: get initial colors c(v) = f(d(v))  

5: while c(v) has not converged do  

6:  calculate hashing values h(v) for all v ∈ VK by (2)  

7:  get updated colors c(v) = f(h(v))  

8: end while  

9: return c(v)  

 

Fig. 2. An overview of a WL-model, Steps 1-2. 

Chen and Zhang show, via mathematical proof that the 
Palette-WL graph labeling function converges in at most K 
iterations to a one-to-one function for a graph with K vertices.  
Furthermore, the function is color-order preserving: vertices‟ 
color orderings are preserved from state-to-state.  Both of these 
facts enable WL-models to successfully predict links. 

V. ASSESSMENT OF WL-MODELS 

We use Area Under the receiver operating characteristic 
Curve (AUC) to measure results. AUC measures on the 
probability that a randomly chosen missing link is given a 
higher score than a randomly chosen nonexistent link. More 

precisely, if among n independent comparisons, there are n  

times the missing links having a higher score, n  times those 

have the same score, the AUC value is AUC = (n + 0.5n)/n. 

A. Assessment Methods 

In our experiments we compare the authors WL-model 
implemented with linear regression (WLLR), against methods 
from four traditional link-based assessment areas: common 
neighbor-based methods, path-based methods, random walk-
based methods, and latent feature-based methods.  For each 
test, we compute the AUC value and tabulate the results.  The 
Appendix includes tables with all of our results.  We outline 
the algorithms used in assessment below.  Our implementation 
is motivated largely by two recent papers [38], [39]. 

B. Common Neighbor (CN)-based Methods 

For a node x, let (x) be the set of neighbors of x.  The idea 
is that two nodes x and y are more likely to share a link if they 
have many common neighbors. The most basic measure 

CN(x,y), defined to be | (x)   (y)|, asserts this. Note that if 
A is the adjacency matrix for the corresponding graph, then 
CN(x, y) = A

2
(x, y). 

Now let  be a scaler for a link measure M so that M(x,y) 

= CN(x, y)/, and let dx denote the degree of node x. For 

various choices of , different CN-measures, noted in Table II, 
are obtained. 

TABLE II. CN-MEASURES, |Γ(X) Γ(Y)| /ALPHA 

α = 

   

CN Jac SltOna Sora 

1 |Γ(x)∪Γ(y)| sqrt(dx  dy) (dx + dy)/2 

 

α = 

   

HPIa HDIa LHNa 

min{dx, dy} max{dx, dy}   dx  dy 

a. 'Measurements not provided in the KDD paper [40] 

The Jaccard Index (Jac) [23] gives the probability that x 
and y are adjacent, given an edge of either x or y. The Salton 
Index (SltOn) [20] is often also called cosine similarity in the 
literature.  Sørensen Index (Sor) [24] is primarily used for 
ecological data.  Hub Promoted Index (HPI) [25] is used to 
quantify the topological overlap of pairs of substrates in 
metabolic network; under this scheme, links adjacent to hubs 
are more likely to be assigned to be assigned high scores.  Hub 
Depressed Index (HDI) is the complementary measure to HPI.  
Finally, the Leicht-Holme-Newman Index (LHN) [22] assigns 
high similarity to node pairs that have many common 
neighbors compared to the expected number of such neighbors; 

in particular, dx  dy is proportional to the expected number of 
common neighbors of nodes x and y in the configuration model 
[26]. 

Three related CN-based methods we considered are 
Preferential Attachment Index (PA), Adamic-Adar Index (AA), 
and Resource Allocation Index (RA); these are noted in 
Table III. PA is motivated by a preferential attachment 
mechanism which ensures that the probability that a new link 

to be added connects x and y is proportional to dx  dy. PA is 
often used to quantify the functional significance of links 
subject to various network-based dynamics such as percolation 
[27], synchronization [28], and transportation [29]. AA is a 
refinement of simple counting of common neighbors; it assigns 
less-connected neighbors more weight [2]. RA [8] is motivated 
by the resource allocation dynamics on complex networks.   
Suppose x and y are not directly connected and x can send a 
resource to y, with common neighbors playing the role of 
transmitters. If each transmitter has a unit of resource, and 
distributes equally to all its neighbors, then RA is the amount 
of resource y received from x. 

TABLE III. THREE RELATED CN-BASED MEASURES 

PA AA RA 

dx  dy
  z  (x) (y) (1/log(dz))  z  (x) (y) (1/dz) 

We also considered three local naïve Bayes methods with 
common neighbor, Adar-Adamic index, and resource 
allocation, respectively.  These are listed as LNBCN, LNAA, 
and LNBRA in the tables provided in the Appendix. 

In our experimental runs on the five data sets, we able to 
validate all of the KDD results [40] on the measures that were 
used in that paper: CN, Jac, AA, RA, and PA. See the 
Appendix, Tables VI, VII and VIII.  Numerical values were 
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rarely the same, but sufficiently close.  In addition, in each of 
our experimental runs inclusive of all additional measures, the 
RA index generally performs best, while the AA, CN, and 
LNBAA indices follow closely behind in best overall 
performance. This “best performance” neglects comparisons 
against the WLNM test runs.  Because WLNM outperforms 
even AA and CN, WLNM still provides superior performance 
according to KDD data.  A caveat is that we only ran the WL-
model with linear regression, called WLLR, which fared worse 
amongst the various CN-measures above.  In fact, almost 
without exception, all 13 common neighbor methods 
implemented exhibited superior performance over WLLR on 
the NS, PB, and Yeast data sets.  Exceptions occurred with PA, 
Jac, LHN, and LNBRA on certain data sets. 

C. Path-based Methods 

The Katz Index [9] is based on an ensemble of all paths.  It 
is a sum over the collection of all paths with a damping factor β 
providing shorter paths more weight. Letting A be the 

adjacency matrix, Katz(x, y) =  i 1(A)
i
 = (I – A)

–1 
– I. 

The Local Path Index (LP) [8, 33] takes local paths into 
additional consideration beyond CN and is defined as LPI(x, y) 
= A

2
 + ϵA

3
 where ϵ is a free parameter; note that when ϵ = 0, 

the index is just CN.  A more expanded version allows for n 
sum factors, and as n → ∞ the index becomes Katz.  
Experimental results show that the optimal n is positively 
correlated with the average shortest distance of the network 
[33]. 

The Leicht-Holme-Newman Index (LHNII) [22] is a 
variant of the Katz index and is based on the concept that two 
nodes are similar if their immediate neighbors are themselves 

similar. A self-consistent matrix formulation is S = AS + ψI = 

ψ(I – A)
–1 

= ψ(I + Katz(x, y)) where ψ and β are free 
parameters controlling the balance between the two 
components of the similarity.  An formulation useful for 

computations is S = 2mD
–1

(I – A/)
–1

D
–1

 where λ is the 
largest eigenvalue of A, m is the total number of edges in the 
network, D is the degree matrix, and β is a free parameter.  The 
choosing of β depends on the investigated network, and smaller 
β assigns more weights on shorter paths. 

The KDD paper [40] only implements Katz with β = 0.01.  
In our experiments we also run Katz with β = 0.001, as well as 
LocalPath, and LHNII with β = 0.9, 0.95, and 0.99.  See 
Appendix, Tables IX and X.  In our implementations, on four 
data sets (USAir, NS, PB, and Yeast), Katz (both versions) and 
LocalPath always exhibited superior performance to WLLR, 
with the exception of Katz (β = 0.01) on USAir. For the NS 
dataset, LHNII actually exhibited top performance on WLLR 
over all methods discussed in this section. 

D. Random Walk-based Methods 

Resistance Distance (RD) is often called Average 
Commute Time (ACT) in other contexts and equal to s(x, y) + 
s(y, x) where s(x, y) denotes the average number of steps 
required by a random walker starting from node x to reach 
node y.  The pseudoinverse    of the Laplacian matrix L = D – 
A, is easily computable as m(L

+
(x, x) + L

+
(y, y) – 2L

+
(x, y)) [11, 

30].  ACT(x,y) is defined as the reciprocal of this with m=1 in 

order to ensure that two nodes are more similar whenever they 
have a smaller average commute time. 

The PageRank (PR) algorithm [13] may be directly applied 
using Random Walk with Restart (RWR). Consider a random 
walker starting from node x, who will iteratively move to a 
random neighbor with probability c and return to node x with 
probability 1 – c.  Let     denote the probability that a random 

walker locates at node y in the steady state.  Then px = px1, px2, 

... is given by px = c · P
T
px + (1 – c) · ex where ex is the n 1 

vector in Euclidean n-space which is 1 at entry x and zero 
elsewhere,  and P is the transition matrix with P(x, y) = 1/dx if x 
and y are connected and 0 otherwise.  The solution, given by px 
= (1 – c)(I – cP

T
)

–1
ex, is used in the code for this project.  

Define RWR as RWR(x, y)= pxy + pyx. 

SimRank (SR) [31] is defined in a self-consistent way 

similar to LHNI as SR(x, y) =  ( z(x)  z(y) SR(z, z))/(dxdy) 

where SR(x, x) = 1 and   [0, 1] is a decay factor. The 
underlying idea is that two nodes are similar if they are 
connected to similar nodes.  From a random-walk perspective, 
SR measures how soon two random walkers, respectively 
starting from nodes x and y, are expected to meet at a certain 
node. 

Cosine Similarity based on L
+
 (Cos+) [30] is defined using 

pseudoinverse L
+
 of the Laplacian matrix L = D – A so that 

Cos+(x, y) = L
+
(x, y)/sqrt(L

+
(x, x) · L

+
(y, y)). 

Local Random Walk with step s (LRWs) [34] measures the 
similarity between nodes x and y when random walker is 
initially put on node x and proceeds for s steps.  The density 
vector is defined by Vx(0) = ex and Vx(t + 1) = P

T
 ·Vx(t) for t ≥ 

0.  Then LRWs(x, y) = init(x) · Vxy(s) + init(y) · Vyx(s) where 
init is the initial configuration function.  In [34] Liu and Lü 
determine init(x) by node degree so that init(x) = dx/m. 

Superposed Random Walk with step s [34] is similar to the 

LRWs index and defined as SRWs(x, y) = 1  i  s LRWs(x, y).  
Here a random walker is continuously released at the starting 
point. A higher similarity is between the target node and the 
nodes nearby results. 

Matrix Forest Index [32] is defined by MFI = (I + L)
–1

.  
MFI gives the ratio of the number of spanning rooted forests 
(such that nodes x and y belong to the same tree rooted at x) to 
all spanning rooted forests of the network. 

Transfer Similarity with CN (TS) is defined, using a 
parametrized version of MFI, by TS = (I + λ · CN)

–1
 * CN. 

The KDD paper [40] only implements RD, PR, and SR.  In 
our experiments we also implemented Cos+, RWR with β = 
0.95, LRW with 3-5, SRW with 3-5, MFI, and TS.  See 
Appendix, Tables XI, XII, and XIII.  In our implementations, 
random walk-based methods could not be calculated on two 
datasets (NS, Yeast) due to memory limitations.  On the other 
three sets (USAir, PB, and Celegens), every random walk 
method was superior to the WLLR model, with the exception 
of RD and SR and TS on all sets, and RWR 0.95 and MFI on 
USAir. 
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E. Latent Feature-based Methods 

Latent (present participle of lateo, “lie hidden”) feature-
based models attempt recover hidden features which are then 
used to predict graphs links. 

Stochastic Block Model (SBM) [5], [35]-[37] partitions 
nodes into groups and the probability that two nodes are 
connected depends solely on the groups to which they belong. 

Let  be a partition, Qab denote the probability that groups a 
and b are connected (so that Qaa = 1 for all a), and cab denote 
the number of connections (i.e. edges) between groups.  The 
likelihood L(A|M) of observed structure A given M is therefore 

a  b (Qab)
c_(ab)

 · (1 – Qab)
1 – c_(ab)

.  From this SBM(x, y) [21] is 
defined via Bayes‟ Theorem as 

L(Axy = 1|M)L(A|M)p(M)dM  L(A|M)p(M)dM 

where Ω is the set of all partitions and p(M) is a constant 
assuming no prior knowledge about the model. 

With Matrix Factorization (MF) [39], some entries in A are 
unknown.  MF attempts to approximate A, using only known 

entries, into two low-dimensional matrices so that A  FG
T
 

with F being N K, G being N K, and K being the number of 
latent features.  The squared error is thus given by (eij)

2
 = (aij – 

kKfikgkj)
2
.  A regularization technique adds a factor to avoid 

over-fitting so that instead (eij)
2
 = (aij –  k  K fik gkj)

2
 + ( /2) k  

K (||F||
2
 + ||G||

2
).  The goal is to minimize the sum of all squared 

errors to obtain optimal F and G. The gradient at current values 
is calculated via partial differentiation with respect to fik and 
separately with respect to gkj.  Weights are then updated in the 

direction opposite the gradient and this gives rules fik = fij +  

(2 eij gkj –  fik) and gkj = gkj +  (2eij fik –  gkj) which are then 
used iteratively until error converges to a minimum. Implicit in 
the above formulation is that squared errors must be known 
elements of A, so aij is in the training set. 

Amongst the two methods, our results showed that SB 
generally provided better results with respect to link prediction.  
See Appdendix, Table XIV.  For the USAir and Celegens data 
sets, SB outperformed the WLLR. For the PB and Celegens 
datasets, MF likewise outperformed WLLR. 

F. Summary 

Each of the aforementioned methods were implemented 
with various parameters as outlined in the Appendix. In 
particular, our implementation extends the KDD authors‟ 
implementation by testing all data sets on the additional 
common neighbor schemes (13 instead of 5), path-based 
methods (6 instead of 1), random walk-based methods (13 
instead of 3). We also implemented all of the authors‟ latent 
feature models.  On the five datasets sets tested, all author data 
on these methods were able to be validated. In our 
implementation, a WL-model is run as linear regression and 
noted as WLLR.  WLLR did not exhibit superior performance 
in any run for which comparisons were possible. Amongst the 
comparisons possible, in 80% of these our implementations 
(not implemented in the KDD paper) demonstrated superior 
performance.  In particular, WLLR AUC results for NS, PB, 
Yeast, and Celegens were 0.865, 0.838, 0.860, and 0.804, 
respectively; the corresponding results for LHRII (all cases), 
LRW3, LNBAA, and LRW3 were 0.9690, 0.9367, 0.8990, and 

0.9197, respectively. For USAir, the WLLR AUC score was 
0.930 and RA demonstrated superior performance with an 
AUC score of 0.9540. Common neighbor methods were 
superior in 40% of the cases. Random walk-based methods 
were superior in another 40% of the cases. Finally, the Path-
based methods were superior in the remaining 20% of cases.  
Table IV demonstrates these results. 

TABLE IV. COMPUTATIONS 

Data Set WLLR Top Score 
Models with  

Top Score 

Top Score 

Class 

Top Score in 

this Paper 

USAir 0.930 0.9540 RA 
Common 

neighbor 
 

NS 0.865 0.9690 
LHNII 

Β ∈{3,4,5} 
Path-based ✔  ️

PB 0.838 0.9367 LRW3 Random-walk ✔  ️

Yeast 0.860 0.8990 
AA, RA, 
LNBAA 

Common 
neighbor 

✔️a 

C.ele 0.804 0.9197 LRW3 Random-walk ✔  ️

a. AA and RA were implemented in [40]; LNBAA was implemented in this paper 

VI. CONCLUSION 

Chen and Zhang [40] develop novel WL-link prediction 
scheme which to-date best predicts links in real world graph 
data, according to experimental data.  An innovative feature is 
that link formation mechanisms are learned, not assumed.  WL-
link prediction schemes work by encoding enclosed subgraphs 
as adjacency matrices. Encoding occurs via the author‟s 
modification of the Weisfeiler-Leman (WL) algorithm [12] 
from graph theory. The authors‟ modification, Palette-WL, 
labels vertices according to their structural roles in the 
subgraph and preserves subgraph intrinsic directionality.  
Training on adjacency matrices then learns a predictive model. 
When training is done on the authors‟ neural network, the 
model is called WLNM, i.e. WL Neural Machine, and this 
requires advanced support for parallelism or distributed 
computing.  When training is done with linear regression, the 
model is called WLLR, i.e. WL Linear Regression, and this 
was the focus of our work; forthcoming work will tackle 
WLNM. 

We extended the authors‟ implementations by testing all 
data sets on additional CN-, path- and random walk-based 
schemes.  In particular, we implemented 32 such schemes 
compared to the nine from the KDD authors. We also 
implemented all of the authors‟ latent feature models.  On five 
data sets, all author data on these methods were validated.  The 
WLNM model still demonstrates superiority even when all 
additional schemes are implemented, according to data 
provided by the KDD authors. The linear regression version of 
the model, WLLR, on the other hand, was not superior when 
calculable.  In fact, in 80% of the datasets where comparisons 
were possible, one of our added implementations proved 
superior. 
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VII. FUTURE WORK 

Given the successes in validating the results from [40] for 
WLLR and in demonstrating a multitude of results which 
supplant that model, our next step will be to implement and 
validate WLNM.  That is, the current work is limited in scope 
to only the WLLR model. Therefore, the goal will be to 
determine if the WLNM model can also be supplanted. We will 
also run all experiments on the three additional data sets 
(Power, Router, and E.coli) which the authors test in [40] and 
which require advanced support for parallelism or distributed 
computing. 

Other opportunities for future work also abound. For 
instance, in what ways can might the graph coloring scheme be 
applied to other algorithms in data science (e.g. clustering)?  
Also, as the authors' algorithm pertains only to undirected 
graphs, how might the WLNM be modified in order to apply to 
directed graphs?  It is also plausible that for specific classes of 
graphs, a parred set of calculations might suffice towards 
leading to manageable neural network computations; one 
direction for future work would be to identify such classes and 
prove optimal computational bounds. Another line of work 
would be to determine whether there might be a class of 
circumstances in which a heuristic method (or an embedding 
model) may provide a better result. If so, what properties, 
would such a class or model have, mathematically, and could 
an example be found in nature?  
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APPENDIX 

The full set of results from this paper are presented in various tables as 
Area Under the receiver operating characteristic Curve (i.e. AUC) 
measurements (“Test”).  Calculations are towards validating the results in [40] 
(“Paper”). 

Entries with „–‟ require a Graphics Processing Unit for calculations and are 
outside the scope of this study.  Tables or columns marked with * contain 
results run exclusively in this paper; no such computations were run in [40] 
(“Paper”). 

TABLE V. WEISFEILER-LEMAN BASED METHODS  

No Data Source WLLR 10a WLNM 10b 

1 USAir Paper 0.896 0.958 

    Test 0.930 – 

2 NS Paper 0.862 0.984 

  
 

Test 0.865 – 

3 PB Paper 0.827 0.933 

    Test 0.838 – 

4 Yeast Paper 0.854 0.956 

  
 

Test 0.860 – 

5 C.ele Paper 0.803 0.859 

    Test 0.804 – 

a. Weisfeiler-Leman Linear Regression Model, K = 10 (WLLR 10) 

b. Weisfeiler-Leman Neural Machine, K = 10 (WLMN 10) 

TABLE VI. COMMON NEIGHBOR METHODS I 

No Data Source CNa Jacb AAc RAd PAe 

1 USAir Paper 0.940 0.903 0.950 0.956 0.894 

    Test 0.939 0.905 0.950 0.954 0.899 

2 NS Paper 0.938 0.938 0.938 0.938 0.682 

  
 

Test 0.945 0.945 0.945 0.945 0.705 

3 PB Paper 0.919 0.873 0.922 0.923 0.901 

    Test 0.912 0.867 0.915 0.917 0.897 

4 Yeast Paper 0.891 0.890 0.891 0.892 0.024 

  
 

Test 0.898 0.897 0.899 0.899 0.836 

5 C.ele Paper 0.848 0.792 0.864 0.868 0.755 

    Test 0.842 0.782 0.858 0.862 0.761 

a. Common Neighbor (CN) 

b. Jaccard Index (Jac) 

c. Adar-Adamic Index (AA) 

d. Resource Allocation (RA) 

e. Preferential Attachment (PA) 

TABLE VII. COMMON NEIGHBOR METHODS II* 

No Data Source SltOna Sorb HPIc HDId 

1 USAir Test 0.9037 0.8959 0.8621 0.8891 

2 NS Test 0.9450 0.945 0.9449 0.9449 

3 PB Test 0.8692 0.8673 0.8478 0.8637 

4 Yeast Test 0.8972 0.8972 0.8961 0.8971 

5 C.ele Test 0.7897 0.7816 0.7958 0.7685 

a. Salton Index (SltOn) 

b. Sorenson Index (Sor) 

c. Hub Promoted Index (HPI) 

d. Hub Depressed Index (HDI) 

TABLE VIII. COMMON NEIGHBOR METHODS III 

No Data Source LHN* LNBCNa LNBAAb LNBRAc 

1 USAir Test 0.7615 0.9434 0.9503 0.8943 

2 NS Test 0.9446 0.9452 0.9452 0.7045 

3 PB Test 0.7584 0.915 0.9165 0.8973 

4 Yeast Test 0.8932 0.8987 0.899 0.8355 

5 C.ele Test 0.716 0.858 0.8623 0.7605 

a. Leicht-Holme-Newman (LHN) 

b. Local naive bayes method with Common Neighbor (LNBCN) 

c. Local naive bayes method with Adar-Adamic Index (LNBAA) 

d. Local naive bayes method with Resource Allocation (LNBRA) 

TABLE IX. PATH-BASED METHODS I 

No Data Source Katz with 𝛽= 0.01a 

1 USAir Paper 0.931 

    Test 0.926 

2 NS Paper 0.940 

  
 

Test 0.947 

3 PB Paper 0.928 

    Test 0.924 

4 Yeast Paper 0.921 

  
 

Test – 

5 C.ele Paper 0.864 

    Test 0.860 

a. Katz Index with damping factor 𝛽 = 0.01 
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TABLE X. PATH-BASED METHODS II 

No Data Source 
Katz 

𝛽= 0.001a 
LocalPathb 

LHNII 

0.9c 

LHNII 

0.95d 

LHNII 

0.99e 

1 USAir Test 0.9279 0.9306 0.6040 0.5870 0.5712 

2 NS Test 0.9474 0.9499 0.9690 0.9690 0.9690 

3 PB Test 0.9266 0.9273 0.6363 0.5810 0.5273 

4 Yeast Test – – – – – 

5 C.ele Test 0.8614 0.8626 0.6070 0.5551 0.5003 

a. Katz Index with damping factor 𝛽 = 0.001 

b. Local Path Index (LocalPath) 

c. Leicht-Holme-Newman II with 0.90 

d. Leicht-Holme-Newman II with 0.95 

e. Leicht-Holme-Newman II with 0.99 

TABLE XI. RANDOM-WALK BASED METHODS I 

No Data Source RDa PRb SRc 

1 USAir Paper 0.898 0.944 0.782 

    Test 0.911 0.931 0.775 

2 NS Paper 0.582 0.940 0.940 

  

 

Test – – – 

3 PB Paper 0.883 0.935 0.773 

    Test 0.879 0.930 0.771 

4 Yeast Paper 0.880 0.927 0.914 

  

 

Test – – – 

5 C.ele Paper 0.740 0.901 0.760 

    Test 0.726 0.899 0.758 

a. Resistance Distance, or Average Commute Time (RD) 

b. PageRank, or Random Walk with restart, with damping factor d = 0.85 (PR) 

c. SimRank with 0.6 (SR) 

TABLE XII. RANDOM-WALK BASED METHODS II* 

No Data Source Cos+a RWRb LRW 3c LRW 4d LRW 5e 

1 USAir Test 0.9342 0.914 0.9389 0.9367 0.9337 

2 NS Test – – – – – 

3 PB Test 0.9196 0.917 0.9367 0.9293 0.9325 

4 Yeast Test – – – – – 

5 C.ele Test 0.865 0.857 0.9197 0.9034 0.9105 

a. Cos+ based on Laplacian matrix (Cos+) 

b. Random walk with restart with damping factor 0.95 (RWR 0.95) 

c. Local Random Walk with step 3 (LRW 3) 

d. Local Random Walk with step 4 (LRW 4) 

e. Local Random Walk with step 5 (LRW 5) 

TABLE XIII. RANDOM-WALK BASED METHODS III 

No Data Sourcea SRW 3a SRW 4b SRW 5c MFId TS 

1 USAir Test 0.9407 0.9389 0.9384 0.9129 0.589 

2 NS Test – – – – – 

3 PB Test 0.9257 0.9272 0.9292 0.8959 0.4417 

4 Yeast Test – – – – – 

5 C.ele Test 0.9009 0.9031 0.9063 0.8722 0.5076 

a. Superposed Random Walk with step 3 (SRW 3) 

b. Superposed Random Walk with step 4 (SRW 4) 

c. Superposed Random Walk with step 5 (SRW 5) 

d. Matrix Forest Index (MFI) 

e. Transfer Similarity (TS) 

TABLE XIV. LATENT FEATURE BASED METHODS 

No Data Source SBMa MF-cb 

1 USAir Paper 0.944 0.918 

    Test 0.932 0.914 

2 NS Paper 0.920 0.636 

  
 

Test – 0.620 

3 PB Paper 0.938 0.930 

    Test – 0.927 

4 Yeast Paper 0.914 0.831 

  
 

Test – – 

5 C.ele Paper 0.867 0.832 

    Test 0.878 0.837 

a. Stochastic Block Method (SBM) 

b. Matrix Factorization with classification loss function (MF-c) 

 

 


