
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

7 | P a g e

www.ijacsa.thesai.org

Recognition of Ironic Sentences in Twitter using

Attention-Based LSTM

Andrianarisoa Tojo Martini, Makhmudov Farrukh, Hongwei Ge

Department of Computer Science & Technology

Dalian University of Technology

Dalian, P. R. China

Abstract—Analyzing written language is an interesting topic

that has been studied by many disciplines. Recently, due to the

explosive growth of Internet, social media has become an

attractive source of searching and getting information for

research purposes on written communication. It is true that

different words in a sentence serve different purposes of

conveying the meaning while they are of different significance.

Therefore, this paper is going to employ the attention mechanism

to find out the relative contribution or significance of every word

in the sentence. In this work, we address the problem of detecting

whether a tweet is ironic or not by using Attention-Based Long

Short-Term Memory Network. The results show that the

proposed method achieves competitive performance on average

recall and F1 score compared to the state-of-the-art results.

Keywords—Irony detection; attention; attention mechanism;

sentiment analysis; long-short-term memory

I. INTRODUCTION

Nowadays, the Web has become an indispensable source of
searching and gaining information because of the quantity and
diversity of textual content containing opinions expressed by
internet users. Blogs, comments, forums, social networks,
reactions or opinions are more and more centralized by search
engines. The prodigious measure of data streaming from online
social networking and micro-blogging platforms like Twitter,
is increasingly attracting the many researchers in the area of
sentiment analysis. From these social medias, the automatic
detection of irony is, therefore, important for the development
of sentiment analysis research, but at the same time it is also an
interesting challenge from a cognitive point of view and can
help to shed some lights on how human beings use irony as a
communicative tool.

Sarcasm and irony are very similar. Generally speaking,
irony is employed to convey the opposite meaning of the actual
things you say, but its purpose isn’t to harm the other person
unlike sarcasm which is employed to hurt the other person.
According to the Gricean tradition [1], the function of irony is
to effectively communicate the opposite of the interpretation of
the utterance. However, determining whether a text is ironic or
not is a difficult task since the differences between ironic and
non-ironic texts are usually extremely delicate. For example,
one tweet wrote that “Love this weather #not” is ironic, but a
similar tweet which wrote “Hate this weather #not happy” is
considered as non-ironic.

In this paper, we introduce the deep learning representation
in ironic tweets detection tasks by merging the attention
mechanism with the LSTM layers and compare it with the
state-of-the-art feature engineering approaches, as we know
that state-of-the-art irony and sarcasm detection systems often
only rely on deep and sequential neural networks [2] [3].

The Section 2 of this paper is a survey of the related work
while Section 3 presents the proposed work by explaining the
architecture and the methods used. In Sections 4 and 5 the
experiment setup and the results are being respectively
discussed. Finally, Section 6 presets the conclusion part.

II. RELATED WORK

Identifying the ironic texts can help to understand the social
web better and there are many related applications like
sentiment analysis. Irony detecting techniques are important to
enhance the performance of sentiment analysis. In [4], authors
used the LIBSVM to perform the inductive learning for the
training dataset perhaps in accordance with the recent work
which has explored the use of Support Vector Machines for
text classification with more precise results compared to the
other classification techniques.

In [5], authors use Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), and Attentive RNN in irony
detection tasks, and compare the results with the state-of-the-
art feature engineering approaches. The first one is
Convolutional Neural Network (CNN), which is introduced by
[6], and used as a sentence modeling technique in Natural
Language Processing (NLP) [7] by using word embedding.
Their CNN is applied with one-directional convolutions over
the embedded word vectors with multiple filters in various
sizes. After applying one-max-pooling over all the outputs
filters, the scalars are concatenated together as the encoded
vector. The second model is Recurrent Neural Network (RNN),
which has been created for the use of sequential data. The
Neural Network generates an output vector which considers
not only the current input, but also the previous result. The last
output vector is taken as the encoded vector.

In [8], the authors made some improvements on previous
work [9] by adding some features as well as the word graph
similarity score. Each tweet is represented as directed
unweighted word graph and the edge between each word is
created based on the vicinity window size. Each class in the
dataset is represented as directed unweighted graphs. Then a
vector is produced after comparing each class graph. And this

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

8 | P a g e

www.ijacsa.thesai.org

vector is used as features by machine learning algorithm. The
graph is constructed based on a class assignment and then they
measure the similarity of a tweet with each class graph.

Some works have also been carried out for detecting satire
in English text, for example [10]. Firstly, authors introduce
approach to binary classification of satire in English text.
Secondly, they propose a list of generalized linguistic features
which provide good results on different types of satire corpora.
Furthermore, they make available a standard satire corpus
which was retrieved from twitter (with user generated tags such
as #satire, #satirical). But developed system might not perform
very well on time-based satirical posts on social media
platforms.

III. PROPOSED APPROACH

A. Self-Attention Mechanism

First of all, since the research is concentrated on the
attention mechanism, we have to discuss about the Self-
Attention Mechanism. Recurrent Neural Networks (RNNs)
output their hidden state as they process a sequence and that
hidden state holds a summary of the information in the
sequence. We used a self-attention mechanism [11] to amplify
the contribution of important words in the final representation.

After using the attention mechanism, we compute as
combination of all (Fig. 1). The weights have been
learned by the network and the magnitude of those weights
learned signifies the importance of each hidden state in the
final representation.

The hidden state at the last time-step is used as the
representation of the input. In long sequences case, the
Recurrent Neural Network might not be able to hold all the
important information in its final hidden state. In order to
amplify the contribution of important elements in the final
representation, an attention mechanism has been used.

 ∑

 (1)

Fig. 1. Attention RNN.

B. Preprocessing

We’ve used a text processing tool called Ekphrasis
presented by [12], which can perform tokenization, word
normalization, word segmentation (for splitting hashtags) and
spelling correction, using word statistics from two big corpora
namely English Wikipedia and Twitter.

1) Tokenization: Tokenization is the initial preprocessing

stage which makes it the foundation for the latter stages.

Therefore, it will certainly make an effect of the feature’s

quality studied by the network. Tokenization in Twitter is full

of challenges for that various usage of vocabulary and

expressions are here and there. Of course, some of the

challenges came from the dilemma of projecting the whole

expression or simply taking its tokens. To rise to this challenge,

Ekphrasis recognized the markup, emoticons, emojis, dates,

acronyms, censored words and words with emphasis.

2) Normalization: Apart from the method of tokenization,

we also make some adjustment on certain selected tokens, such

as spelling correction, words normalization and sedimentation.

Furthermore, we also figure out what kinds of tokens should be

omitted, normalized and surrounded together with those that

should be replaced with special tags such as URLs, emails and

@user.

C. Attention-based LSTM Model Description

The framework of our attention-based LSTM network is
illustrated in (Fig. 2). Next, we will introduce each layer in our
model from bottom to top in detail.

Fig. 2. Architecture of LSTM with Attention Mechanism.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

9 | P a g e

www.ijacsa.thesai.org

3) Embedding Layer: This process happens just right after

the pre-processing. Word embedding techniques aim to use

continuous low-dimension vectors representing the features of

the words [13], which tweets are transformed into a sequence

of words ()
 , where is the number

of a tweet, and denotes the dimension of a word vector [14].

We use Word2Vec [13] as the vector representation of the

words in tweets.

4) Convolutional and Max-Pooling Layers: After getting

the pre-trained word vectors “word2vec” from the word

embedding Layers, we train a convolutional neural network,

followed by a max-pooling layer. The goal of convolution is to

extract the input feature, and pooling is to subsample the output

of the convolution matrix. The regular way to do pooling is by

applying a max operation to the result of each filter. There are

two reasons to use a max-pooling layer in our research. First,

by doing elimination of any non-maximal values, it reduces

computation for upper layers. Second, the max-pooling layer

can extract the local dependency within different regions to

keep the most salient information.

5) LSTM Layer: The next layer in our model is LSTM

layer. LSTM is kind of RNN which has been introduced firstly

by [15]. For LSTM, Cell state () are connected to three gates

which are forget gate (), input gate () and output gate ()
respectively. Fig. 3 illustrates the architecture of a standard

LSTM.

More formally, each cell in LSTM can be computed as
follows:

 [

] (2)

 () (3)

 () (4)

 ̃ () (5)

 ̃ (6)

 () (7)

 () (8)

Where
 are the weighted matrices

and
 are biases of LSTM to be learned

during training, parameterizing the transformations of the
input, forget and output gates respectively. is the sigmoid
function and stands for element-wise multiplication,
includes the inputs of LSTM cell unit.

This layer is used to capture long-range contextual
information from tweets. At time step , a hidden state is
generated which contains both previous and future context
information. Since different words and phrases serve different
purposes to irony detection, we propose to design an attention
layer after the LSTM layer to help our model focus on
important words and contexts.

Fig. 3. Architecture of Cell in LSTM.

6) Attention Layer: The input of the attention layer is the

hidden state vector at each time step. The attention weight

 for this time step can be computed as:

 () (9)

 ̂
 (10)

 (̂)

 (̂)

Where and are the parameters of the attention layer.
The output of attention layer at the time step is formulated
as follows:

 (12)

IV. EXPERIMENTAL SETUP

First of all, let’s talk about the datasets. The dataset used
consists of 355k English tweets (43k ironic and 312k in literal
sentiment sense, we named it dataset1. Another dataset
collected by Ghosh [2] contains 18k sarcastic tweets (which
can be used on irony) and 21k regular tweets. In order to
collect the most data for dasatest1, we used the Twitter API
(https:// dev.twitter.com/) to stream tweets from Twitter by
using hashtags #irony, #sarcasm and #not as key word. And
the data was cleaned by using the preprocessing method from
the section 3 (which means that ironic hashtags, such as #not,
#sarcasm, #irony, in the dataset have been removed), it was
labeled 1 for ironic texts and 0 for normal.

As for the implementation, our model is implemented in
Keras library. We conducted the experiment with different
values for the LSTM hidden state size and for the dropout
probability, obtaining best results for a dropout probability of
0.5 and 128 units for the hidden vector. The table below
(Table I) shows the repartition of the collected dataset, we
trained 80% of the provided data as training set and 20% as test
set. Since the data is kind of voluminous, we only use the
number of epochs as 3. Cross entropy and Adam are used as
the loss function and optimization algorithm of the output
layer.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

10 | P a g e

www.ijacsa.thesai.org

TABLE I. COUNTS AND PERCENTAGES OF IRONIC AND NON-IRONIC OF

THE TWEETS COLLECTED AND TEST-TRAIN SET

 Non-Ironic Ironic Total

Training set 249800 (88%) 34382 (12%) 284182

Test set 62501 (88%) 8545 (12%) 71046

Collected data 312193 (88%) 43035 (12%) 355228

V. FINAL RESULT AND DISCUSSION

A. Results

Tables II and III show the results of the experiments after
using both LSTM approach and Attention Based approach, and
compare them to the state models presented by [2] . We only
report the average Precision (Avg.Prec), Recall (Avg.Rec), and
F1 scores (Avg.F1).

Table II below presents a comparison of the results trained
on the collected dataset (dataset1), we observe that our model
with Attention based LSTM almost outperforms every model
than other models, except the model which is a combination of
CNN, LSTM, and DNN introduced by [2], it outperforms our
model at the precision by 0.4% margin but they both got the
same results on the F1 score. As for the proposed model with
just LSTM, it performs the lowest performance in every
evaluation.

As for Table III, we show that the performance of our
system can outperform some of the baseline methods on the
Ghosh dataset [2] but got outperformed by the CNN, LSTM,
and DNN model.

TABLE II. COMPARISON OF OUR METHOD TO BASELINE USING

DATASET1

Model
Avg.

Prec

Avg.

Rec

Avg.

F1

Our
model

Attention based LSTM 0.836 0.883 0.859

LSTM 0.703 0.805 0.751

Ghosh

CNN + LSTM + DNN (with
dropout)

0.84 0.876 0.857

LSTM+ LSTM 0.734 0.842 0.784

CNN+CNN 0.716 0.804 0.758

TABLE III. COMPARISON OF OUR METHOD TO BASELINE USING GHOSH

DATASET

Model
Avg.

Prec

Avg.

Rec

Avg.

F1

Ghosh

CNN + LSTM + DNN (with

dropout)
0.899 0.91 0.904

LSTM+ LSTM 0.854 0.871 0.862

CNN+CNN 0.856 0.879 0.868

Our

model

LSTM 0.777 0.859 0.816

Attention based LSTM 0.875 0.894 0.884

Fig. 4. Attention Architecture with LSTM with Attention Mechanism.

Fig. 4 shows that when using the Attention Mechanism on
the LSTM layer, the model performs better than the one that
doesn’t use it. The Attention based Model makes an
improvement on the Precision by more than 9%, around 3 to
8% on Recall and more than 8% on F1 score.

B. Discussion

1) Attention visualization: In the following figure (Fig. 5),

we are going to get a closer look at the degree showing how

much attention mechanism will better the performance of irony

detection.

According to the given figure, there are some certain usage
of language such as apparent emotional words, old topics,
emojis, punctuation, numerals and sometimes slang and
ungrammatical expressions attaining much more focus in the
internet which makes it the biggest factor in case of the
contribution to irony detection. The network is going to study
the significance of certain words, it targets at finding out what
factors will make a difference when it comes to the final
ironical decision. As shown in the figure, the reddish color is
used to highlight attention weights and the color gradients are
there to make a distinction between the heavy weights of
attention and the light one.

Fig. 5. Attention Visualization.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

11 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

In this paper, we proposed a Long Short-Term Memory
(LSTM) with attention mechanism model to detect English
ironic sentences from Twitter. The proposed model got
competitive result compared to the state-of-the-art models
without using further feature engineering. The results showed
that our model performs better on the collected dataset,
especially on the recall and f1 score. On the Ghosh [2] dataset,
our Attention-Based model outperformed the CNN and LSTM
model proposed by [2] but couldn’t outperform the model with
a combination of CNN, LSTM, and DNN. Finally, in the
discussion part we show that the attention vectors generated by
our attention layer can capture specific words which are very
useful to decide for the training, it can decide whether the tweet
selected is ironic or not. In a future work, we would like to
explore how to make full usages of the attention mechanism on
text sentiment analysis.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China No. 61471084, No. U1608253, and the
open program of State Key Laboratory of Software
Architecture No. SKLSA2016B-02.

REFERENCES

[1] S. Chapman, "Logic and Conversation," in Paul Grice, Philosopher and
Linguist, London, Palgrave Macmillan UK, 2005, pp. 85-113.

[2] A. Ghosh and D. T. Veale, "Fracking Sarcasm using Neural Network,"
in Proceedings of the 7th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis , San, 2016.

[3] M. Zhang, Y. Zhang and G. Fu, "Tweet Sarcasm Detection Using Deep
Neural Network," in COLING, 2016.

[4] T. Ahmad, H. Akhtar, A. Chopra and M. W. Akhtar, "Satire Detection
from Web Documents Using Machine Learning Methods," 2014

International Conference on Soft Computing and Machine Intelligence,
pp. 102-105, 2014.

[5] Y.-H. Huang, H.-H. Huang and H.-H. Chen, "Irony Detection with
Attentive Recurrent Neural Networks," in ECIR, 2017.

[6] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based
learning applied to document recognition," Proceedings of the IEEE,
vol. 86, pp. 2278-2324, 11 1998.

[7] Y. Kim, "Convolutional neural networks for sentence classification," in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, 2014.

[8] U. Ahmed, L. Zafar, F. Qayyum and M. Arshad Islam, "Irony Detector
at SemEval-2018 Task 3: Irony Detection in English Tweets using Word
Graph," in Proceedings of The 12th International Workshop on
Semantic Evaluation, New, 2018.

[9] G. Giannakopoulos, V. Karkaletsis, G. Vouros and P. Stamatopoulos,
"Summarization System Evaluation Revisited: N-gram Graphs," ACM
Trans. Speech Lang. Process., vol. 5, pp. 5:1--5:39, 10 2008.

[10] A. N. Reganti, T. Maheshwari, U. Kumar, A. Das and R. Bajpai,
"Modeling Satire in English Text for Automatic Detection," in 2016
IEEE 16th International Conference on Data Mining Workshops
(ICDMW), 2016.

[11] D. Bahdanau, K. Cho and Y. Bengio, "Neural Machine Translation by
Jointly Learning to Align and Translate," CoRR, vol. abs/1409.0473,
2014.

[12] C. Baziotis, N. Pelekis and C. Doulkeridis, "DataStories at SemEval-
2017 Task 4: Deep LSTM with Attention for Message-level and Topic-
based Sentiment Analysis," in Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017) , Vancouver, 2017.

[13] T. Mikolov, K. Chen, G. Corrado and J. Dean, "Efficient Estimation of
Word Representations in Vector Space," CoRR, vol. abs/1301.3781,
2013.

[14] Y. Zhang, J. Wang and X. Zhang, "YNU-HPCC at SemEval-2018 Task
1: BiLSTM with Attention based Sentiment Analysis for Affect in
Tweets," in Proceedings of The 12th International Workshop on
Semantic Evaluation, New, 2018.

[15] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural
Computation, pp. 1735-1780, 1997.

