
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

448 | P a g e

www.ijacsa.thesai.org

Introducing a Cybersecurity Mindset into Software

Engineering Undergraduate Courses

Ingrid A. Buckley, Janusz Zalewski

Department of Software Engineering

Florida Gulf Coast University

Fort Myers, FL, USA

Peter J. Clarke

School of Computing and Information Sciences

College of Engineering and Computing

 Florida International University

Miami, FL, USA

Abstract—Cybersecurity is a growing problem globally.

Software helps to drive and optimize businesses in every aspect of

modern life. Software systems have been under continued attacks

by malicious entities, and in some cases, the consequences have

been catastrophic. In order to tackle this pervasive problem,

emphasis has been placed on educating software developers on

how to develop secure systems. The majority of attacks on

software systems have been largely due to negligence, lack of

education, or incorrect application of cybersecurity defenses. As

a result, there is a movement to increase cybersecurity education

at all levels: novice, intermediate and expert. At the college level,

students can be exposed to cybersecurity skills and principles

that will better equip them as they transition into the workforce.

A case study is presented which assesses the cybersecurity

knowledge of juniors and seniors in a software engineering

degree program taught over a one-semester period.

Keywords—Cybersecurity; security education, software testing;

computer security; defect detection, software maintenance

I. INTRODUCTION

Software continues to impact all aspects of our lives,
including the way we use our phones, computers, home
appliances, medical devices, and cars, just to name a few.
Cybersecurity has been essential in the development of
software due to the continued attacks and exploitation
techniques that are performed by malicious entities over the
Internet. Due to the ubiquitous nature of software, there is a
great demand for skilled software developers.

Cybersecurity is an important element of software
development and is an essential process to help prevent or
reduce defects and vulnerabilities that can be exploited.
Software vulnerabilities and defects have caused significant
losses and inconveniences when systems fail or are exploited
by hackers across different domains such as health care,
financial, government, telecommunications and transportation
systems. In general, software developers, testers and
programmers are not experts on security. They implement
systems that are not equipped to defend against cyber-attacks
as they tend to only focus on ensuring that requirements have
been adequately implemented. From a business point of view,
the cost of cyberattacks are high; they increase maintenance
costs, negatively impact customer perception of a product and
lead to loss in profits.

However, programmers are now expected to consider
threats and vulnerabilities, and to implement applications and
programs that cannot be easily attacked or exploited. This is
especially true for students who are not yet experienced in
software development, or in cybersecurity. This lack of
cybersecurity knowledge is a major issue in software
development. It has been proven over the years that, software
defects account for huge losses [1]-[3] and rework when
security is not considered or poorly implemented. At the
course level, it is important to motivate students to take a
responsible approach to software development by teaching
them how to test with the basic goal of evaluating and
identifying defects [4].

Due to our reliance on software, there is a great need to
educate and equip students with effective cybersecurity skills
and knowledge. In this paper, a study is conducted to find an
effective approach to expose undergraduate students to
security principles. The goal of this exercise is to determine
how well students can evaluate control structures by
determining the correct output and, identifying defects. The
specific objective of this paper is to determine how to increase
cybersecurity knowledge of novice software developers which
include university juniors and seniors in programming focused
courses. The rest of the paper proceeds as follows. Sections 2
presents related work. Section 3 presents the case study and an
evaluation of the students’ performance. Section 4 discusses
future work and Section 5 concludes the paper.

II. RELATED WORK

Due to the urgency to increase cybersecurity awareness,
skills and knowledge worldwide, colleges and universities, in
particular, have implemented a variety of efforts to teach
students about cybersecurity in software development and
programming. Chen [5] proposed a teaching tool, called
SWEET (Secure Web Development Teaching), for
undergraduate and graduate computing courses. SWEET
features virtualized web servers and a platform that allows
instructors to teach security issues in web application
development within undergraduate and graduate courses. This
project included a laboratory exercise where students learned
how to create a self-signed web server certificate. The goal of
this exercise is to guide students on how to create a public and
private key pair, a Secure Socket Layer (SSL) certificate and a
certificate signing request (CSR). In the security exercise
given in this study, students are not developing or creating

This material is based upon work supported by the National Science
Foundation under Grant number DUE-1562773.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

449 | P a g e

www.ijacsa.thesai.org

something new. Instead, they focus on assessing existing code
and identifying defects that may be already existing. This
provides an alternative way of learning and considering
security by assessing existing code.

Similarly, Scheffler [6] designed two projects that use real
world scenarios within public key infrastructure and web of
trust modeling. They used several secure cryptographic
algorithms that were assigned to students for implementation.
The objective was to expose and teach students how to
implement cryptography concepts in real world applications.
Scheffler’s work focuses on developing security based
application from inception, whereas, the security exercises
used in this paper focus on students’ evaluation of existing
code to uncover defects or defects in its logic.

 Peltsverger [7] developed a bottleneck analysis lab with
virtual network emulation environment. The lab consists of
real work practical exercises using NetKit. The lab is designed
to teach students how to set up a virtual network, capture
traffic and analyze system performance. The lab exercises
reinforced lectures and helped students to better understand
computer network security concepts and challenges.
Peltsverger’s approach is similar to the security exercises
utilized in this paper, in that it allowed students to analyze the
outcome by reviewing the system performance. In this work,
students analyze existing code manually and determine what
the correct output should be given a specific input.

Chi et al. [8] implemented modules for teaching secure
coding practices to STEM students. The modules were
designed to provide fundamental secure programming skills to
programmers and application developers. They used static-
analysis tools to help with detecting vulnerabilities such as
buffer overflows in code. Their aim was to increase security
awareness by exposing a variety of students from different
STEM disciplines to security principles, techniques and tools.
The work by Chi et al. work is similar to the work completed
in this study, except that they utilized tools to detect or
uncover vulnerabilities in the code. In security exercises in
this study, students analyze small code blocks manually to
identify defects and determine the correct output given a set
input.

 Kumaraguru et al. [9] developed a system and game to
teach users about phishing to help them make better trust
decisions. They developed an email-based anti-phishing
system called “PhishGuru”, and an online game called “Anti-
Phishing Phil”, that teaches users how to use cues in uniform
resource locators (URLs) to avoid falling for phishing attacks.
The results from the PhishGuru studies suggest that the
current practice of sending out security notices is ineffective.
However, hands-on training can effectively teach people how
to avoid phishing attacks. Similarly, the Anti-Phishing Phil
exercise demonstrated that participants who played the game
performed better at identifying phishing Web sites.
Kumaraguru et al. used gamification to educate users about
how to avoid phishing attacks. The security exercises in this
study are geared towards students who will have to either
develop, repurpose or maintain existing software. As a result,
the exercise in this study focuses more on assessing existing
code to determine defects that can be exploited by a hacker.

III. SECURITY CASE STUDY

In this section a description is given of the security case
study completed in two software engineering courses
consisting of university juniors and seniors. The primary
objectives of this study are to assess (a) the overall
cybersecurity knowledge of students, and their (b) ability to
identify faults and defects and (c) aptitude to evaluate existing
code.

A. Preliminary Work

Buckley [4] proposed a teaching strategy which leverages
the use of basic data structures to teach the fundamentals of
software testing principles. Software testing is an important
phase in implementing secure code. In this approach, students
must first understand the fundamental properties and
constraints of various data structures and a recursive problem.
The idea is to encourage students to fully understand the core
properties and constrains of a system; this is analogous to
understanding the security requirements of a system. This
aspect is imperative in order to write effective test cases to
uncover faults and defects. In this project, students are given
the exercises to write test cases that ensure that each data
structure’s properties and constraints are upheld throughout
implementation to avoid defects and faults that can be
exploited in the future. The initial material which sparked the
idea for this project is presented in Table I.

TABLE I. DATA COLLECTED FROM SOFTWARE TESTING STUDENS IN

SPRING 2016

 Pre/Post-test correct responses

Q
u

es. 1

Q
u

es. 2

Q
u

es. 3

Q
u

es. 4

Q
u

es. 5

Q
u

es. 6

Q
u

es. 7

Q
u

es. 8

Q
u

es. 9

Q
u

es. 1
0

A
v

erag
e

S
td

. D
e
v
.

Pre 63% 67% 86% 53% 55% 16% 84% 53% 61% 31% 57% 0.354

Post 79% 98% 94% 81% 65% 40% 88% 56% 94% 46% 74% 0.144

Forty nine (49) students completed the pre-test, while forty
eight (48) completed the post-test. Overall, the results of the
study showed a significant improvement in the post-test rate
(74%) versus (57%) with standard errors of 14.4% and 35.4%,
respectively. The average post-test results show a 30%
improvement over the average pre-test results. The variation
in the proportion of correctly answered questions decreased by
59%; i.e. from 35.4% to 14.4%.

B. Student Background and Aptitude

This case study includes university juniors and seniors
who are completing a software engineering degree program.
The juniors were enrolled in a data structures and algorithm
course which is offered in the spring semester of their junior
year. The seniors were enrolled in a software testing course
taken in the final semester of their degree program. All the
students involved in this study completed programming
courses using Java, C and/or C++ in prior semesters. In the
data structures and algorithms course, the students are taught
different data structures (stacks, queues, binary trees, linked
list, etc.) and how to determine the efficiency of algorithms
(Big O notation).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

450 | P a g e

www.ijacsa.thesai.org

In software testing, the students are taught various testing
techniques including unit, integration, systems, regression and
acceptance testing. They are taught blackbox and whitebox
testing techniques, and utilize statement and branch coverage
tools. All seniors in this study had already completed data
structures and algorithms the previous spring. Additionally,
most of the seniors had completed at least one internship
experience that involves programming, testing or some other
aspect of software development.

C. Cybersecuity Pretest and Posttest

The pretest and posttest were designed to assess students’
knowledge of inspecting and evaluating small blocks of code.
This exercise challenges students to carefully evaluate code to
find faults and defects by determining what the expected
output should be. The objective of this knowledge area is to
increase software quality by discovering and correcting faults
and defects that can be exploited via cyberattacks.
Additionally, it illustrates to students how bad programming
habits or confusing code can lead to vulnerabilities and defects
that are exploitable.

The questions on the pretest and posttest are based on
scenarios that provide some hands-on relatable examples that
will challenge students to carefully examine basic code that
may have defects infused in inconspicuous areas of the code.
Each scenario is accompanied by a flow chart to further
illustrate the logic as shown in Fig. 1 and 2. The pretest and
posttest consist of 11 questions based on two different
scenarios. The students were given the pretest at the beginning
of the course; they were also given the same test at the end of
each respective course. The problem scenarios are
summarized below:

 Scenario1 - test a method that takes input as a decimal
number and returns a string of “pass” or “fail”. Assume
that a grade of 70 or higher leads to a “pass”, and a
grade below 70 leads to “fail”’. All valid grades fall
into the range of [0, 100]; otherwise, a grade leads to
“fail”.

 Scenario2 - test a method that takes input as a decimal
number and returns a string of a letter grade based on
the grade scale in Table II and Fig. 2.

TABLE II. GRADING SCALE

Grades Return

90-100 “A”

80-below 90 “B”

70-below 80 “C”

60-below 70 “D”

0-below 60 “F”

Fig. 1. Scenario 1 flow chart.

Fig. 2. Scenario 2 flow chart.

D. Evaluation of Results

A total of sixty five (65) students completed the pretest
and posttest, which included twenty nine (29) juniors and
thirty six (36) seniors. The juniors and seniors were enrolled
in programming centric courses, namely data structures and
algorithms course and software testing respectively. Overall,
the results in Table III illustrate that there is a 21% increase in
the mean score of the juniors versus 13% for seniors. There is
a 20% increase in the median score of the juniors versus 14%
for the seniors. There is a 30% increase in the standard
deviation score of the juniors versus a 1.34% decrease for
seniors. Both groups obtained the same posttest score which is
roughly (8/11), even though the juniors had lower pretest
scores.

A more detailed statistical analysis of the results show that
there is significant difference between the pretest and posttest
for both the juniors and seniors in Table III. Using a paired
sample t-test the results for the juniors are t(26) = 5.51, p <
0.01, which shows significance, and for the seniors the results
are t(35) = 4.12, p < 0.01. Note that there was no significant
difference on the pretest between juniors and seniors based on
the equality test of variances.

E. Discussion

Overall, both juniors and seniors scored comparably on the
posttest. However, juniors achieved a higher percentage of
improvement between the pretest and posttest; that is, seniors
achieved a lower percentage improvement. Since seniors

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

451 | P a g e

www.ijacsa.thesai.org

typically have more development experience and knowledge
than juniors, they performed slightly better on the pretest.
Despite having two different proficiency levels, both groups
showed an improvement in their abilities to detect defects,
faults and to determine correct output.

TABLE III. COMPARISON PERFORMANCE BETWEEN JUNIORS AND

SENIORS GROUP

Juniors Seniors

Pretest Posttest
%

Change
Pretest Posttest

%

Change

Mean: 6.68 8.07 20.81 7.02 7.91 12.68

Median: 6.67 8.0 19.94 7.0 8.0 14.29

Std.

Dev:
0.88 1.15 30.47 0.97 0.96 -1.52

The maximum score on this exercise is 11.

Even though the problem scenarios used were basic
familiar exercises, the majority of students were not able to
answer all of the questions correctly. The exercises were
designed to test each student’s ability to thoroughly
understand the code. Only three (2 seniors and 1 junior) of the
sixty five (65) students who completed the exercise answered
90% of the questions correctly on the posttest. Even though
the majority of students’ scores improved between pretest and
posttest, only 4.6% were able to identify the correct output and
the majority of the faults.

Threats to Validity: One of the main threats to validity is
the different educational levels of the students, it is expected
that students in their senior year would have been exposed to
the type of problems in the pretest more often than the juniors.
This fact is shown in the better performance by the seniors in
the pretest. Given that the sample was not randomly selected
from the entire student population, it would be difficult to
make a generalization based on the students’ performance. In
addition, it may be a stretch to claim that the sample questions
used in the pre and posttest is reflective of the total skill set
associated with cybersecurity concepts.

IV. FUTURE WORK

The focus of this study is to encourage students to evaluate
existing code with the aim of identifying faults, defects, and
assessing their understanding of existing code. This exercise is
important, primarily because testing and maintenance are
crucial aspects in the software development life cycle; it
teaches students to refine their skills on how to approach
testing and modification of existing code. Given the results of
this preliminary study, another study will be undertaken which
considers the aptitude level, grade point average (GPA),
programming skill level, knowledge, and experience of each
student participating in the study. This additional data provide
a benchmark of where students are in their knowledge and
skill level. It will also allow for a richer evaluation of their
performance, knowledge gain and challenges or obstacles that
impact their skill set and knowledge. Additionally, this data
will help in identifying what factors and prerequisite
knowledge contribute most in preparing or aiding students to
better understand existing code with the aim of identify faults
and defects.

We also plan to perform additional studies using the
Software Engineering and Programming Cyberlearning
Environment (SEP-CyLE) [10] that contains cybersecurity
learning content. The learning content is in the form of digital
learning objects (LOs) and tool tutorials. A learning object
(LO) is a module of content that usually requires 2 to 15
minutes for completion, is self-contained, interactive, reusable
and can be aggregated [11]. SEP-CyLE also supports
embedded learning and engagement strategies that motivate
students to interact with SEP-CyLE and access the learning
content. The learning and engagement strategies include:
collaborative learning, gamification, and social
interaction [11].

With the use of SEP-CyLE, a comprehensive assessment
of a student’s cybersecurity knowledge and expertise can be
designed. In that, students will complete a variety of
cybersecurity focused learning objects (LOs) and the
following data can be collected about a student’s learning
tendencies such as the (i) time taken to complete a LO,
(ii) number of LOs attempted, (iii) number of LOs passed,
(iv) number of LOs failed, and (v) total number of virtual
points gained. SEP-CyLE has been adopted and used in
various studies [11] as an effective supplemental tool and
resource that supports students learning and instruction.

V. CONCLUSION

The study presented in this paper concentrated primarily
on detection and evaluation, which are fundamental in
achieving a secure system. The ability to detect and correct
faults and defects is an important skillset that is essential for
software developers and testers to acquire. In light of this
fact, the exercises were deliberately given to seniors and
juniors who were enrolled in software development focused
courses. The results showed that juniors achieved a higher
percentage improvement between the pretest and posttest,
while seniors showed a lower percentage improvement. Both
juniors and seniors scored comparably on the posttest and
showed improvement in their abilities to detect bugs, faults
and determine correct output. Additionally, only 4.6% of
students answered 90% of the questions correctly. Although
the exercises are simple, the results show that there is value in
integrating security knowledge and practical skills in select
courses. This exercise shows that a student’s knowledge of
security can influence the quality of the programs and systems
they develop.

ACKNOWLEDGMENT

This work was supported in part by the 2016
Cybersecurity Summer Research and Training for College
Faculty, led by Dr. Nasir Memon at New York University,
Tandon School of Engineering Computer Science and
Engineering Department.

REFERENCES

[1] W. Du, A.P. Mathur, “Categorization of Software Errors that led to
Security Breaches”, In Proceedings of 21st NIST-NCSC National
Information Systems Security Conference, Arlington, Virginia, October
5-8, 1998, pp. 392-407.

[2] R. Telang and S. Wattal, “An Empirical Analysis of the Impact of
Software Vulnerability Announcements on Firm Stock Price”, In

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

452 | P a g e

www.ijacsa.thesai.org

Proceedings of IEEE Transaction on Software Engineering, Vol.. 33,
No. 8, pp. 544-557, August 2007.

[3] Symantec Corporaton, “Internet Security Threat Report”, Vol. 21,
Mountain View, Calif., April 2016. Last Accessed: June 26, 2018,
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-
2016-en.pdf

[4] I. A. Buckley and W. S. Buckley, “Teaching Software Testing using
Data Structures”, International Journal of Advanced Computer Science
and Applications (IJACSA), Vol 8, No. 3; 2017.

[5] L. Chen, L. Tao, X. Li, and C. Lin, “A Tool for Teaching Web
Application Security”, In Proceedings of the 14th Colloquium for
Information Systems Security Education, Baltimore, Maryland, June 7 -
9, 2010.

[6] P. Scheffler, M. Hylkema, A. Temkin, “Putting It All Together: Theory
and Practice in Courses on Cryptography”, In Proceedings of the 14th
Colloquium for Information Systems Security Education, Baltimore,
Maryland June 7 - 9, 2010.

[7] S. Peltsverger, C. Zhang, “ Bottleneck analysis with NetKit: teaching
information security with hands-on labs”, In Proceedings of the 15th

Annual Conference on Information technology education (SIGITE '14).
ACM, New York, NY, USA, 45-50, 2014.

[8] H Chi, E. L. Jones, and J Brown, “Teaching Secure Coding Practices to
STEM Students” In Proceedings of the 2013 on InfoSecCD '13:
Information Security Curriculum Development Conference (InfoSecCD
'13). ACM, New York, NY, USA.

[9] P. Kumaraguru, S. Sheng, A. Acquisti, L. F. Cranor, and J. Hong,
“Teaching Johnny not to fall for phish”, ACM Trans. Internet Technol.
10, 2, Article 7, June 2010.

[10] R. Chang-lau and P. J. Clarke. Software engineering and programming
cyberlearning environment (SEP-CyLE), 2018. Last Accessed: June 28,
2018, https://stem-cyle.cis.fiu.edu/

[11] I. A. Buckley, P. J. Clarke, “An approach to Teaching Software Testing
Supported by Two Different Online Content Delivery Methods”, In
proceedings of 16th LACCEI International Multi-Conference for
Engineering, Education, and Technology, “Innovation in Education and
Inclusion” Lima, Peru July 18 – 20, 2018 (to appear).

