
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

16 | P a g e

www.ijacsa.thesai.org

Link Prediction Schemes Contra Weisfeiler-Leman

Models

Katie Brodhead

Department of Mathematics

Florida A&M University

Tallahassee, United States

Abstract—Link prediction is of particular interest to the data

mining and machine learning communities. Until recently all

approaches to the problem used embedding-based methods

which leverage either node similarities or latent group

memberships towards link prediction. Chen and Zhang recently

developed a class of non-embedding approaches called

Weisfeiler-Leman (WL) Models. WL-Models extract subgraphs

around links and then encode subgraph patterns via adjacency

matrices using the so-called Palette-WL algorithm. A training

stage then learns nonlinear graph topological features for link

prediction. Chen and Zhang compared two WL-Models – a

linear regression model (―WLLR‖) and a neural networks model

(―WLNM‖) – against 12 different common link prediction

schemes. In this paper, all author claims are validated for

WLLR. Additionally, WLLR is tested against 22 additional

embedding-based link prediction techniques arising from

common neighbor-, path- and random walk-based schemes.

WLLR is shown not to be superior when calculable. In fact, in

80% of the datasets where comparisons were possible, one of our

added implementations proved superior.

Keywords—Weisfeiler-Leman; link prediction; machine

learning; linear regression; common walk; path-based; random

walk; stochastic block; matrix factorization

I. INTRODUCTION

Improvement in effective link prediction has been of
particular interest to the data mining and machine learning
communities. Much interest arises from diverse real-world
applications. Particular applications include friend
recommendation in social networks [2], product
recommendation in e-commerce [3], knowledge graph
completion [4], finding interactions between proteins [5], and
recovering missing reactions in metabolic networks [6].
Additional interests arise from the search to overcoming a
central challenge for researchers: determining which method is
best for a particular situation, especially when each scheme is
grounded in a particular heuristic.

Heuristics range in complexity from the more complex (e.g.
stochastic block models [5], probabilistic matrix factorization
[7]) to the more simplistic (e.g. common neighbors (CN) [1],
Katz index [9]). Heuristics with mid-level complexities
include methods which calculate node proximity scores via
network topologies or random walks. Amongst the diverse
methods which exist, the following two challenges have always
persisted.

1) Heuristic complexity does not often translate into

corresponding performance. The more simplistic often work

well, are more interpretable, and scalable. The Katz and CN

indices are exemplary examples. The latter asserts higher link

probability as the number of common neighbors increases and

is reasonably accurate with respect to links on social networks.

2) All known heuristics lack universal applicability to

different kinds of networks. CN is again a prime example: its

performance electrical grids and biological networks is quite

poor [10] notwithstanding its excellent aforementioned

successes. Resistance distance (RN) is a converse example: it

performs poor where CN thrives [11]. A study of over 20

different heuristics found flaws in each, making none

universally effective performance models [10].

Hitherto, the only resolutions to (1) and (2) have been
expert selection or trial-and-error.

A recent KDD paper [40] modifies the Weisfeiler-Leman
(WL) algorithm from graph theory towards making link
predictions. The modified algorithm is called Palette-WL.
Additional algorithmic additional machinery is then built on
top which allow for machine learning implements to operate.
The authors claim an establishment of new universal model
which learns a suitable heuristic directly from a given network,
thereby demolishing challenge 2. In addition, reported results
demonstrate a superior performance over a wide variety of
known link prediction methods, thereby ensuring the
demolishment of challenge 1.

In this paper, we implement Palette-WL in MATLAB and
train a linear regression model (i.e., the authors‟ WLLR model)
towards validating author claims which the authors test on 12
common link prediction schemes. We also expand testing
scope and implement 22 additional tests towards developing a
more complete picture of author claims. All 34 aforementioned
link prediction schemes are “lean” – that is, they do not require
a neural network or advanced support for parallelism or
distributed computing. The goal of this work, then, is to test
author claims on lean prediction schemes contra WLLR. To
that end, we test five of the authors‟ lean data sets (USAir, NS,
PB, Yeast, C.ele). These are described in Section II with results
presented in Table V. Three of the authors data sets (Power,
Router, and E.coli) are not tested in this paper as these are not
“lean”. Our future work will perform the same type of analysis
on the full WLNM model, and additional non-lean data sets.
See Section VI on Future Work.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

17 | P a g e

www.ijacsa.thesai.org

This paper is organized as follows. In Section II, a high-
level overview of link prediction is presented. In Section III,
we present Palette-WL and the implementation of WL-Models.
Section IV details the many specific link prediction models
implemented in this paper along with the key results that were
obtained. Section V gives a conclusion, while Section VI
presents directions for future work. The tail end of this work,
following the References Section, includes an Appendix where
the full set of computation results from this paper is presented
in various tables.

II. OVERVIEW OF LINK PREDICTION

Historically, link prediction models have been feature-
based (a.k.a. embedding-based) arising either from (1)
topological features or (2) latent features.

1) Topological feature models. These models leverage

node similarities, either locally or globally. Topological

models do not perform well when similarity scores do not

capture the network formation mechanisms. Common

neighbor-based methods (e.g. CN [1], Adamic-Adar [2]),

Path-based methods (e.g., Katz [9]), and random-walk based

methods (e.g. PageRank [1]) all fall within this category. A

breakdown of each of these categories is given in Section IV.

2) Latent feature Models. These models assume that latent

groups exist for nodes and that links are determined by group

memberships. Latent models extract group memberships via

the low-rank decomposition of a network adjacency matrix [3]

or via training which fits probabilistic models [5]. Given these

models‟ focus on individual nodes, a central weakness arises

in understanding how networks are formed. Popular methods

include ranking methods [17], learning to rank methods [17],

matrix factorization [16], and stochastic block methods [5],

[18]. This paper implements methods from the latter two.

Weisfeiler-Leman models for link prediction are not
feature-based. The ideas which motivated its implementation
arose from two research areas related to graph classification:
design of efficient graph kernels [14], [19], and effective graph
labeling schemes [15] arising from impositions of vertex
orderings. Niepert et al. [15], in particular, focus on orderings
towards defining receptive fields around node pixels; the fields
are then used to learn a convolutional neural network for graph
classification. WL-models [40] work by instead extracting
subgraphs around links instead of node pixels, and by focusing
on link prediction rather than on graph classification.

WL-models are new to the link prediction landscape being
only formally published in the recent Chen-Zhang paper [40]
which this paper tests. Chen and Zhang, in particular,
implement two key WL-Models, WLLR and WLNM, along
with a third, Palette-WLNM, an extension of WLNM. Among
the two, WLNM is superior. Area Under the receiver operating
characteristic Curve (AUC) Results are listed in Table I, split
in two parts, for five datasets and twelve non-WL methods. In
short, WLNM outperforms nine state-of-the-art link-prediction
methods developed by heuristic means (e.g. Katz, PageRank,
SimRank, etc.), and three latent feature models (stochastic
model block, and two matrix factorization methods); a full
explanation of all methods will be given in Section IV. \WLLR
is less successful, but nonetheless a strong adversarial method.
Palette-WLNM is tested elsewhere in their paper, but not
considered in this present paper given this paper‟s focus on
WLLR.

The five datasets used above are USAir, NS, PB, Yeast,
and C.ele. USAir is a network of US airlines. NS is a
collaboration network of researchers who publish papers on
network science. PB is a network of US political blogs. Yeast
is a protein-protein interaction network in yeast. C.ele is a
neural network of C. elegans. All evaluation methods (CN, Jac,
AA, etc., will be described in full detail in Section IV.

TABLE I. RESULTS FROM [40]

Data CN Jac AA RA PA Katz RD PR SR SBM MF-c MF-r WLLR10 WLNM10

USAir 0.940 0.903 0.950 0.956 0.894 0.931 0.898 0.944 0.782 0.944 0.918 0.849 0.896 0.958

NS 0.938 0.938 0.938 0.938 0.682 0.940 0.582 0.940 0.940 0.920 0.636 0.720 0.862 0.984

PB 0.919 0.873 0.922 0.923 0.901 0.928 0.883 0.935 0.773 0.938 0.930 0.943 0.827 0.933

Yeast 0.891 0.890 0.891 0.892 0.824 0.921 0.880 0.927 0.914 0.914 0.831 0.881 0.854 0.956

C.ele 0.848 0.792 0.864 0.868 0.755 0.864 0.740 0.901 0.760 0.867 0.832 0.844 0.803 0.859

Rank 7.875 10.625 7.500 6.875 12.875 7.125 10.375 5.125 11.000 5.625 10.500 9.500 10.125 2.500

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

18 | P a g e

www.ijacsa.thesai.org

IV. PALETTE-WL AND WL-MODELS

WL-models use a modified version of the WL-algorithm,
called Palette-WL, from graph theory towards making link
predictions. Additional algorithmic additional machinery is
then built on top which allow for machine learning implements
to operate. Three steps, in particular, flesh out an entire WL-
Model.

1) Extract enclosing subgraphs: generates K-vertex

neighboring subgraphs.

2) Encode subgraph patterns: via adjacency matrices with

vertex ordering given by Palette-WL.

3) Training: learns nonlinear graph topological features

for link prediction.

To understand each step, a review of graph labeling
functions, along with the base WL-Algorithm is in order. A

graph labeling function is a map L: V → C from vertices V to

an ordered set of colors C = {1, ..., n}. C uniquely determines
the vertex order in an adjacency matrix whenever L is one-to-
one. The WL-algorithm (“WL”), then, is a color refinement
algorithm which iteratively updates vertex colors on a
particular graph labeling function, specified below, until a
fixed point is reached. (Palette-WL, discussed later, further
ensures that the converged function is one-to-one.)

WL specifically works by iteratively augmenting vertex
labels using neighbors‟ labels. It then compresses augmented
labels into new “signature” labels until convergence. At first,
all vertices are set to the same color “1”. Each vertex gets its
new signature string by concatenating its own color and the
sorted colors of its immediate neighbors. Vertices are then
sorted by the ascending order of their signature strings and
assigned new colors 1, 2, 3. Vertices with the same signature
strings get the same color. WL is formally presented below.
See Fig. 1 for an example of the process.

Fig. 1. An example of WL.

WL-Algorithm

1: input: graph G = (V, E), initial colors c0(v) = 1, v ∈ V

2: output: final colors c (v) for all v ∈ V

3: let c(v) = c0(v) for all v ∈ V

4: while c(v) has not converged do

5: for each v ∈ V do

6: collect a multiset {c (v′) |v′ ∈ Γ(v)}

 containing its neighbors’ colors

7: sort the multiset in ascending order

8: concatenate the sorted multiset to c (v)

 to generate a signature string

 s(v) = ⟨c (v), {c (v′) | v′ ∈ Γ(v)}sort⟩

9: end for

10: sort all s(v) in lexicographical ascending order

11: map all s(v) to new colors 1, 2, 3... sequentially;

 same strings get the same color

12: end while

WL ensures that final colors encode the structural roles of
vertices inside a graph. It also defines a relative ordering for
vertices, with ties that is consistent across graphs. More
specifically, vertices with the same final color share the same
structural role within a graph.

We now fully outline the three-step (1-3) process for
implementing a WL-model. Step 1 extracts K-vertex enclosing
subgraphs via the “Extract Enclosing Subgraphs Algorithm”
below. Step 2 then encodes subgraph patterns via adjacency
matrices with vertex ordering given by the Palette-WL, also
noted below. Fig. 2 gives an overview of these steps in action.
Step 3, training, is via any viable machine learning algorithm.
The authors use a neural network, WLNM, to achieve superior
results. They also train via linear regression, in a method called
WLLR.

Extract Enclosing Subgraphs Algorithm

1: input: target link (x,y), network G, integer K

2: output: enclosing subgraph G(VK) for (x,y)

3: VK = {x,y}

4: fringe = {x,y}

5: while |VK| < K and |fringe| > 0 do

6: fringe = (∪v ∈ fringe Γ(v)) \ VK

7: VK = VK ∪ fringe

8: end while

9: return enclosing subgraph G(VK)

Palette-WL Algorithm

1: input: enclosing subgraph G(VK) centered at link (x, y),

 which is extracted by the EES Algorithm

2: output: final colors c (v) for all v ∈ VK

3: calculate d(v) = sqrt[d(v,x)* d(v, y)] for all v in VK

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

19 | P a g e

www.ijacsa.thesai.org

4: get initial colors c(v) = f(d(v))

5: while c(v) has not converged do

6: calculate hashing values h(v) for all v ∈ VK by (2)

7: get updated colors c(v) = f(h(v))

8: end while

9: return c(v)

Fig. 2. An overview of a WL-model, Steps 1-2.

Chen and Zhang show, via mathematical proof that the
Palette-WL graph labeling function converges in at most K
iterations to a one-to-one function for a graph with K vertices.
Furthermore, the function is color-order preserving: vertices‟
color orderings are preserved from state-to-state. Both of these
facts enable WL-models to successfully predict links.

V. ASSESSMENT OF WL-MODELS

We use Area Under the receiver operating characteristic
Curve (AUC) to measure results. AUC measures on the
probability that a randomly chosen missing link is given a
higher score than a randomly chosen nonexistent link. More

precisely, if among n independent comparisons, there are n

times the missing links having a higher score, n times those

have the same score, the AUC value is AUC = (n + 0.5n)/n.

A. Assessment Methods

In our experiments we compare the authors WL-model
implemented with linear regression (WLLR), against methods
from four traditional link-based assessment areas: common
neighbor-based methods, path-based methods, random walk-
based methods, and latent feature-based methods. For each
test, we compute the AUC value and tabulate the results. The
Appendix includes tables with all of our results. We outline
the algorithms used in assessment below. Our implementation
is motivated largely by two recent papers [38], [39].

B. Common Neighbor (CN)-based Methods

For a node x, let (x) be the set of neighbors of x. The idea
is that two nodes x and y are more likely to share a link if they
have many common neighbors. The most basic measure

CN(x,y), defined to be | (x)   (y)|, asserts this. Note that if
A is the adjacency matrix for the corresponding graph, then
CN(x, y) = A

2
(x, y).

Now let  be a scaler for a link measure M so that M(x,y)

= CN(x, y)/, and let dx denote the degree of node x. For

various choices of , different CN-measures, noted in Table II,
are obtained.

TABLE II. CN-MEASURES, |Γ(X) Γ(Y)| /ALPHA

α =

CN Jac SltOna Sora

1 |Γ(x)∪Γ(y)| sqrt(dx  dy) (dx + dy)/2

α =

HPIa HDIa LHNa

min{dx, dy} max{dx, dy} dx  dy

a. 'Measurements not provided in the KDD paper [40]

The Jaccard Index (Jac) [23] gives the probability that x
and y are adjacent, given an edge of either x or y. The Salton
Index (SltOn) [20] is often also called cosine similarity in the
literature. Sørensen Index (Sor) [24] is primarily used for
ecological data. Hub Promoted Index (HPI) [25] is used to
quantify the topological overlap of pairs of substrates in
metabolic network; under this scheme, links adjacent to hubs
are more likely to be assigned to be assigned high scores. Hub
Depressed Index (HDI) is the complementary measure to HPI.
Finally, the Leicht-Holme-Newman Index (LHN) [22] assigns
high similarity to node pairs that have many common
neighbors compared to the expected number of such neighbors;

in particular, dx  dy is proportional to the expected number of
common neighbors of nodes x and y in the configuration model
[26].

Three related CN-based methods we considered are
Preferential Attachment Index (PA), Adamic-Adar Index (AA),
and Resource Allocation Index (RA); these are noted in
Table III. PA is motivated by a preferential attachment
mechanism which ensures that the probability that a new link

to be added connects x and y is proportional to dx  dy. PA is
often used to quantify the functional significance of links
subject to various network-based dynamics such as percolation
[27], synchronization [28], and transportation [29]. AA is a
refinement of simple counting of common neighbors; it assigns
less-connected neighbors more weight [2]. RA [8] is motivated
by the resource allocation dynamics on complex networks.
Suppose x and y are not directly connected and x can send a
resource to y, with common neighbors playing the role of
transmitters. If each transmitter has a unit of resource, and
distributes equally to all its neighbors, then RA is the amount
of resource y received from x.

TABLE III. THREE RELATED CN-BASED MEASURES

PA AA RA

dx  dy
  z  (x) (y) (1/log(dz))  z  (x) (y) (1/dz)

We also considered three local naïve Bayes methods with
common neighbor, Adar-Adamic index, and resource
allocation, respectively. These are listed as LNBCN, LNAA,
and LNBRA in the tables provided in the Appendix.

In our experimental runs on the five data sets, we able to
validate all of the KDD results [40] on the measures that were
used in that paper: CN, Jac, AA, RA, and PA. See the
Appendix, Tables VI, VII and VIII. Numerical values were

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

20 | P a g e

www.ijacsa.thesai.org

rarely the same, but sufficiently close. In addition, in each of
our experimental runs inclusive of all additional measures, the
RA index generally performs best, while the AA, CN, and
LNBAA indices follow closely behind in best overall
performance. This “best performance” neglects comparisons
against the WLNM test runs. Because WLNM outperforms
even AA and CN, WLNM still provides superior performance
according to KDD data. A caveat is that we only ran the WL-
model with linear regression, called WLLR, which fared worse
amongst the various CN-measures above. In fact, almost
without exception, all 13 common neighbor methods
implemented exhibited superior performance over WLLR on
the NS, PB, and Yeast data sets. Exceptions occurred with PA,
Jac, LHN, and LNBRA on certain data sets.

C. Path-based Methods

The Katz Index [9] is based on an ensemble of all paths. It
is a sum over the collection of all paths with a damping factor β
providing shorter paths more weight. Letting A be the

adjacency matrix, Katz(x, y) =  i 1(A)
i
 = (I – A)

–1
– I.

The Local Path Index (LP) [8, 33] takes local paths into
additional consideration beyond CN and is defined as LPI(x, y)
= A

2
 + ϵA

3
 where ϵ is a free parameter; note that when ϵ = 0,

the index is just CN. A more expanded version allows for n
sum factors, and as n → ∞ the index becomes Katz.
Experimental results show that the optimal n is positively
correlated with the average shortest distance of the network
[33].

The Leicht-Holme-Newman Index (LHNII) [22] is a
variant of the Katz index and is based on the concept that two
nodes are similar if their immediate neighbors are themselves

similar. A self-consistent matrix formulation is S = AS + ψI =

ψ(I – A)
–1

= ψ(I + Katz(x, y)) where ψ and β are free
parameters controlling the balance between the two
components of the similarity. An formulation useful for

computations is S = 2mD
–1

(I – A/)
–1

D
–1

 where λ is the
largest eigenvalue of A, m is the total number of edges in the
network, D is the degree matrix, and β is a free parameter. The
choosing of β depends on the investigated network, and smaller
β assigns more weights on shorter paths.

The KDD paper [40] only implements Katz with β = 0.01.
In our experiments we also run Katz with β = 0.001, as well as
LocalPath, and LHNII with β = 0.9, 0.95, and 0.99. See
Appendix, Tables IX and X. In our implementations, on four
data sets (USAir, NS, PB, and Yeast), Katz (both versions) and
LocalPath always exhibited superior performance to WLLR,
with the exception of Katz (β = 0.01) on USAir. For the NS
dataset, LHNII actually exhibited top performance on WLLR
over all methods discussed in this section.

D. Random Walk-based Methods

Resistance Distance (RD) is often called Average
Commute Time (ACT) in other contexts and equal to s(x, y) +
s(y, x) where s(x, y) denotes the average number of steps
required by a random walker starting from node x to reach
node y. The pseudoinverse of the Laplacian matrix L = D –
A, is easily computable as m(L

+
(x, x) + L

+
(y, y) – 2L

+
(x, y)) [11,

30]. ACT(x,y) is defined as the reciprocal of this with m=1 in

order to ensure that two nodes are more similar whenever they
have a smaller average commute time.

The PageRank (PR) algorithm [13] may be directly applied
using Random Walk with Restart (RWR). Consider a random
walker starting from node x, who will iteratively move to a
random neighbor with probability c and return to node x with
probability 1 – c. Let denote the probability that a random

walker locates at node y in the steady state. Then px = px1, px2,

... is given by px = c · P
T
px + (1 – c) · ex where ex is the n 1

vector in Euclidean n-space which is 1 at entry x and zero
elsewhere, and P is the transition matrix with P(x, y) = 1/dx if x
and y are connected and 0 otherwise. The solution, given by px
= (1 – c)(I – cP

T
)

–1
ex, is used in the code for this project.

Define RWR as RWR(x, y)= pxy + pyx.

SimRank (SR) [31] is defined in a self-consistent way

similar to LHNI as SR(x, y) =  ( z(x)  z(y) SR(z, z))/(dxdy)

where SR(x, x) = 1 and   [0, 1] is a decay factor. The
underlying idea is that two nodes are similar if they are
connected to similar nodes. From a random-walk perspective,
SR measures how soon two random walkers, respectively
starting from nodes x and y, are expected to meet at a certain
node.

Cosine Similarity based on L
+
 (Cos+) [30] is defined using

pseudoinverse L
+
 of the Laplacian matrix L = D – A so that

Cos+(x, y) = L
+
(x, y)/sqrt(L

+
(x, x) · L

+
(y, y)).

Local Random Walk with step s (LRWs) [34] measures the
similarity between nodes x and y when random walker is
initially put on node x and proceeds for s steps. The density
vector is defined by Vx(0) = ex and Vx(t + 1) = P

T
 ·Vx(t) for t ≥

0. Then LRWs(x, y) = init(x) · Vxy(s) + init(y) · Vyx(s) where
init is the initial configuration function. In [34] Liu and Lü
determine init(x) by node degree so that init(x) = dx/m.

Superposed Random Walk with step s [34] is similar to the

LRWs index and defined as SRWs(x, y) = 1  i  s LRWs(x, y).
Here a random walker is continuously released at the starting
point. A higher similarity is between the target node and the
nodes nearby results.

Matrix Forest Index [32] is defined by MFI = (I + L)
–1

.
MFI gives the ratio of the number of spanning rooted forests
(such that nodes x and y belong to the same tree rooted at x) to
all spanning rooted forests of the network.

Transfer Similarity with CN (TS) is defined, using a
parametrized version of MFI, by TS = (I + λ · CN)

–1
 * CN.

The KDD paper [40] only implements RD, PR, and SR. In
our experiments we also implemented Cos+, RWR with β =
0.95, LRW with 3-5, SRW with 3-5, MFI, and TS. See
Appendix, Tables XI, XII, and XIII. In our implementations,
random walk-based methods could not be calculated on two
datasets (NS, Yeast) due to memory limitations. On the other
three sets (USAir, PB, and Celegens), every random walk
method was superior to the WLLR model, with the exception
of RD and SR and TS on all sets, and RWR 0.95 and MFI on
USAir.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

21 | P a g e

www.ijacsa.thesai.org

E. Latent Feature-based Methods

Latent (present participle of lateo, “lie hidden”) feature-
based models attempt recover hidden features which are then
used to predict graphs links.

Stochastic Block Model (SBM) [5], [35]-[37] partitions
nodes into groups and the probability that two nodes are
connected depends solely on the groups to which they belong.

Let  be a partition, Qab denote the probability that groups a
and b are connected (so that Qaa = 1 for all a), and cab denote
the number of connections (i.e. edges) between groups. The
likelihood L(A|M) of observed structure A given M is therefore

a  b (Qab)
c_(ab)

 · (1 – Qab)
1 – c_(ab)

. From this SBM(x, y) [21] is
defined via Bayes‟ Theorem as

L(Axy = 1|M)L(A|M)p(M)dM  L(A|M)p(M)dM

where Ω is the set of all partitions and p(M) is a constant
assuming no prior knowledge about the model.

With Matrix Factorization (MF) [39], some entries in A are
unknown. MF attempts to approximate A, using only known

entries, into two low-dimensional matrices so that A  FG
T

with F being N K, G being N K, and K being the number of
latent features. The squared error is thus given by (eij)

2
 = (aij –

kKfikgkj)
2
. A regularization technique adds a factor to avoid

over-fitting so that instead (eij)
2
 = (aij –  k  K fik gkj)

2
 + ( /2) k 

K (||F||
2
 + ||G||

2
). The goal is to minimize the sum of all squared

errors to obtain optimal F and G. The gradient at current values
is calculated via partial differentiation with respect to fik and
separately with respect to gkj. Weights are then updated in the

direction opposite the gradient and this gives rules fik = fij + 

(2 eij gkj –  fik) and gkj = gkj +  (2eij fik –  gkj) which are then
used iteratively until error converges to a minimum. Implicit in
the above formulation is that squared errors must be known
elements of A, so aij is in the training set.

Amongst the two methods, our results showed that SB
generally provided better results with respect to link prediction.
See Appdendix, Table XIV. For the USAir and Celegens data
sets, SB outperformed the WLLR. For the PB and Celegens
datasets, MF likewise outperformed WLLR.

F. Summary

Each of the aforementioned methods were implemented
with various parameters as outlined in the Appendix. In
particular, our implementation extends the KDD authors‟
implementation by testing all data sets on the additional
common neighbor schemes (13 instead of 5), path-based
methods (6 instead of 1), random walk-based methods (13
instead of 3). We also implemented all of the authors‟ latent
feature models. On the five datasets sets tested, all author data
on these methods were able to be validated. In our
implementation, a WL-model is run as linear regression and
noted as WLLR. WLLR did not exhibit superior performance
in any run for which comparisons were possible. Amongst the
comparisons possible, in 80% of these our implementations
(not implemented in the KDD paper) demonstrated superior
performance. In particular, WLLR AUC results for NS, PB,
Yeast, and Celegens were 0.865, 0.838, 0.860, and 0.804,
respectively; the corresponding results for LHRII (all cases),
LRW3, LNBAA, and LRW3 were 0.9690, 0.9367, 0.8990, and

0.9197, respectively. For USAir, the WLLR AUC score was
0.930 and RA demonstrated superior performance with an
AUC score of 0.9540. Common neighbor methods were
superior in 40% of the cases. Random walk-based methods
were superior in another 40% of the cases. Finally, the Path-
based methods were superior in the remaining 20% of cases.
Table IV demonstrates these results.

TABLE IV. COMPUTATIONS

Data Set WLLR Top Score
Models with

Top Score

Top Score

Class

Top Score in

this Paper

USAir 0.930 0.9540 RA
Common

neighbor

NS 0.865 0.9690
LHNII

Β ∈{3,4,5}
Path-based ✔ ️

PB 0.838 0.9367 LRW3 Random-walk ✔ ️

Yeast 0.860 0.8990
AA, RA,
LNBAA

Common
neighbor

✔️a

C.ele 0.804 0.9197 LRW3 Random-walk ✔ ️

a. AA and RA were implemented in [40]; LNBAA was implemented in this paper

VI. CONCLUSION

Chen and Zhang [40] develop novel WL-link prediction
scheme which to-date best predicts links in real world graph
data, according to experimental data. An innovative feature is
that link formation mechanisms are learned, not assumed. WL-
link prediction schemes work by encoding enclosed subgraphs
as adjacency matrices. Encoding occurs via the author‟s
modification of the Weisfeiler-Leman (WL) algorithm [12]
from graph theory. The authors‟ modification, Palette-WL,
labels vertices according to their structural roles in the
subgraph and preserves subgraph intrinsic directionality.
Training on adjacency matrices then learns a predictive model.
When training is done on the authors‟ neural network, the
model is called WLNM, i.e. WL Neural Machine, and this
requires advanced support for parallelism or distributed
computing. When training is done with linear regression, the
model is called WLLR, i.e. WL Linear Regression, and this
was the focus of our work; forthcoming work will tackle
WLNM.

We extended the authors‟ implementations by testing all
data sets on additional CN-, path- and random walk-based
schemes. In particular, we implemented 32 such schemes
compared to the nine from the KDD authors. We also
implemented all of the authors‟ latent feature models. On five
data sets, all author data on these methods were validated. The
WLNM model still demonstrates superiority even when all
additional schemes are implemented, according to data
provided by the KDD authors. The linear regression version of
the model, WLLR, on the other hand, was not superior when
calculable. In fact, in 80% of the datasets where comparisons
were possible, one of our added implementations proved
superior.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

22 | P a g e

www.ijacsa.thesai.org

VII. FUTURE WORK

Given the successes in validating the results from [40] for
WLLR and in demonstrating a multitude of results which
supplant that model, our next step will be to implement and
validate WLNM. That is, the current work is limited in scope
to only the WLLR model. Therefore, the goal will be to
determine if the WLNM model can also be supplanted. We will
also run all experiments on the three additional data sets
(Power, Router, and E.coli) which the authors test in [40] and
which require advanced support for parallelism or distributed
computing.

Other opportunities for future work also abound. For
instance, in what ways can might the graph coloring scheme be
applied to other algorithms in data science (e.g. clustering)?
Also, as the authors' algorithm pertains only to undirected
graphs, how might the WLNM be modified in order to apply to
directed graphs? It is also plausible that for specific classes of
graphs, a parred set of calculations might suffice towards
leading to manageable neural network computations; one
direction for future work would be to identify such classes and
prove optimal computational bounds. Another line of work
would be to determine whether there might be a class of
circumstances in which a heuristic method (or an embedding
model) may provide a better result. If so, what properties,
would such a class or model have, mathematically, and could
an example be found in nature?

REFERENCES

[1] D. Liben-Nowell and J. Kleinberg, "The link-prediction problem for
social networks", Journal of the American society for information
science and technology, Vol. 58, No. 7, pp. 1019–1031, 2007.

[2] L. A. Adamic and E. Adar, "Friends and neighbors on the web", Social
networks, Vol. 25, No. 3, pp. 211–230, 2003.

[3] Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for
recommender systems", Computer, Vol. 8, pp. 30–37, 2009.

[4] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, "A review of
relational machine learning for knowledge graphs", arXiv preprint,
1503.00759, 2015.

[5] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, "Mixed
membership stochastic blockmodels", Journal of Machine Learning
Research, Vol. 9, pp. 1981–2014, September 2008.

[6] T. Oyetunde, M. Zhang, Y. Chen, Y. Tang, and C. L. Boostgapfill,
"Improving the fidelity of metabolic network reconstructions through
integrated constraint and pattern-based methods", Bioinformatics, 2016.

[7] R. Salakhutdinov and A. Mnih, "Bayesian probabilistic matrix
factorization using markov chain monte carlo", Proceedings of the 25th
international conference on Machine learning (ICML), ACM, pp. 880–
887, 2008.

[8] T. Zhou, L. Lü, and Y. Zhang, "Predicting missing links via local
information", European Physical Journal B, Vol. 71, No. 4, pp. 623–630,
2009.

[9] L. Katz, "A new status index derived from sociometric analysis",
Psychometrika, Vol. 18, No. 1, pp. 39–43, 1953.

[10] L. Lü and T. Zhou, "Link prediction in complex networks: A survey",
Physica A: Statistical Mechanics and its Applications, Vol. 390, No. 6,
pp. 1150–1170, 2011.

[11] D. J. Klein and M. Randic, "Resistance distance", Journal of
Mathematical Chemistry, Vol. 12, No. 1, pp. 81–95, 1993.

[12] B. Weisfeiler and A. A. Lehman, "A reduction of a graph to a canonical
form and an algebra arising during this reduction", Nauchno-
Technicheskaya Informatsia, Vol. 2, No. 9, pp. 12–16, 1968.

[13] S. Brin and L. Page, Reprint of: "The anatomy of a large-scale
hypertextual web search engine", Computer networks, Vol. 56, No. 18,
pp. 3825–3833, 2012.

[14] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, "Weisfeiler-lehman graph kernels", Journal of
Machine Learning Research, Vol. 12, pp. 2539–2561, September 2011.

[15] M. Niepert, M. Ahmed, and K. Kutzkov, "Learning convolutional neural
networks for graphs", Proceedings of the 33rd annual international
conference on machine learning, ACM, 2016.

[16] K. Miller, M. I. Jordan, and T. L. Griffiths, "Nonparametric latent
feature models for link prediction", Advances in neural information
processing systems, pp. 1276–1284, 2009.

[17] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, "Bpr:
Bayesian personalized ranking from implicit feedback", Proceedings of
the twenty-fifth conference on uncertainty in artificial intelligence,
AUAI Press, pp. 452–461. 2009.

[18] C. Aicher, A. Z. Jacobs, and A. Clauset, "Learning latent block structure
in weighted networks", Journal of Complex Networks, Vol. 3, No. 2, pp.
221–248, 2015.

[19] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt, "Graph kernels", Journal of Machine Learning Research,
Vol. 11, pp. 1201– 1242, April 2010.

[20] G. Salton, M. J. McGill, Introduction to Modern Information Retrieval,
MuGraw-Hill, Auckland, 1983.

[21] R. Guimera, M. Sales-Pardo, "Missing and spurious interactions and the
reconstruction of complex networks", Proc. Natl. Acad. Sci. U.S.A.,
Vol. 106, 2009.

[22] E. A. Leicht, P. Holme, M. E. J. Newman, "Vertex similarity in
networks", Phys. Rev. E, Vol. 73, 2006.

[23] P. Jaccard, "E´tude comparative de la distribution florale dans une
portion des Alpes et des Jura", Bulletin de la Societe Vaudoise des
Science Naturelles, Vol. 37, No. 1901, pp. 547.

[24] T. Sørensen, "A method of establishing groups of equal amplitude in
plant sociology based on similarity of species content and its
application to analyses of the vegetation on Danish commons", Biol.
Skr., Vol. 5, pp. 1, 1948.

[25] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A. L.
Barabasi, "Hierarchical organization of modularity in metabolic
networks", Science, Vol. 297, No. 1551, 2002.

[26] M. Molloy and B. Reed, "A critical point for random graphs with a
given degree sequence", Random Structure and Algorithms, Vol. 6, No.
161, 1995.

[27] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, "Attack vulnerability
of complex networks", Phys. Rev. E, Vol. 65, 2002.

[28] C. Y. Yin, W. X. Wang, G. R. Chen, and B. H. Wang, "Decoupling
process for better synchronizability on scale-free networks", Phys. Rev.
E, Vol. 74, 2006.

[29] G. Q. Zhang, D. Wang, and G. J. Li, "Enhancing the transmission
efficiency by edge deletion in scale-free networks", Phys. Rev. E, No.
76, 2007.

[30] F. Fouss, A. Pirotte, J. M. Renders, and M. Saerens, "Random-walk
computation of similarities between nodes of a graph with application to
collaborative recommendation", IEEE Trans. Knowl. Data. Eng., Vol.
19, No. 355, 2007.

[31] G. Jeh and J. Widom, "SimRank: A measure of structural-context
similarity", Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM Press, New York, pp.
271-279, 2002.

[32] P. Chebotarev and E. V. Shamis, "The matrix-forest theorem and
measuring relations in small social groups", Automation and Remote
Control, Vol. 58, No. 1505, 1997.

[33] L. Lü, C. H. Jin, and T. Zhou, "Similarity index based on local paths for
link prediction of complex networks", Phys. Rev. E, Vol. 80, 2009.

[34] W. Liu and L. Lü, "Link prediction based on local random walk", EPL,
Vol. 89, 2010.

[35] H. C. White, S. A. Boorman, and R. L. Breiger, "Social structure from
multiple networks I: Blockmodels of roles and positions", Am. J.
Sociol., Vol. 81, No. 730, 1976.

[36] P. W. Holland, K. B. Laskey, and S. Leinhardt, "Stochastic
blockmodels: First steps", Social Networks, Vol. 5, No. 109, 1983.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

23 | P a g e

www.ijacsa.thesai.org

[37] P. Dorelan, V. Batagelj, and A. Ferligoj, Generalized Blockmodeling,
Cambridge University Press, Cambridge, UK, 2005.

[38] L. Lü and T. Zhao, "Link Prediction in Complex Networks: A survey",
"Physica A: Statistical Mechanics and its Applications", Vol. 390, No. 6,
pp. 1150-1170, 2011.

[39] Z. Wu and Y. Chen, "Link prediction using matrix factorization with
bagging", 15th Int. Conf. on Computer and Inf. Sci. (ICIS), Okayama,
pp. 1-6, 2016.

[40] Y. Chen and M. Zhang, Weisfeiler-Lehman Neural Machine for Link
Prediction, 23rd ACM SIGKDD Int. Conf. on KDD Mining, New York,
NY, USA, pp. 575-583, 2017.

APPENDIX

The full set of results from this paper are presented in various tables as
Area Under the receiver operating characteristic Curve (i.e. AUC)
measurements (“Test”). Calculations are towards validating the results in [40]
(“Paper”).

Entries with „–‟ require a Graphics Processing Unit for calculations and are
outside the scope of this study. Tables or columns marked with * contain
results run exclusively in this paper; no such computations were run in [40]
(“Paper”).

TABLE V. WEISFEILER-LEMAN BASED METHODS

No Data Source WLLR 10a WLNM 10b

1 USAir Paper 0.896 0.958

 Test 0.930 –

2 NS Paper 0.862 0.984

Test 0.865 –

3 PB Paper 0.827 0.933

 Test 0.838 –

4 Yeast Paper 0.854 0.956

Test 0.860 –

5 C.ele Paper 0.803 0.859

 Test 0.804 –

a. Weisfeiler-Leman Linear Regression Model, K = 10 (WLLR 10)

b. Weisfeiler-Leman Neural Machine, K = 10 (WLMN 10)

TABLE VI. COMMON NEIGHBOR METHODS I

No Data Source CNa Jacb AAc RAd PAe

1 USAir Paper 0.940 0.903 0.950 0.956 0.894

 Test 0.939 0.905 0.950 0.954 0.899

2 NS Paper 0.938 0.938 0.938 0.938 0.682

Test 0.945 0.945 0.945 0.945 0.705

3 PB Paper 0.919 0.873 0.922 0.923 0.901

 Test 0.912 0.867 0.915 0.917 0.897

4 Yeast Paper 0.891 0.890 0.891 0.892 0.024

Test 0.898 0.897 0.899 0.899 0.836

5 C.ele Paper 0.848 0.792 0.864 0.868 0.755

 Test 0.842 0.782 0.858 0.862 0.761

a. Common Neighbor (CN)

b. Jaccard Index (Jac)

c. Adar-Adamic Index (AA)

d. Resource Allocation (RA)

e. Preferential Attachment (PA)

TABLE VII. COMMON NEIGHBOR METHODS II*

No Data Source SltOna Sorb HPIc HDId

1 USAir Test 0.9037 0.8959 0.8621 0.8891

2 NS Test 0.9450 0.945 0.9449 0.9449

3 PB Test 0.8692 0.8673 0.8478 0.8637

4 Yeast Test 0.8972 0.8972 0.8961 0.8971

5 C.ele Test 0.7897 0.7816 0.7958 0.7685

a. Salton Index (SltOn)

b. Sorenson Index (Sor)

c. Hub Promoted Index (HPI)

d. Hub Depressed Index (HDI)

TABLE VIII. COMMON NEIGHBOR METHODS III

No Data Source LHN* LNBCNa LNBAAb LNBRAc

1 USAir Test 0.7615 0.9434 0.9503 0.8943

2 NS Test 0.9446 0.9452 0.9452 0.7045

3 PB Test 0.7584 0.915 0.9165 0.8973

4 Yeast Test 0.8932 0.8987 0.899 0.8355

5 C.ele Test 0.716 0.858 0.8623 0.7605

a. Leicht-Holme-Newman (LHN)

b. Local naive bayes method with Common Neighbor (LNBCN)

c. Local naive bayes method with Adar-Adamic Index (LNBAA)

d. Local naive bayes method with Resource Allocation (LNBRA)

TABLE IX. PATH-BASED METHODS I

No Data Source Katz with 𝛽= 0.01a

1 USAir Paper 0.931

 Test 0.926

2 NS Paper 0.940

Test 0.947

3 PB Paper 0.928

 Test 0.924

4 Yeast Paper 0.921

Test –

5 C.ele Paper 0.864

 Test 0.860

a. Katz Index with damping factor 𝛽 = 0.01

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

24 | P a g e

www.ijacsa.thesai.org

TABLE X. PATH-BASED METHODS II

No Data Source
Katz

𝛽= 0.001a
LocalPathb

LHNII

0.9c

LHNII

0.95d

LHNII

0.99e

1 USAir Test 0.9279 0.9306 0.6040 0.5870 0.5712

2 NS Test 0.9474 0.9499 0.9690 0.9690 0.9690

3 PB Test 0.9266 0.9273 0.6363 0.5810 0.5273

4 Yeast Test – – – – –

5 C.ele Test 0.8614 0.8626 0.6070 0.5551 0.5003

a. Katz Index with damping factor 𝛽 = 0.001

b. Local Path Index (LocalPath)

c. Leicht-Holme-Newman II with 0.90

d. Leicht-Holme-Newman II with 0.95

e. Leicht-Holme-Newman II with 0.99

TABLE XI. RANDOM-WALK BASED METHODS I

No Data Source RDa PRb SRc

1 USAir Paper 0.898 0.944 0.782

 Test 0.911 0.931 0.775

2 NS Paper 0.582 0.940 0.940

Test – – –

3 PB Paper 0.883 0.935 0.773

 Test 0.879 0.930 0.771

4 Yeast Paper 0.880 0.927 0.914

Test – – –

5 C.ele Paper 0.740 0.901 0.760

 Test 0.726 0.899 0.758

a. Resistance Distance, or Average Commute Time (RD)

b. PageRank, or Random Walk with restart, with damping factor d = 0.85 (PR)

c. SimRank with 0.6 (SR)

TABLE XII. RANDOM-WALK BASED METHODS II*

No Data Source Cos+a RWRb LRW 3c LRW 4d LRW 5e

1 USAir Test 0.9342 0.914 0.9389 0.9367 0.9337

2 NS Test – – – – –

3 PB Test 0.9196 0.917 0.9367 0.9293 0.9325

4 Yeast Test – – – – –

5 C.ele Test 0.865 0.857 0.9197 0.9034 0.9105

a. Cos+ based on Laplacian matrix (Cos+)

b. Random walk with restart with damping factor 0.95 (RWR 0.95)

c. Local Random Walk with step 3 (LRW 3)

d. Local Random Walk with step 4 (LRW 4)

e. Local Random Walk with step 5 (LRW 5)

TABLE XIII. RANDOM-WALK BASED METHODS III

No Data Sourcea SRW 3a SRW 4b SRW 5c MFId TS

1 USAir Test 0.9407 0.9389 0.9384 0.9129 0.589

2 NS Test – – – – –

3 PB Test 0.9257 0.9272 0.9292 0.8959 0.4417

4 Yeast Test – – – – –

5 C.ele Test 0.9009 0.9031 0.9063 0.8722 0.5076

a. Superposed Random Walk with step 3 (SRW 3)

b. Superposed Random Walk with step 4 (SRW 4)

c. Superposed Random Walk with step 5 (SRW 5)

d. Matrix Forest Index (MFI)

e. Transfer Similarity (TS)

TABLE XIV. LATENT FEATURE BASED METHODS

No Data Source SBMa MF-cb

1 USAir Paper 0.944 0.918

 Test 0.932 0.914

2 NS Paper 0.920 0.636

Test – 0.620

3 PB Paper 0.938 0.930

 Test – 0.927

4 Yeast Paper 0.914 0.831

Test – –

5 C.ele Paper 0.867 0.832

 Test 0.878 0.837

a. Stochastic Block Method (SBM)

b. Matrix Factorization with classification loss function (MF-c)

