
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

Intrusion Detection and Prevention Systems as a
Service in Could-based Environment

Khalid Alsubhi

Faculty of Computing and Information Technology
King Abdulaziz University, Jeddah, Saudi Arabia

Hani Moaiteq AlJahdali

Faculty of Computing and Information Technology Rabig
King Abdulaziz University, Jeddah Saudi Arabia

Abstract—Intrusion Detection and Prevention Systems (IDPSs)
are standalone complex hardware, expensive to purchase, change
and manage. The emergence of Network Function Virtualization
(NFV) and Software Defined Networking (SDN) mitigates these
challenges and delivers middlebox functions as virtual instances.
Moreover, cloud computing has become a very cost-effective
model for sharing large-scale services in recent years. Features
such as portability, isolation, live migration, and customizabil-
ity of virtual machines for high-performance computing have
attracted enterprise customers to move their in-house IT data
center to the cloud. In this paper, we formulate the placement of
Intrusion Detection and Prevention Systems (IDPS) and introduce
a model called Incremental Mobile Facility Location Problem
(IMFLP) to study the IDPP problem. Moreover, we propose
a novel and efficient solution called Adaptive Facility Location
(AFL) to efficiently solve the optimization problem introduced in
the IMFLP model. The effectiveness of our solution is evaluated
through realistic simulation studies compared with other popular
online facility location algorithms.

I. INTRODUCTION

Cloud computing has become a cost-effective model for
sharing large-scale services in recent years. Its success is due
to the attractive features offered by the underlying virtualiza-
tion concept, including portability, isolation, live migration,
and customizability of virtual machines. Popular examples of
cloud-based services are Microsoft Azure, Google AppEngine,
and Amazon Elastic Computing Cloud (EC2). Cloud services
are generally categorized into three areas: Software as a Ser-
vice (SaaS), Platform as a Service (PaaS), and Infrastructure
as a Service (IaaS). In SaaS, a third-party provider host
customer’s application over the Internet (i.e., Rackspace and
SAP Business ByDesign). In PaaS model, both hardware and
software are provided and hosted by third-party (i.e., Google
App Engine and Microsoft Windows Azure). Finally, IaaS
refer to providing virtualized computing resources, usually in
terms of VMs (i.e., Amazon EC2, GoGrid and Flexiscale).

Intrusion Detection and Prevention Systems are an essential
defensive measure against a range of attacks [44, 47]. In
enterprise networked system, IDPSs examine packets sent
over networks and trigger alerts when malicious content is
discovered and defend against attacks when prevention mode

is active. Most issues regarding security in cloud systems are
inherited by the current enterprise network [34]. Traditional

distributed IDPSs are best practice in providing security for
large scale networks. However, the deployment of distributed
IDPSs in cloud systems raise many challenges due to the
diversity of its services and the complexity of its infrastructure
[43].

Network Functions Virtualization (NFV) [1] [2] promises
a reprive from the vertically integrated hardware middlebox
model followed for decades, by advocating the use of software
Network Functions (NFs) running on commodity hardware.
This means a reduced acquisition and operational costs, flexi-
ble programability, and easier management [31] [42]. Another
orthogonal idea is the Software Defined Networking (SDN)
that advocates flexible programability in the network. This
is done by the separation of the control-plane from the data
plane and centralized logical control of the network. SDN
simplifies the overall management of the network by allowing
deeper programability of the networking devices. Leveraging
SDN in environments where NFV are used can leads to
several interesting use cases. The high precision control of
forwarding elements (switches) provided by SDN can be used
to orchestrate traffic patterns between various appliances and
NFVs across a data center [22]. In recent years, the cloud
has become a mature platform for deploying scalable and
cost effective services. With huge growth forecasts, the public
cloud industry has grown to become a multi-billion dollar
industry [6]. Combining the agility of the cloud with the
flexibility of Virtualized Network Functions (VNFs) and the
fine-grained control of SDN can bring about a new class of
cloud based services for IDPSs [13].

In this paper, we introduce a model in which infrastructure
providers support Vritual Intrusion Detection and Prevention
Systems (IDPSs) as a Service (IDPSaaS) by leveraging NFV,
SDN, and cloud. IDPSaaS services can be enabled or disabled
for tenant’s Virtual Machines (VMs) on their demands and can
be scaled up or down to cope with their service workloads.
Moreover, the deployment of multiple IDPS instances of a
network functions motivates an interesting challenge, which
we call Intrusion Detection and Prevention Systems Placement
problem (IDPSP). In order to study the IDPSP problem,
we propose Incremental Mobile Facility Location Problem
(IMFLP) based on the online facility location problem. IMFLP
takes into account the online actions, such as live migrations
in cloud, which are ignored in almost all of the existing

www.ijacsa.thesai.org 271 | P a g e

Keywords—Facility Location Problem; Intrusion detection and
Prevention Systems; Cloud Computing

 This project was funded by the Deanship of Scientific Research (DSR) at
King Abdulaziz University, Jeddah, under grant no. J724-611-38. The
authors, therefore, acknowledge with thanks DSR for technical and financial
support.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

models [21]. To the best of our knowledge, it is the first time
that the online version of facility location problem has been
used to study placement of IDPS. Furthermore, we present
an efficient solution for the optimization problem defined
in this model called Adaptive Facility Location (AFL). This
solution by employing online actions, such as migrations and
switches, adjusts the placement of IDPS instances to efficiently
adapt to changes in service demands. The effectiveness of
our solution is evaluated though realistic simulation studies
and empirically compared with several popular online facility
location algorithms.

The remainder of this paper is organized as follows. In
section II, we formulate the IDPSP problem and present the
IMFLP model for studying this problem. We present AFL in
section III and conduct experiments to evaluate this algorithm
in section IV. The related works are discussed in section V.
Finally, we conclude and discuss about future works in section
VI.

II. PROBLEM FORMULATION

As mentioned before, the placement module receives an
event of an arrival or leaving of a demand, and by information
and functions supported by the management module, adjusts
the placement of facilities. In this section, we introduce the
Intrusion Detection and Prevention System Placement problem
(IDPSP) in section II-A. In section II-B we formally define
our model of facility location problem that can be used for
modeling the IDPSP problem.

A. Intrusion Detection and Prevention System Placement
Problem (IDPSP)

Without loss of generality, we introduce this problem
through an example. Suppose that an infrastructure provider
offers a IDPSaaS service. From the client’s point of view, her
VMs can be installed any time, and the IDPSaaS service can be
requested and enabled for her VMs at any moment. Moreover,
VMs are different and have various service workload on
the IDPS instances (IDPSInst). Let call each unit of VM’s
workload as a demand. Thus, we can view the problem as
dynamic demands that should be served by multiple IDPSInsts.

From the view point of the infrastructure provider, enabling
this service incurs certain amount of the installation, opera-
tional, and management costs. The installation cost includes
the cost of resource consumption of a host machine on which a
IDPSInst is installed, and the cost of certain messages between
the controller and the host. In our system, all IDPSInsts are
same, and therefore the installation cost is same for all IDPSIn-
sts. The operational cost consists of the traffic processing delay
cost, and the cost of steering the traffic to the IDPSInst and
then to the destination VM. It can be shown that the cost of
steering the traffic is related to the distance between IDPSInst
and the VM. Finally, the management cost includes the cost
of certain statistics collection and syncronization messages
between the controller and the IDPSInsts. The management
cost is related to the cost of shortest path between the
controller(s) and the IDPSInst. Optimizing the management

cost is similar to the placement of SDN controllers [8] [29],
and is outside of the scope of the current paper.

Considering Figure 1, suppose that a VM exists on host
a. As illustrated in Figure 1(a), when there is no IDPSInst
enabled (the service-less case), the internet traffic travels the
shortest path from the core switch r to the host a with an
intermediate switch m. Let d(r, a) represents the cost of the
shortest path between r and a. In the service-less case, the
cost of traffic traversal is d(r, a) = d(r,m) + d(m, a). On
the other hand, as shown in Figure 1(b), when the IDPSInst
is installed on a host b (the IDPSInst enabled case), extra
costs are paid. Certain amount of b’s resources are allocated
to the IDPSInst and certain controlling messages from the
controller are exchanged with the host b (the installation cost).
This installation cost is independent of the where IDPSInsts
are located, and only depends on the number of IDPSInsts.
Moreover, IDPSInst adds certain processing delay time t, and
the traffic travels a longer path (the operational cost). Delay
time t is independent of where the IDPSInst is placed and
related to how much traffic is assigned to. Additionally, the
traffic is steered from core switch r to host b, and from host
b to the host a. In this case, the cost of the traffic steering is
d(r, b) + d(b, a) = d(r,m) + 2d(m, b) + d(m, a) (We assume
that the shortest path cost is symetric). By deducting the cost
of service-less case, the extra cost in the IDPSInst enabled
case is 2d(m, b). Because a and b are in the same level
(host level) d(m, b) = d(m, a), and therefore the extra cost
is 2d(m, b) = d(m, b) + d(m, a) = d(a, b), which is the cost
of shortest path between host a containing IDPSInst and host
b containing the VM.

There is another complexity dimension that makes the
problem even more complicated. Assignments of demands to
the IDPSInsts are not irrevocable decisions, and demands can
be reassigned to other IDPSInsts. However, these reassign-
ments are not free of charge and associated with certain costs
related to the routing reconfiguration and transferring source
IDPSInst’s internal state to the destination IDPSInst [22].
Furthermore, after assigning more demands to an IDPSInst
during the time, this IDPSInst can migrate to another location
in order to minimize its distance to the VMs and subsequently
reduce the operational costs; however, migrations are not free
and are associated with certain cost.

VM

m

a b

r

(a) Service-Less Case

VM IDPS

m

a b

r

(b) IDPSInst Enabled Case

Fig. 1. The comparison of the traffic path

www.ijacsa.thesai.org 272 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

Any model describing this problem must consider the
dynamic nature of the problem, optimizing the installation
and operational cost of the IDPSInsts, and possibility of
assignments switches and IDPS migrations.

B. Increamental Mobile Facility Location Model

In this section, we introduce a new model of facility location
problem called Incremental Mobile Facility Location Prob-
lem (IMFLP) to study the IDPSP problem. Before describing
our model, we briefly describe why a new model of this
problem is needed to be formulated. The details of other
existing models will be discussed in the section V-B.

The offline model of facility location problem has been
studied comprehensively in the literature [15, 9, 40, 16].
Unfortunately, it cannot describe IDPSP, becuase this model
requires demands and their locations to be known in ad-
vanced, but in IDPSP, VMs are installed at any moment
and subsequently their demands are not known beforehand.
In other words, assignments of demands to IDPSInsts are
done without knowledge about the future demands. Hence,
the online model of this problem should be used. However, the
existing online models in the literature (as will be discussed
in section V-B) are not representative for our problem, thus
we design a new model of this problem. Our IMFLP model
relaxes certain constraints of the these models and resolve their
limitations in describing IDPSP problem to model migrations
and assignments switches.

We describe our model of facility location problem by defin-
ing the space and metrics, facilities, demands, and allowed
actions.

Space and metrics. Given a connected weighted graph
M = (V,E) representing the architecture of the data center
network, where V denotes the set of nodes (switches or hosts),
and E : V × V → R+ represents the set of network links.
Vhosts ⊂ V represents host nodes in which demands and
facilities can reside. The shortest path between two nodes
p, q ∈ V is denoted by d(p, q). We also use the notation
of d(V ′, p) to denote the shortest path between the closest
node in a subset V ′ ⊂ V to a node p ∈ V . Moreover, let
B(p, r) = {q ∈ Vhosts, r ∈ R+|d(p, q) ≤ r} indicates the
nodes within distance r to the node p (the points that lie inside
or on the ball with center p and radius r). We assume that the
distance metric is symetric and satisfies triangle inequality.

Facility. In IMFLP, a facility represent a VNF instance and
is uncapacitated. The location of a facility z in the space is
identified by the γ(z) ∈ Vhosts. We use term open or install
interchangeably for the installation of a facility. Besides, the
notation C(z) represents a set of demands that are assigned
to a facility z (z’s cluster).

Demand. A demand u denotes a unit of service workload
of a VM. Similar to a facility, the location of a demand is
given by γ(u) ∈ Vhosts, which is equal to the node that VM
resides. We use term arrive to denote that a new demand from
a VM should be served. We also assume that each VM has a
correct number of demands.

Allowed Actions. In IMFLP following actions are allowed:

• A facility can be opened in any node p ∈ Vhosts at any
time by paying the installation cost f ∈ R+. A facility
also can migrate to another location with the migration
cost k ∈ R+. we assume that k < f . Moreover, a facility
can be closed at any time, and its installation cost is
refunded. However, if any demand is assigned to that
facility, they should switched to a new facility and for
each switch, the certain amount of cost as described next
is payed.

• A demand is allowed to arrive and leave at any time in
any node p ∈ Vhosts. The migration of a VM can be
modeled by leaving of its demands and their arrivals in
the destination node. Furthermore, a demand assignment
can be switched to another facility by paying the switch
cost h ∈ R+. We assume that h ≤ k < f .

Additional notation. Please note, for a demand u and a
facility z, instead of d(γ(z), γ(u)) we simply use d(z, u) to
represent their distance. In addition, we define (x − y)+ =
max(0, x− y) for x, y ∈ R+.

The model is described as follow. Upon arrival or departure
of a demand ut at time t (the input of our model), a new
facility ω or a set of facilities can be opened, closed, or
migrated. Likewise, a subset of demands can be switched to
other facilities. Therefore, the following costs are defined at
time t:

1) Total installation cost (Cins) is the cost of installation
of a set of facilities Ft at time t.

Cins = |Ft|f (1)

Here, |Ft| denotes the number of facilities.
2) Total operational cost (Cop) represents the operational

cost of a set of facilities F .

Cop = g
∑
z∈Ft

∑
u∈C(z)

d(u, z) (2)

As shown in equation 2, this cost is defined based on
the shortest paths between facilities and their assigned
demands.

3) Total migration cost (Cmig) is the cost of migration of
a set of facilities since start time until time t.

Cmig = k
t∑
i=2

∑
z∈Fi

|γi−1(z) 6= γi(z)| (3)

In equation 3, γi(z) represents the location of facility z
at time i. Please note that term |γi−1(z) 6= γi(z)| is 1
if γi−1(z) 6= γi(z), otherwise it is 0.

4) Total switch cost (Csw) denotes the switch cost of a set
of demands Lt at time t.

Csw = h
t∑
i=2

∑
u∈Li

|φi−1(u) 6= φi(u)| (4)

Here, φi(u) represents the facility that demand u is
assigned to at time i. Note that |φi−1(u) 6= φi(u)| is
equal to 1 if φi−1(u) 6= φi(u), otherwise it is 0.

www.ijacsa.thesai.org 273 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

The objective of the optimization problem in the IMFLP
formulation is to minimize the overall cost (Coveral) as defined
in equation 5.

Coveral = Cins + Cop + Cmig + Csw (5)

The IDPSP problem can be reduced to the optimization
problem defined in the IMFLP model. This optimization
problem is NP-hard (facility location problem is NP-hard,
and our online model is even more complicated than original
problem). Motivated by this observation, we developed an
online algorithm for IMFLP model.

III. ADAPTIVE FACILITY LOCATION (AFL)

In this section, we propose our solution, Adaptive Facility
Location (AFL), for the optimization problem introduced in
the IMFLP model. We introduce two novel algorithms that
use the simple idea of profit and loss for handling a demand
arrival and a demand departure.

However, before describing our model, we justify our selec-
tion over other candidate approaches. In the area of SDN, some
of ubiquitous approaches for modeling the optimization prob-
lems are the linear programming [28, 49], simulated annealing
[48, 36], and Markov approximation [30, 41]. The linear
programming approach solves an offline problem, and is not
descriptive enough to model the dynamicity and online nature
of these kind of problems. In addition, the linear programming
is known that is slow. To deal with the dynamic nature of
these optimization problems, simulated annealing and markov
approximation are used. In the simulated annealing techniques,
at each step again an offline problem is defined, and known
to be trapped in the local minimums, and might suffer from
the bad initial state. Finally, Markov chain techniques might
also affected from bad initial state and slow convergence to
the steady state.

A. Demand Arrival

Two functions namely, migration potential and installation
potential are defined to represent how far facilities and assign-
ments of demands are from the optimal or stable configuration,
and how much profit is gained by the installation or migration
of a facility, respectively. Then by comparing with the cost of
certain actions (the loss), AFL decides which action is applied.

Installation potential function (Potins) is defined as
equation 6. This function represents how much of the current
cost can be reduced by installation of a facility at a node
p ∈ Vhosts. In this equation, ut denotes a new arrived demand
at time t. Ft−1 and Lt−1 represent a set of opened facilities
and demands at time t− 1 just before arrival of ut. The first
term computes the profit of the situation where ut is assigned
to a facility that can be installed at node p against when ut
is assigned to the closest facility in Ft−1. The second term
shows that if some demands are switched to a facility that
can be installed at node p, how much the operational cost of
related to these demands will reduce (recall that each switch
incurs switch cost h).

Potins(p) = g.
((
d(Ft−1, ut)− d(p, ut)

)
+

+
∑

v∈Lt−1

(d(φ(v), v)− d(p, v)− h)+

) (6)

Migration potential function (Potmig) is defined in equa-
tion 7. This function describes how much the migration of a
facility z from its current location to a node p reduces its total
operational cost when a new arrived demand ut is assigned to
z as well. This function can be interpreted in another sense
as well. Each demand v ∈ Ct−1(z) attempts to reduce its
cost by pulling facility z toward its location γ(ut). If a new
arrival demand ut will be assigned to z, ut also tries to pull
facility z toward itself. The potential function Potmig(z, p)
represents how much z becomes more stable by migration
form γ(z) to p. In other words, z is close enough to each
demand v ∈ Ct−1 and more closer to ut in comparison to
facilities Ft−1 including z itself.

Potmig(z, p) = g.
(
d(Ft−1, ut)− d(p, ut)

+
∑

v∈Ct−1(z)

(
d(z, v)− d(p, v)

)) (7)

Algorithm 1 shows AFL algorithm (for the sake of sim-
plicity, we drop t subscript, but we insist that the presented
algorithm is run at time t). By exploiting the aforementioned
functions, AFL attempts to improve the current placement of
facilities and current assignment of demands. Upon arrival of
a new demand u, AFL considers three actions:

1) Installation action: Installation of one new facility in
the best place with the best possible switches.

2) Migration action: Migrating one of the existing facil-
ities (the best one) without any demand switches and
assigning u to this facility.

3) Assignment action: Assigning u to the nearest existing
facility.

As shown in algorithm 1, AFL computes the installation and
migration potentials. By comparing the the computed values,
AFL applies the best action. For the installation action, AFL
calculates the installation potential Potins for every point p
in the distance of f from u (B(u, f)). AFL selects the best
point ωins, which maximizes the Potins. If AFL decided to
apply this action, it switch the neighbor demands to ωins, if
this switches reduce the service cost and the deducted service
cost is bigger than switch cost h.

For the migration action, AFL computes the migration
potential Potmig for each facility z and for each point p in the
space Vhosts. Eventually, AFL chooses the best facility ωmig
to migrate to point ρ that maximizes Potmig .

Ultimately, AFL decides which action is applied. The
installation action is considered first. If it is beneficial
(Potins(ωins)− f > 0), and its profit is greater than best mi-
gration action (Potmig(ωmig, ρ)−k), AFL applies the installa-
tion action. Otherwise, the best migration action is considered.
If this migration is beneficial (Potmig(ωmig, ρ) − k > 0),

www.ijacsa.thesai.org 274 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

Algorithm 1 AFL-Demand Arrival
F ← ∅;L← ∅;
for all new demand u do

L← L ∪ {u};
ρins ← arg maxp∈B(u,f){Potins(p)};
pins ← Potins(ρins);
ωmig, ρmig ← arg maxz∈F,p∈Vhosts/{γ(z)}{Potmig(z, p)};
pmig ← Potmig(ωmig, ρmig, u);
if (pins − f > 0) ∧ (pins − f ≥ pmig − k) then

ωins ← open a facility at ρins
F ← F ∪ {ωins}
Switch facility of each demand v ∈ L/{u} if

d(φ(v), v) > d(ρins, v) + h;
Assign u to the nearest facility;

else if pmig − k > 0 then
Assign u to ωmig;
Migrate ωmig to point ρmig;

else
Assign u to the nearest facility;

end if
end for

AFL applies this action. Otherwise, it assigns u to the nearest
facility.

B. Demand Departure

Similar to the case of demand arrival, AFL defines closing
potential and migration potential functions to represent how
far the current configuration of a facility whose demand
departures is from the stable configuration. Let u′t denotes a
demand departuring at time t, and z = φ(u′t) represents the
facility to which u′t was connected at time t − 1 just before
departure.

Closing potential function (Potcls) is defined in equation
8. This function denotes the profit of closing a facility and
switching its demands to the closest facilities.

Potcls(z) = g
∑

v∈Ct−1(z)/{u′t}

(
d(z, v)− d(Ft−1, v)− h

)
(8)

Migration potential fucntion (Pot′mig) for the departure
of a demand is defined by equation 9. It can be interpreted
exactly same as the migration potential for a demand arrival.

Pot′mig(z, p) = g
∑

v∈Ct−1(z)/{u′t}

(
d(z, v)− d(p, v)

)
(9)

AFL for the departure considers two actions:
1) Closing action: Closing facility z and assigning each of

its demands to the closest facility in Ft−1/z.
2) Migration action: Migration of facility z to another

location to serve Ct−1(z)/u′t more efficiently.
Algorithm 2 represents AFL’s algorithm for handling a de-

mand departure. For the sake of simplicity, we omit subscript
t from the notation. AFL computes the closing potential of

Algorithm 2 AFL-Demand Departure
z ← φ(u′);
pcls ← Potcls(z);
ρmig ← arg maxp∈Vhosts

{Pot′mig(z, p)};
p′mig ← Pot′mig(z, ρmig);
if (pcls + f > 0) ∧ (pcls + f > p′mig − k) then

Switch facility of each demand v ∈ C(z)/{u′} to the
closest facility in F/{z};

Close facility z;
F ← F/{z};

else if p′mig − k > 0 then
Migrate z to point ρmig;

end if
L← L/{u′}

facility z serving u′ and the best migration potential. First,
AFL considers the closing action. If closing z is beneficial
(pcls + f > 0) and is more profitable than migration action
(pcls+f ≥ p′mig−k), AFL applies this action. Otherwise, the
migration of z is considered, and if this action is profitable
(p′mig − k > 0), AFL migrates z to ρmig . If none of closing
and migration actions are beneficial, AFL only remove demand
u′ from the list of demands.

IV. EXPERIMENTS

We evaluated the effectiveness of our placement algorithm
in several simulation studies. We implemented our AFL algo-
rithm in a discrete event simulator and compared it to other five
popular algorithms namely: FFL [19], AFL [18], OPTFL [17],
RFL [38], and SNFL [20]. The details of these algorithms will
be discussed in section V. The OPTFL, AFL, and FFL algo-
rithms have certain input parameters. We ran these algorithms
for miscellaneous values of parameters and did not observe
substantial difference. Ultimately, their input parameters were
set to the values suggested by their authors, specifically for
OPTFL α = 10 [17], for AFL α = 18, β = 8.0, ψ = 4.0 [18],
and finally for FFL x = 19

8 [19].
In the last decade a tremendous research has been done to

search for an efficient and inexpensive data center networks
(DCN) architecture. Several architectures like fat-trees [3],
VL2 [24], Portland [39], BCube [25] and DCell [26] have
been proposed to address different challenges of current DCN
architectures such as scalability, agility, and reconfigurabil-
ity. For the experiment, we select Al-Fares et al. fat-tree
[3] architecture. This architecture is one of the well known
DCN architectures [27] [37] [7]. Fat-trees are more scaleable
and reliable than conventional tree-based architectures. This
topology allows us to leverage identical cheap commodity
switches in the all communication layers. In the theory, the
over-subscription ratio of this rearrangeable architecture is
1 : 1, which means that this architecture is non-blocking;
however, in the practice preventing packet reordering might
make it difficult to guaranty non-blocking network. The fat-
tree topology proposed by [3] is a k-ary tree in which k
denotes number of ports and number of pods. This topology

www.ijacsa.thesai.org 275 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

Pod 2Pod 0 Pod 3 Pod 4

Edge

Aggregation

Core

Fig. 2. The fat-tree architecture for 4 pods (k = 4)

connects homogeneous switches with the same number of
k ports. As depicted in Figure 2, the Al-Fares’s fat-tree
consists of three switch layers. At the highest level, there
are (k2)2 core-switches. Each core-switch is connected to all
k pods (i-th port of a core-switch is connected to the i-
pod). A pod contains k switches (k2 aggregation-switches and
k
2 edge-switches). At the second level, aggregation switches
are connected to k

2 of core-switches upward and k
2 edge-

switches downward. Furthermore, each aggregation-switch is
only connected to edge-switches that are in the same pod.
At the third level, edge-switches are linked to the k

2 hosts
dipping and k

2 aggregation-switches mounting. There are k3

4
hosts which are located in the leaves of this architecture. For
all experiments, the oversubscribing ratio was set to 1 : 1,
which means that this architecture is non-blocking.

The demands are generated randomly (only in the leaves)
from the uniform and normal distributions. The mean and
standard deviation parameters of the normal distribution were
set to 0.5 and 0.1, respectively, and each generated value
was multiplied by the number of leaves and a demand was
generated at the position of the result. Moreover, in all exper-
iments, the value of parameter g was set to 1. All algorithms
receive one demand at a time and reconfigure the placement
of the facilities to serve this demand upon its arrival. The
costs of installation, migration, and switch for all algorithms
are collected. For each configuration, the average of 10 tests
has been reported as the final result. We have conducted
three experiments to evaluate the the behavior of AFL under
different circumstances.

A. Impact of Number of Demands

In this experiment, the impact of number of demands on
the behavior of AFL is examined. As depicted in Figure 3,
five tests for 1024, 2048, 3072, 4096, and 5120 number of
demands for uniform (Figure 3(a)) and normal distribution
(Figure 3(b)) are conducted. We assign 6, 2, 1 for f , k and h,
respectively. The idea behind choosing these values is that we
assume that the cost of installation of a facility f is always
greater than the cost of migration k and switching h, and the
cost of migration is equal or greater than the cost of switching.
Moreover, The space is the fat-tree with 1024 hosts. For each
test, each algorithm receives one demand at a time and returns
a placement of facilities.

TABLE I: AFL’s Costs
Demands Facility Service Switch Migration Total
64 97.30% 2.70% 0.00% 0.00% 584.8
128 95.51% 4.43% 0.04% 0.02% 1667.7
256 92.40% 7.37% 0.15% 0.08% 3551.9
512 87.54% 11.66% 0.42% 0.38% 6525.8
1024 72.19% 24.36% 2.15% 1.30% 12798.7

Note: We omit word cost from the headers. For instance, by the Facility we
mean Facility Cost

As shown in Figure 3, the total cost of all algorithms in
the uniform distribution are considerably greater than normal
case. The reason is that in the uniform case the demands
spread in more hosts in comparison to the normal distribution
that demands tend to arrive in the middle hosts. As depicted,
AFL outperforms all other algorithms in all cases for both
distributions. The average of overall costs of AFL is 11.82%
and 14.46% lower than the second best algorithm in the case
of uniform and normal distributions, respectively.

B. Impact of Number of Hosts

In this experiment, the impact of number of hosts is studied.
Fat-trees with 64 (k = 8), 250 (k = 10), 432 (k = 12), 686
(k = 14), and 1024 (k = 16) hosts are generated and employed
as the space for each test. In each test, 1024 demands are
generated from uniform and normal distributions. Similar to
the previous experiment, values of f , k, and h are set to 6, 2,
and 1, respectively.

Figure 4 depicts the results of this experiment. Figures 4(c)
and 4(d) represent the results for the uniform and normal
distribution, respectively. Similar to the previous experiment,
the total costs in the uniform case is noticeably greater than the
normal case. As shown, AFL outperforms the other algorithms
in both distributions and in all cases. The total cost of AFL
is lower than the second best algorithm by the average of
14.16% and 15.66% for the uniform and normal distributions,
respectively.

The different costs of AFL for the uniform generated
demands are shown by table I. Facility and service costs are
the most significant part of the overall cost. By increasing
the number of demands, the migration and switching costs
increase. In the case of 64 demands, AFL does not migrate or
switch, however, when the number of demands increase, AFL
migrates certain facilities and switch some of demands in order
to reduce the total cost. For instance, the switch and migration
costs is 3.45% of the total cost for the 1024 demands. It means
that AFL by paying small amount of migration and switch cost
saves a significant amount of the facility and service cost. In
the case of 1024 points, AFL pays 2914.2 lower than the best
second algorithm by paying extra 441.5 migration and switch
cost in the average.

C. Impact of Cost Parameters

In this experiment, the impact of the costs parameters (f ,
k, and h) is investigated. For all tests, the space is fixed
to the fat-tree with 1024 hosts (16-ary tree). Note that in
this k-ary tree, the maximum distance between two points
is 6 (Please note that we fixed the value of g to 1 in all

www.ijacsa.thesai.org 276 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

Fig. 3. Impact of Number of Demands

0

5000

10000

15000

20000

25000

30000

1024 2048 3072 4096 5120

To
ta

l
C

os
t

Number of Demands

SNFL
AFL

OPTFL
FFL
IFL

RFL

(a) Uniform Distribution

0

2000

4000

6000

8000

10000

12000

14000

16000

1024 2048 3072 4096 5120

To
ta

l
C

os
t

Number of Demands

SNFL
AFL

OPTFL
FFL
IFL

RFL

(b) Normal Distribution

0

1000

2000

3000

4000

5000

6000

7000

128 250 432 686 1024

To
ta

l
C

os
t

Number of Points

SNFL
AFL

OPTFL
FFL
IFL

RFL

(c) Uniform Distribution

0

500

1000

1500

2000

2500

3000

3500

4000

4500

128 250 432 686 1024

To
ta

l
C

os
t

Number of Points

SNFL
AFL

OPTFL
FFL
IFL

RFL

(d) Normal Distribution

Fig. 4. Impact of Number of Hosts

experiments). Similar to the previous experiment, demands
and facilities are located in the hosts. In particular, we vary
the cost of installation, switch, and migration to investigate
the impact of these parameters on the performance of our
algorithm compared to others. We strictly specify that the cost
of switching h to be always less or equal than the cost of
migration k but cannot exceed the facility installation cost
f (i.e, f < k ≤ h). We run several tests for low, medium,
and high values of f , k and h. Specifically for the facility
cost f , 2, 4, 6 are considered as low, medium and high values,
respectively. For the migration cost k, the values 1, 3, 5 and
for the switch cost h, the values 1, 2, 4 are selected as the low,
medium and high values, respectively. Ultimately, 10 different
configuration of values for the cost parameters are examined.
Furthermore, we select the number of demands from 1024,
2048, 3072, 4096, 5120 and randomly place them on leaves
based on normal and uniform distribution. Figure 5 shows the
overall cost of our algorithm compare to others when changing
the installation, switch, and migration cost parameters.

Figures 5(a), 5(b), 5(c), 5(d), and 5(e) represent the results
of tests for 1024, 2048, 3072, 4096, and 5120 demands,
respectively. As shown, for all configuration of cost values

in all tests AFL outperforms the other algorithms except for
the three configurations of cost values, 651, 652, and 654 in
Figures 5(a), 5(b). However, as can be seen in figures 5(c),
5(d), and 5(e), by increasing the number of demands, AFL
again outperforms the other algorithms in these configurations
as well. It seems that by increasing the number of demands,
AFL converges to the more stable configuration and performs
more efficient.

D. Evaluation of Demand Departure

In this experiment, we examine the behavior of our solution
for demand departures. Because we did not find any online
algorithm in the literature considering demand departures, we
compared our algorithm with a famous offline facility location
greedy algorithm with approximation ratio of 1.61 [32]. The
same configuration as experiments for the impact of number
of demands and number of hosts (sections IV-A, IV-B) are
used. A fat-tree with 1024 hosts, and values of 6, 2, 1, and 1
for parameters f , k, h, and g, respectively.

www.ijacsa.thesai.org 277 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

211 411 431 432 611 631 632 651 652 654

To
ta

l
C

os
t

Values of f , k, and h

SNFL
AFL

OPTFL
FFL
IFL

RFL

(a) Uniform Distribution-1024 Demands

0

2000

4000

6000

8000

10000

12000

211 411 431 432 611 631 632 651 652 654

To
ta

l
C

os
t

Values of f , k, and h

SNFL
AFL

OPTFL
FFL
IFL

RFL

(b) Uniform Distribution-2048 Demands

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

211 411 431 432 611 631 632 651 652 654

To
ta

l
C

os
t

Values of f , k, and h

SNFL
AFL

OPTFL
FFL
IFL

RFL

(c) Uniform Distribution-3072 Demands

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

211 411 431 432 611 631 632 651 652 654

To
ta

l
C

os
t

Values of f , k, and h

SNFL
AFL

OPTFL
FFL
IFL

RFL

(d) Uniform Distribution-4096 Demands

0

5000

10000

15000

20000

25000

30000

211 411 431 432 611 631 632 651 652 654

To
ta

l
C

os
t

Values of f , k, and h

SNFL
AFL

OPTFL
FFL
IFL

RFL

(e) Uniform Distribution-5120 Demands

V. RELATED WORKS

A. Existing Systems

Network Function management solutions in the existing lit-
erature can be classified in to two separate groups. 1) Systems
that deal with NFs that are deployed on pre-designated static
hardware. These include systems such as CoMB [45], SIMPLE
[42], xOMB [5] and PLayer [33]. 2) Systems that deal with
VM based NF deployments, such as Stratos [23].

Static NF deployments are a step up from the traditional
NFs, and introducing software based NFs within pre-placed
commodity or specialized hardware. This gives such NFs the
ability to use the best of both software and hardware world:
multiple NFs can co-exist on the same high speed hard-
ware and work in a coordinated manner to provide superior
performance [45]. Since the NF itself is in software, it is
easy to update and maintain. The hardware can also evolve
independently of the software as the hardware and servers
on which the NFs are hosted can be upgraded and replaced.
This comes at price - the location of the NF, due to its rigid
placement, might not always be ideal. The demand for NFs is
not always uniformly distributed with in the data center [23].

B. Facility Location Problem

Facility Location Problem (FLP) is one of the well-known
problems in the location theory. This classical optimization
problem is concerned with optimal locations of certain facil-
ities to minimize the cost of providing service to demands
[46] with the offline settings. This problem is known to
be NP-Hard, and several approximation algorithms has been
developed for this problem [46]. The best known algorithm

TABLE II: Algorithms for OnFLP and IncFLP models

Algorithm Competitive Ratio Time complexity a
Adversarial Random

RFL O(log n)b 8 Ω(logm)c

OPTFL O(logn
log logn) - O(m2 + log dmax)d

SNFL 4 log n+ 1 + 2 - O(m|M ||F |)
IFL O(1) O(1) O(mm′|Fmax|)e

FFL 14 O(1) O(m|Fmax|)
a The complexity of processing mth demand
b n is the number of all demands
c The number of demands at time t
d dmax is maximum distance in the space
e Fmax denotes the maximum number of facilities opened by

the algorithm

is proposed by Li et al. [35] and achieves 1.448 approxima-
tion ratio. In addition, several models of this problem with
offline settings have been defined in the litereture. Farahani
and Hekmatfar [15] provided extensive review of different
models of offline FLP, and Boloori Arabani and Farahani [10]
overviewed the dynamic models.

Unfortunately, none of the above models are not applicable
for our problem, becuase they do not consider the online
nature of the problem. Hence, we focus on online models of
FLP. Fotakis [21] overviewed the online models of FLP and
identified two major models of online version of FLP, namely
Online Facility Location Problem (OnFLP) and Incremental
Facility Location Problem (IncFLP). In addition, some of the
other relaxed version are discussed here. Table II represents
the well-known algorithms, and their competitive ratios for all
models.

1) Online Facility Location Problem: Meyerson et. al.
[38] for the first time designed the Online Facility Location

www.ijacsa.thesai.org 278 | P a g e

Note: Please note that x-axis in the figures represent different values for f, k, h as the first, second, and th ird digit, respectively. For instance, 652 represents
6, 5, and 2 for f, k, and h, respectively.

Fig. 5. The total costs of the algorithms for the different values of f, k, and h for 1024 leaves

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

Problem (OnFLP). In OnFLP, demands come one at a time
and each demand is irrevocablely assigned to a facility upon
its arrival; however the location of demands and facilities are
not change during the time. Meyerson also proved that there
is no algorithm that can be constant competitive against an
adversary.

a) Random Facility Location Problem (RFL): Meyerson
also proposed the first algorithm for OnFLP [38] called Ran-
dom Facility Location (RFL). RFL is pretty straightforward for
the uniform facility cost. Upon arrival of each new demand
ut, RFL opens a facility with probability min{1, d(Ft−1,ut)

f }
in location γ(ut).

b) Optimal Facility Location Problem (OPTFL): The
first deterministic algorithm for OnFLP is Optimum Facility
Location (OPTFL) proposed by Fotakis [17], which achieves
to the optimum competitive ratio for OnFLP. OPTFL defines
the unsatisfied demands L that contains demands no having
contributed in opening a new facility. Each v ∈ L at time t
contributes in opening a facility by d(Ft−1, v). OPTFL marks
each new arrived demand ut as unsatisfied and appends ut to
L. S = B(ut,

d(Ft−1,ut)
α ∩ L) is a set of unsatisfied demands

that are close to ut. The potential function of S is defined
by P (S) =

∑
v∈S d(Ft−1, v). If P (S) < f , OPTFL opens

no facility and assign ut to the nearest facility. If P (S) ≥ f ,
then the algorithm opens a new facility in a location ω ∈ S
and removes S from L (L = L/S). The location ω is the
center of the smallest radius ball S′ ⊆ S whose potential
P (S′) ≥ 1

2P (S).
c) Simple Non-Uniform Facility Location (SNFL): Sim-

ple Non-Uniform Facility Location (SNFL) [20] uses the same
idea of OPTFL [17], but this algorithm defines the potential
function in a different way. There are no unsatisfied demands,
and for each point z (either demand or facility) at time step t,
the potential function is p(z) =

∑
v∈L(d(Ft−1, v)−d(z, v))+

in which L denotes the set of previous demands and also the
new arrived demand ut. Upon arrival of demand ut, SNFL
adds ut to L, computes potential p(z) for all z ∈ M , and
finds the point ω maximizing p(ω)− fω . If p(ω) > fω , SNFL
opens a new facility at ω (Ft = Ft−1 ∪ {ω}) and assigns ut
to ω. If p(ω) ≤ fω then SNFL does not open any new facility
and assigns ut to the nearest existing facility.

2) Increamental Facility Location Problem (IncFLP):
Motivated by the framework of incremental clustering [11]
and incremental k-median [12], Incremental Facility Location
Problem (IncFLP) is developed. In contrast to ONFLP, two
existing facilities and corresponding demands clusters can be
merged in this model. A merge rule procedure determines
whether two facilities will be merged. When a new demand
ut arrives, the algorithm applies a facility-opening rule and a
merge rule to determine whether a new facility opens, and two
existing facilities will be merged.

a) Incremental Facility Location (IFL): Incremental
Facility Location (IFL) [18] is the first algorithm proposed
for the IncFLP model. IFL introduced a new concept merge
ball B(ω,m(ω)) for each facility ω, in which m(ω) is the
merge-radius. IFL also defines C(ω) and Init(ω). In fact,

Init(ω) is a set of demands initially assigned to a just opened
facility ω, and C(ω)/Init(ω) are demands that initially are
assigned to other facilities different from ω, and gradually
are assigned to ω by the merge rule (m(ω) ⊆ C(ω)).
Moreover, IFL makes sure that no merge operation increase
the total service cost of the demands in Init(ω) intensely.
Hence, it keeps m(ω) decreasing by maintaining invariant
|Init(ω) ∪ B(ω, m(ω)

ψ)|.m(ω) lower than or equal to βf , in
which ψ and β are appropriate positive constant integers.

3) Relaxed incremental Facility Location Problem (RFLP):
Fotakis [19] suggested another model for FLP that is similar

to IncFLP, though the demands can be reassigned to a nearest
facility. We call this model Relaxed incremental Facility
Location Problem (RFLP).

a) Fast Facility Location (FFL): Fast Facility Location
(FFL) [19] introduces the final distance function used for
the merge rule. The final distance for each facility ω and
a point p is defined as g(ω, p) = d(ω, p) + 2m(ω). In this
definition m(ω) denotes ω’s replacement distance. For a point
p and a facility set F , the replacement distance is g(F, p) =
minω∈F {g(ω, p)}. FFL works as follows. When a new de-
mand ut arrives, the algorithm computes δ = g(Ft−1, ut) and
opens a new facility ω in the location of ut with probability
of min{1, δ

xf }. If ω opens, the replacement radius m(ω) is
set to min{xf,g(Ft−1,ut)}

6 . Then, FFL considers every facility z
which ω is inside B(z,m(z)), and merges z with ω. Notice
that the demands assigned to these facilities will be reassigned
to the nearest facility, not necessarily to ω.

4) Comparison of IMFLP with the other works: It is worth
noting that our formulation of IMFLP is different from OnFLP,
because assignment decisions and locations of facilities can be
changed. Furthermore, the difference the incremental version
[19] is that switch a demand to any other facility is allowed in
the IMFLP model. Regarding the RFLP, switches are allowed
but is free of charge. Finally, [14, 4] are the most similar model
to ours, however; they assumed that the number of demands
is fixed and known in advance, and they just change their
locations.

VI. CONCLUSION AND FUTURE WORKS

We formulated the Intrusion Detection and Prevention Sys-
tems Placement (IDPSP) problem for cost-effective support
as services in Cloud-based environment. Incremental Mobile
Facility Location Problem (IMFLP) model was proposed to
study this problem, and Adaptive Facility Location (AFL)
solution was presented and evaluated for solving the optimiza-
tion problem in this model. For the future works, we plan
to implement this system as a real cloud service. Moreover,
we intend to improve upon the proposed placement model.
Certain constraints have been ignored in the formulation of
the optimization problem in the IMFLP model for the sake
of simplicity. We plan to add these constraints in the future
model to make IMFLP model more applicable.

REFERENCES

[1] ETSI Network Functions Virtualisation Introductory White Paper.
https://portal.etsi.org/nfv/nfvwhitepaper.pdf.

www.ijacsa.thesai.org 279 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

[2] OpNFV - White Paper.
[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A

scalable, commodity data center network architecture, 2008.
[4] Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic fa-

cility location via exponential clocks. ACM Transactions on Algorithms
(TALG), 13(2):21, 2017.

[5] James W Anderson, Ryan Braud, Rishi Kapoor, George Porter, and
Amin Vahdat. xomb: Extensible open middleboxes with commodity
servers. In Proceedings of the eighth ACM/IEEE symposium on
Architectures for networking and communications systems, pages 49–
60. ACM, 2012.

[6] Junaid Arshad, Paul Townend, and Jie Xu. An automatic intrusion
diagnosis approach for clouds. International Journal of Automation and
Computing, 8(3):286–296, 2011.

[7] Md Faizul Bari, Raouf Boutaba, Rafael Esteves, Lisandro Zambenedetti
Granville, Maxim Podlesny, Md Golam Rabbani, Qi Zhang, and Mo-
hamed Faten Zhani. Data center network virtualization: A survey.
Communications Surveys & Tutorials, IEEE, 15(2):909–928, 2013.

[8] Md Faizul Bari, Arup Raton Roy, Shihabur Rahman Chowdhury,
Qi Zhang, Mohamed Faten Zhani, Reaz Ahmed, and Raouf Boutaba.
Dynamic controller provisioning in software defined networks. In
CNSM, pages 18–25, 2013.

[9] Alireza Boloori Arabani and Reza Zanjirani Farahani. Facility location
dynamics: An overview of classifications and applications. Computers
& Industrial Engineering, 62(1):408–420, February 2012.

[10] Alireza Boloori Arabani and Reza Zanjirani Farahani. Facility location
dynamics: An overview of classifications and applications. Computers
& Industrial Engineering, 62(1):408–420, 2012.

[11] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Mot-
wani. Incremental clustering and dynamic information retrieval. In
Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing, pages 626–635. ACM, 1997.

[12] Moses Charikar and Rina Panigrahy. Clustering to minimize the sum
of cluster diameters. In Proceedings of the thirty-third annual ACM
symposium on Theory of computing, pages 1–10. ACM, 2001.

[13] András Császár, Wolfgang John, Mario Kind, Catalin Meirosu, Gergely
Pongrácz, Dimitri Staessens, Attila Takács, and J Westphal. Unifying
cloud and carrier network. Proceedings of. DCC, Dresden, Germany, to
appear Dec, 2013.

[14] David Eisenstat, Claire Mathieu, and N Schabanel. Facility location in
evolving metrics. arXiv preprint arXiv:1403.6758, pages 1–12, 2014.

[15] Reza Zanjirani Farahani and Masoud Hekmatfar. Facility location:
concepts, models, algorithms and case studies. 2009.

[16] Björn Feldkord and Friedhelm Meyer auf der Heide. The mobile server
problem. In Proceedings of the 29th ACM Symposium on Parallelism
in Algorithms and Architectures. ACM, 2017.

[17] Dimitris Fotakis. On the competitive ratio for online facility location.
Algorithmica, 14186:637–652, 2003.

[18] Dimitris Fotakis. Incremental algorithms for Facility Location and k-
Median. Theoretical Computer Science, 361(2-3):275–313, 2006.

[19] Dimitris Fotakis. Memoryless facility location in one pass. STACS 2006,
pages 608–620, 2006.

[20] Dimitris Fotakis. A primal-dual algorithm for online non-uniform
facility location. Journal of Discrete Algorithms, 5(1), 2007.

[21] Dimitris Fotakis. Online and incremental algorithms for facility location.
ACM SIGACT News, 42(1):97–131, 2011.

[22] A Gember, R Viswanathan, C Prakash, R Grandl, J Khalid, S Das, and
A Akella. Opennf: Enabling innovation in network function control.
Technical report, University of Wisconsin-Madison, 2014.

[23] Aaron Gember, Robert Grandl, Ashok Anand, Theophilus Benson, and
Aditya Akella. Stratos: Virtual middleboxes as first-class entities. UW-
Madison TR1771, 2012.

[24] By Albert Greenberg, James R Hamilton, Srikanth Kandula, Changhoon
Kim, Parantap Lahiri, A Maltz, Parveen Patel, Sudipta Sengupta, Albert
Greenberg, Navendu Jain, and David A. Maltz. VL2: a scalable and
flexible data center network. In Proc. ACM SIGCOMM 2009 Conf.
Data Commun., volume 09, pages 51–62, 2009.

[25] Chuanxiong Guo, G Lu, Dan Li, Haitao Wu, and X Zhang. BCube: a
high performance, server-centric network architecture for modular data
centers. In ACM SIGCOMM 2009 Conf. Data Commun.

[26] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and
Songwu Lu. Dcell: a scalable and fault-tolerant network structure for
data centers, 2008.

[27] Ali Hammadi and Lotfi Mhamdi. A survey on architectures and energy
efficiency in Data Center Networks, 2014.

[28] Qichao He, Ying Wang, Wenjing Li, and Xuesong Qiu. Traffic steering
of middlebox policy chain based on sdn. In Integrated Network and
Service Management (IM), IFIP/IEEE Symposium on. IEEE, 2017.

[29] Brandon Heller, Rob Sherwood, and Nick McKeown. The controller
placement problem. In Proceedings of the first workshop on Hot topics
in software defined networks, pages 7–12. ACM, 2012.

[30] Huawei Huang, Song Guo, Jinsong Wu, and Jie Li. Service chaining
for hybrid network function. IEEE Trans. on Cloud Computing, 2017.

[31] Jinho Hwang, KK Ramakrishnan, and Timothy Wood. Netvm: high
performance and flexible networking using virtualization on commodity
platforms. In 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2014.

[32] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy
approach for facility location problems. In Proceedings of the Thiry-
fourth Annual ACM Symposium on Theory of Computing, STOC ’02,
pages 731–740, New York, NY, USA, 2002. ACM.

[33] Dilip A Joseph, Arsalan Tavakoli, and Ion Stoica. A policy-aware
switching layer for data centers. In ACM SIGCOMM Computer
Communication Review, volume 38, pages 51–62. ACM, 2008.

[34] Md Tanzim Khorshed, ABM Ali, and Saleh A Wasimi. A survey on
gaps, threat remediation challenges and some thoughts for proactive
attack detection in cloud computing. Future Generation Computer
Systems, 28(6):833–851, 2012.

[35] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility
location problem. Information and Computation, 222:45–58, 2013.

[36] Jiaqiang Liu, Yong Li, Ying Zhang, Li Su, and Depeng Jin. Improve
service chaining performance with optimized middlebox placement.
IEEE Transactions on Services Computing, 10(4):560–573, 2017.

[37] Yang Liu, Jogesh K Muppala, and Malathi Veeraraghavan. A Survey of
Data Center Network Architectures.

[38] Adam Meyerson. Online facility location. . . . of Computer Science,
2001. Proceedings. 42nd . . . , pages 0–5, 2001.

[39] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nel-
son Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subra-
manya, Amin Vahdat, and Radhika Niranjan Mysore. PortLand: a
scalable fault-tolerant layer 2 data center network fabric. In ACM
SIGCOMM 2009 Conf. Data Commun.

[40] VT Paschos. Paradigms of Combinatorial Optimization: Problems and
New Approaches. 2013.

[41] Chuan Pham, Nguyen H Tran, Shaolei Ren, Walid Saad, and
Choong Seon Hong. Traffic-aware and energy-efficient vnf placement
for service chaining: Joint sampling and matching approach. IEEE
Transactions on Services Computing, 2017.

[42] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar,
and Minlan Yu. Simple-fying middlebox policy enforcement using sdn.
In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM,
pages 27–38. ACM, 2013.

[43] Sebastian Roschke, Feng Cheng, and Christoph Meinel. Intrusion de-
tection in the cloud. In Dependable, Autonomic and Secure Computing,
2009. DASC’09. Eighth IEEE International Conference on, pages 729–
734. IEEE, 2009.

[44] Karen Scarfone and Peter Mell. Guide to intrusion detection and
prevention systems (idps). NIST special publication, 800, 2007.

[45] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and
Guangyu Shi. Design and implementation of a consolidated middlebox
architecture. In NSDI, pages 323–336, 2012.

[46] David B Shmoys, Éva Tardos, and Karen Aardal. Approximation
algorithms for facility location problems. In Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing, pages 265–274.
ACM, 1997.

[47] Anna Sperotto, Gregor Schaffrath, Ramin Sadre, Cristian Morariu, Aiko
Pras, and Burkhard Stiller. An overview of ip flow-based intrusion
detection. IEEE Communications Surveys and Tutorials, 12(3):343–356,
2010.

[48] Wentao Wang, Lingxia Wang, and Fang Zheng. An improved adaptive
scheduling strategy utilizing simulated annealing genetic algorithm for
data center networks. KSII Transactions on Internet and Information
Systems (TIIS), 11(11):5243–5263, 2017.

[49] Jie Zhang, Deze Zeng, Lin Gu, Hong Yao, and Muzhou Xiong. Joint
optimization of virtual function migration and rule update in software
defined nfv networks. In GLOBECOM IEEE Global Communications
Conference, pages 1–5. IEEE, 2017.

www.ijacsa.thesai.org 280 | P a g e

