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Abstract—Communication can guarantee the coordinated 

behavior in the multi-agent systems. However, in many real-

world problems, communication may not be available at every 

time because of limited bandwidth, noisy environment or 

communication cost. In this paper, we introduce an algorithm to 

develop a communication strategy for cooperative multi-agent 

systems in which the communication is limited. This method 

employs a fuzzy model to estimate the benefit of communication 

for each possible situation. This specifies minimal communication 

that is necessary for successful joint behavior. An incremental 

method is also presented to create and tune our fuzzy model that 

reduces the high computational complexity of the multi-agent 

systems. We use several standard benchmark problems to assess 

the performance of our proposed method. Experimental results 

show that the generated communication strategy can improve the 

performance as well as full-communication strategy, while the 

agents utilize little communication. 
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I. INTRODUCTION 

One of the main goals of artificial intelligence is designing 
autonomous agents interacting in a domain. A Multi-Agent 
System (MAS) includes multiple autonomous agents operating 
in an uncertain environment in order to maximize their utility. 
In MAS, each agent independently perceives its local 
environment and influence the environment by executing its 
actions. Many artificial intelligence problems can take 
advantage of MAS design such as multiple mobile robots, 
sensor networks, disaster response teams, smart city and video 
games. 

There are two types of problems in MASs, self-interested 
and cooperative settings [1]. In self-interested scenario the 
agents can have different and even conflicting goals. In 
cooperative setting, which we focus on it in this work, the 
agents cooperate to reach a shared target. In this case, each 
agent individually makes a decision based on its local 
observation, but the maximum reward will be achieved when 
the individual decisions are coordinated. Communication is an 
important factor to preserve coordinated behavior. However, 
communication is not always available, especially when the 
agents have limit on battery usage or the communication 
channel is noisy or limited. Therefore, one of the main 
challenges in MASs is to maintain coordination over a long 
period of time with minimal communication. 

Various mathematical models have been used to 
characterize decision-making problems. In a stochastic fully 
observable environment, Markov Decision Process (MDP) 
provides a powerful modeling tool. Partially Observable 
Markov Decision Process (POMDP) is employed in problems 
with limited sensing capabilities. Decentralized Partially 
Observable Markov Decision Process (Dec-POMDP) is a 
powerful framework for collaborative multi-agent planning in 
an uncertain environment [2]. In this paper, we use Dec-
POMDP to model cooperative MAS problems. 

The strategies of multi-agent problems are categorized in 
two categories, finite-horizon and infinite-horizon Dec-
POMDPs. Finite-horizon policies are usually represented by a 
decision tree and numerous techniques have been proposed to 
obtain or approximate the optimal policies [3]-[5]. Moreover, a 
number of methods have been developed to generate 
decentralized policies with minimal communication usage [1], 
[6]. On the other side, finite state controllers (FSCs) is a major 
model to represent infinite-horizon Dec-POMDP policy. 
Several optimization techniques have been used to approximate 
the parameters of FSCs, for example, Linear programming [7], 
nonlinear programming [8] and expectation-maximization [9], 
[10]. However, identifying best situations for communication 
has not been considered by existing methods. This paper 
focuses on solving this issue. 

One of the powerful function approximators are fuzzy 
systems that can approximate any non-linear system to an 
arbitrary accuracy. A fuzzy system is capable of handling high 
level of uncertainty by a compact fuzzy rule-base. Therefore, 
presenting fuzzy model is desirable to solve a MAS in previous 
studies [11]. In [12] an incremental fuzzy controller has been 
introduced to find a solution of large MASs. 

Our aim in this paper is to present an algorithm to identify 
best situations for making communication in MASs modelled 
by infinite-horizon Dec-POMDP. This method develops a 
strategy that helps the agents to maintain coordination with 
minimal communication. This communication policy is 
developed centralized in a training phase, where the 
communication is not restricted. The agents use this policy 
decentralized in a test environment that the communication 
channel is limited. This paper presents an incremental method 
to estimate the benefits of communication in every possible 
situation that the agents can have. Based on this estimation, the 
agents can decide when the communication has the most 
impact on the improvement of the final performance. The 
results show that the performance of the presented 
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communication strategy is almost the same as the full 
communication. 

The organization of the rest of paper is as follows. 
Section 2 formally defines the infinite-horizon Dec-POMDP 
and gives an overview of the Dec-POMDP solution methods. 
Section 3 presents the details of the proposed method. In 
Section 4 we evaluate the proposed communication strategy on 
several well-known Dec-POMDP problems. Finally, the 
conclusions are given in Section 5. 

II. BACKGROUND AND RELATED WORKS 

In this paper, we consider a group of agents cooperate with 
each other in an uncertain environment over infinite time steps. 

At each time step t, the agents take joint action 
ta


 (action 

t
ia  

for i-th agent) that causes the state of the environment to 
change from s

t
 to s

t+1
. After that, each agent perceives its 

observation and receives a global reward from the 
environment. This cycle repeats over infinite steps. This type 
of MAS problems is properly modelled by infinite-horizon 
Dec-POMDP [12]. Fig. 1 displays the interaction of the agents 
and the environment. 

 
Fig. 1. Dec-POMDP Setup. 

A. Infinite-Horizon Dec-POMDP 

In infinite-horizon Dec-POMDP, a group of agents are 
considered that operate in an uncertain environment over 
infinite steps. Infinite-horizon Dec-POMDP is a tuple 

,,,,},{},{,, 0bROPASI ii   where I is a finite set of agents 

and S is a finite set of states. Each state determines the specific 

situation of the environment. The number of agents is
IN and 

SN is the number of states. Ai and i specify the finite set of 

actions and observations available for agent i. 

INaaa ,...,1  denotes a joint action ( iIi AA 


) and 

INooo ,...,1


 denotes a joint observation ( iIi  


). If 

the agents take joint action 
ta


in time step t, the state of the 

environment is transitioned from s
t
 to s

t+1
 with probability 

),|( 1 ttt assP


. The probability of the joint observation 
1to


 

in state s
t+1

 after the agents perform joint action 
ta


 is 

),|( 11 ttt asoO
 

. At the end of each time step, the 

environment gives the agents the global reward ),( asR


 for 

taking the joint action a


in the state s. The initial state 

distribution is
0b . The belief vector  t

Ni
t
i

t
i

S
bbb

,1,   

determines the belief of i-th agent about the state of the 

environment in time step t. In fact, 
t
ib is a probability 

distribution over S such that 
t
nib ,  specifies the belief of i-th 

agent that the state of the environment is sn. The belief space is 
an Ns-dimensional space defined by the belief vector. 

For infinite-horizon Dec-POMDP problems with the initial 

state distribution
0b , the solution is a joint policy  that 

maximizes the expected infinite-horizon discounted reward














0

0

),( basRE
t

ttt 
 , where a discount factor  (0≤ < 1) 

limits the summation of rewards in the infinite-horizon. 

Finding the optimal solution for the infinite-horizon Dec-
POMDP may not be practical, because of unbounded number 
of steps [13]. Previous researches have tried to find a sub-
optimal solution by using a bounded policy representation. The 
most common policy representation is finite state controllers 
(FSCs). Several approaches have presented to estimate the 
parameters of FSCs such as linear programming [7], nonlinear 
programming [8] and expectation-maximization [9], [10]. 
Value function is another approach to represent the policy in 
infinite-horizon Dec-POMDP problems [14]. In our previous 
work [12] we have introduced an incremental method to learn a 
fuzzy model as a value function. It generates a compact fuzzy 
rule-base as a solution that offers scalability for large MAS 
problems. 

As stated before, obtaining minimal communication to 
coordinate the behavior of the agents is one of the main 
challenges in cooperative MAS problems. Therefore, several 
methods have been introduced to determine the communication 
strategy. Most of these algorithms work for finite-horizon Dec-
POMDP cases [15], [6]. F. Wu et al. [1] introduced an online 
planning approach to reduce the computational complexity. To 
cope with limited bandwidth, the agents communicate only 
when history inconsistency is detected. The presented method 
in [16] calculates divergence between the agents’ belief to 
evaluate communication. Since this method has considered an 
imprecise assumption for calculating belief divergence, it 
cannot accurately estimate the value of communication. 

B. Incremental Learning 

An incremental learning is a method that creates a model 
by recursively extracting required information from sequence 
of incoming data. This learning method is able to start learning 
―from scratch‖. Its parameters and structure are tuned 
incrementally according to current information without 
memorizing previous observation. Thus, the model can be 
created using low computational complexity and limited 
memory size. Evolving fuzzy [17] and neuro-fuzzy [18] 
systems are the most popular approaches for incremental 
learning. Shahparast et al. in [19] proposed two fast methods 
for adapting certainty factors of fuzzy rules, based on the 
reinforcement learning and reward and punishment. In [20] a 
simple and fast method is proposed that uses gradient decent to 
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tune the structure and parameters of a fuzzy classifier. D. 
Kangin et al. in [21] and [22] have introduced a group of 
incremental methods called TEDA that can be used for 
clustering, regression and classification. Incremental methods 
are also employed to find a policy for infinite-horizon Dec-
POMDP. An incremental reinforcement learning algorithm is 
presented in [12] to create a compact fuzzy model as a solution 
of large MASs. 

III. OUR PROPOSED METHOD 

In this paper, we introduce a method to find a 
communication strategy for cooperative MAS problems in 
which the communication is expensive or limited. This method 
estimates the benefit of communication by computing the 
effect of communication on increasing accumulated reward for 
each situation. This can be used to obtain minimal 
communication that is necessary for successful joint behavior. 

In this paper, we extend our previous method presented in 
[12]. In that method, each agent makes use of an individual 
fuzzy rule-base to interact with the environment. These rule-
bases that map the belief space to the value of the actions, are 
created and tuned by an incremental reinforcement learning 
algorithm regarding experiences of the agents. 

In this paper, two phases are considered, learning and 
execution phase. In the learning phase, communication 
between the agents is not limited and the algorithm freely 
shares the information of the agents to tune the communication 
strategy. However, there is limited bandwidth in the execution 
phase and the agents use the learned strategy to identify the 
situations where the communication can be beneficial to 
improve the performance. 

A. Learning Phase 

In this phase, the agents interact with the environment and 
in addition to tuning their behavior according to the response of 
the environment, the communication strategy is adjusted. To 
do this, each agent has an individual decision making system to 
select the best action in every time step and there is a shared 
communication rule-base, that is used to learn the benefit of 
communication for each situation. 

The benefit of communication,
t
cQ , is computed by 

comparing the outcomes of two different agent-environment 
interactions in the particular state of the environment. Since the 
state of the environment is not available in Dec-POMDPs, we 
approximate it with the belief vectors of the agents. In each 
time step, once, the agents select the action without using 
communication and once again, the actions are selected after 
sharing information. The difference between the value of these 
two selected actions (i.e. immediate reward plus the expected 
accumulation of future rewards) determines the benefit of 
communication. Therefore, there is a tuple for each time step 
that contains two parts: particular situation of the environment, 

which specified by belief vector and 
t
cQ , the benefit of 

communication for this situation. We call this tuple an 
experience. Fig. 2 illustrates the process of producing an 
experience in time step t. 

Since the agents interact with the environment many times 
and an experience is achieved for each time step, there is a 
sequence of experiences (one element for each time step). The 
communication rule-base is created and tuned using this 
sequence. The sequence of experiences theoretically is infinite 
in infinite-horizon Dec-POMDP problems. Therefore, we have 
introduced an incremental algorithm to develop 
communication strategy. We describe the process of producing 
an experience and updating mechanism according to an 
experience in following two sub-sections. 

1) Producing an experience: At each time step t, first, the 

agents interact with the environment, using only local 

information. Each agent updates its previous belief vector 1t
ib  

to local belief vector t
ib  that is computed based on its 

previous action 1t

ia and local observation t

io . 
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Fig. 2. The process of producing an Experience in time Step t. 
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Where, 
t
io


 and 

1

t

ia


 are the joint observation and the 

joint action of all agents except agent i respectively. Also, iO

and iA  are all possible joint observations and all possible 

joint actions for the other agents,  
t
i

t
i

t ooo


,  and 

 


 111 , t
i

t
i

t aaa


. 

Then, according to 
t
ib  , the agent selects the best action. 

As stated before, we used our previuos work presented in [12] 
to determine the behavior of the agents. In this method, each 
agent has individual fuzzy rule-base to estimate the value of the 
actions according to its belief vector.  In fact, fuzzy rule-base 

of i-th agent determines ),( m

t

ii abQ , the expected value of 

action m. At each time step, the agents estimate the value of 
their actions and perform the action having maximum value. 

),(maxarg m
t
ii

a

t abQa

m
i


  



After obtaining
t

i
a , the same process is done to determine 

the appropriate joint action if the agents share their local 

information. To do this, the algorithm considers 
commtb ,

 as 

global belief vector and update it by using joint action 1ta


 

and joint observation to


. 

 
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Using global belief vector
commtb ,

, each agent selects the 

best action 
commt

ia ,
: 

),(maxarg ,,
m

commt
i

a

commt
i abQa

m

  

Therefore, there are two joint actions in each time step for 
interacting with the environment; if the agents communicate to 

each other,
commta ,

 is selected and if they make decision based 

on the local information, 
ta


 is selected. The difference 

between the outputs of these two joint actions, determines the 
value of the communication in time step t.  

Assume 
comm
tr  and 

commto ,1
are global reward and joint 

observation if the agents take joint action 
commta ,

; and if the 

agents perform joint action
ta


, they receive tr  and 

1to


 from 

the environment. The difference between the outputs of these 
two joint actions is calculated as follow: 

   )()( 1,1   t
t

commt
i

comm
t

t
c ibVrbVrQ   

Where 1t
ib  is updated for each agent using 

t
ia

, 
1t

io
 and 

(1), and also 
commt

ib ,1

 is updated using 
commt

ia ,

, 
commt

io ,1

and 

same equation. 
)( ,1 t

ibV
 (i.e. 

)()( ,11 commt
i

t
i bVorbV 

) is the 

estimated value of the incoming situation. In fact, )( ,1 t
ibV  

estimates accumulated reward that will be achieved in the 

future steps. 
)( ,1 t

ibV
 is easily obtained by one-step look-

ahead: 

),(max)( ,1,1 abQbV t
ii

Aa

t
i

i

 



  

In this manner, whenever each agent has the same belief 

vector as
t

ib , the benefit of the communication is t
cQ  (i.e. 

communication can increase the accumulated reward by t
cQ ). 

Our proposed algorithm uses this tuple  t
c

t
i Qb ,  as an experience 

to tune the communication rule-base. 

2) Updating mechanism: In the learning phase, the agents 

interact with the environment many times and an experience is 

achieved for each time step. Hence, there is a sequence of 

experiences that our algorithm uses to create and tune the 

communication rule-base. The proposed method combines the 

information of experiences by clustering the similar 

experiences, in which center of each cluster identifies a 

communication rule. Since the number of experiences in the 

learning phase is huge, we introduce an incremental approach 

to cluster the experiences. In the following, we present the 

incremental process of tuning the communication strategy 

according to an experience: 

Each rule specifies the benefit of communication for a 
region of belief space. The j-th rule in communication rule-

base, 
comm

jR  , have a following form: 

comm
j

comm
j

t
i

comm
j QQthenBlikeisbifR :  

Where  comm
Nj

comm
j

comm
j

S
BBB

,1,   is a reference belief 

vector [12] of rule j that specifies the center of the region and 

Q  represents the expected benefit of communication for this 

region. 

Assume the i-th agent has an experience  t
c

t
i Qb ,  in the time 

step t. The algorithm identifies the most similar reference belief 

vector to
t
ib . To do this, the similarity of 

t
ib  to the reference 

belief vector of all existing rules in the communication rule-
base is computed as follows: 
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Where ),( comm
j

t
i BbCosSim  is the cosine similarity of these 

two vectors. 

If maximum similarity of t
ib  to the existing rules is less 

than thershold minSim , i.e. t
ib considerably different with all 

reference belief vectors, so we consider  t
c

t
i Qb ,   as a new 

experience. In this case, the proposed method adds a new rule 

to the communication rule-base, according to  t
c

t
i Qb , . The 

reference belief vector of the new rule is set to t
ib  (

t
i

comm
newRule bB  ) and the consequent part of the new rule is set 

to t
cQ ( t

cnewRule QQ  ). It is noteworthy that if there is no rule 

in the communication rule-base, the same procedure is done to 
add the first rule. 

Otherwise, if there is a similar reference belief vector to t
ib , 

the nearest rule to t
ib  is determined: 

 ),(maxarg comm
j

t
i

j

BbCosSimw   

Where, w is the index of the most similar rule. Each rule is 

identified by averaging all similar experiences that agents have 
during the learning phase. Since the number of these 
experiences is huge, we use recursive formula to calculate the 

mean of group of similar experiences. For adjusting
comm
wR  

according to the experience  t
c

t
i Qb , , the antecedent of 

comm
wR is 

updated regarding 
t
ib  by following recursive equation [21]: 

k

bBk
B

t
i

comm
oldwcomm

neww




)(
)(

)1(
  

Where
comm

oldwB )( and
comm

newwB )(  are the reference belief vectors 

of 
comm
wR , before and after updating, respectively. Similarly, 

the consequent of  
comm
wR  is updated as follow: 

k

QQk
Q

t
c

comm
oldwcomm

neww




)(
)(

)1(
  

B. Execution Phase 

The generated strategy is performed in the execution phase 
in which communication is limited. In this phase, the agents 

estimate the benefit of communication and if it is recognized 
beneficial, the agents share their local information. 

In each time step, the agents compute the benefit of 
communication according to its belief vector as follow: 

Assume the belief vector of i-th agent in time step t is t
ib . 

Firing strength of all rules in communication rule-base are 
calculated using: 





S

ni
comm

nj

N

n

t

B

t
j b

1

)(
,,

   

Where
t
j  is the firing strength of the rule j. These firing 

strengths are then used to calculate the benefit of 
communication: 










r

r

N

j

t
j

N

j

comm
j

t
j

t
icomm

Q
bQ

1

1
)(




  

Where Nr is the number of rules in the communication rule-

base and )( t
icomm bQ  denotes the benefit of communication 

from the perspective of i-th agent. This agent propagates 
communication request if the estimated benefit is more than 

predefined threshold commC : 

comm
t
icomm CbQ )(   

The values of commC depends on the characteristics of each 

problem. In the real-world problems, this parameter can be set 
according to the percentage of access to the communication. 
Also, in an application with the communication cost, this 
parameter can be used to balance the communication costs with 
the coordination benefits. 

If communication is available, each agent propagates its 
sequence of action-observation from previous communication, 
up to the current time step. By sharing this information, the 
belief vectors of all agents are equivalent and thus the 
coordinated behaviours are guaranteed. In the absence of 
communication, the agent postpones its request until the 
communication is allowed. By using this strategy, the 
behaviours of the agents maintain coordinated with little 
communication. 

IV. EXPERIMENTAL RESULTS 

We evaluated our proposed algorithm on several 
benchmark problems that have been widely used to rate multi-
agent planning methods. These problems are Broadcast 
Channel [3], Meeting in a Grid 3×3 [4], Cooperative Box 
Pushing [5] and Stochastic Mars Rover [23]. We reported the 
accumulated discounted reward (Reward), percentage of 
communication (Comm. (%)) and the number of generated 

rules with different values of commC . In the real-world 

problems, commC can be set regarding the amount of access to 

the communication. Lower value of commC  increases the 
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communication usage. In an application with the 

communication cost, commC can be used to balance 

communication costs with coordination benefits. The discount 
factor is set to 0.9 and the results are averages over 50 runs. 

To the best of our knowledge, this is the first attempt to 
find the communication behaviour in infinite-horizon Dec-
POMDP problems. Therefore, we compare the performance of 
our communication strategy to the full-communication (Full-
Comm.) strategy as an upper bound and the no-communication 
(No-Comm.) strategy as a lower bound. Since in real-world 
MAS problems the communication is limited, the main 
purpose of the experiments is to test whether our proposed 
communication behaviour can help the agents to approach the 
performance of full-communication, while using little 
communication. 

A. Broadcast Channel Problem 

In the Broadcast Channel problem two agents are 
connected in a network. In each time step, only one of them 
can use the connection and sends its message. To avoid 
collision, each agent has to decide whether send a message or 
not. This problem has 4 states, 2 actions and 5 observations. 
The results in Table I show that Broadcast Channel problem is 
very simple such that the agents can easily cooperate. 
Therefore, the performance of the various percentage of 
communication is almost the same and different values of 

commC
 
have no effect on the performance. 

TABLE I.  BROADCAST CHANNEL RESULTS 

Broadcast 
channel 

Ccomm Reward Comm. (%) 
No. of 
rules 

|S|=4 No-Comm. 9.1 0 - 

|Ai|=2 0.5 9.11 0.0 2 

|Oi|=5 0.1 9.18 83.16 1.16 

 Full-Comm. 9.2 100 - 

B. Meeting in a Grid Problem 

In Meeting in a Grid problem, there are two agents on a 
3×3 grid. They can move up, down, left or right, or stay on 
previous square. Each agent can sense whether there are walls 
around by noisy sensors with a 0.9 chance to perceiving the 
right observation. The goal of the agents is to spend as much 
time as possible on the same square. This problem has 81 
states, 7 observations, 5 actions. The results in Table II show 
that low percentage of communication cannot significantly 
improve accumulated reward, however the performance of full-
communication strategy can be achieved by making 
communication in almost half of time steps. Since the agents in 
Meeting in a Grid problem need the future planning 
information to cooperate, and in our method, the action-
observation sequence is transferred, the proposed 
communication strategy cannot maintain the agents 
coordinated for a long time. 

TABLE II.  MEETING IN A 3×3 GRID RESULTS 

Meeting in a 
3×3 Grid 

Ccomm Reward Comm. (%) 
No. of 
rules 

|S|=81 No-Comm. 4.19 0 - 

|Ai|=5 0.7 4.22 14.13 27.62 

|Oi|=7 0.5 5.71 57.99 27.94 

 Full-Comm. 5.82 100 - 

C. Cooperative Box Pushing Problem 

In Cooperative Box Pushing problem, there are three boxes 
(two small and one large) on a 3×4 grid and two agents that can 
move the boxes. Each agent can push a small box alone. 
However, for moving the larger box, the agents need to 
cooperate. Whenever one of the boxes reaches into a goal area, 
a trial ends. If it is one of the small boxes, the agents gain a 
reward of +10, and if the large box move into the goal area, 
they get a reward of +100. However, if a box smashes into a 
wall or the large box is pushed by one agent, a penalty of -5 is 
received. The Box Pushing problem has 4 actions, 5 
observations, 4 goal states and 96 non-goal states (100 states in 
total). According to the definition of this problem, 
communication has a significant impact on the performance. 
The reported results in Table III show the proposed 
communication strategy did significantly improve the 
performance with low percentage of communication. While the 
achieved accumulated reward with no communication is 
177.11, this value can be increased to 218.97 by 
communicating in only 6.13% of time steps. Also, the 
accumulated reward has reached 225.19 by communicating in 
one third of time steps whereas it is 232.25 for the full-
communication case. 

Fig. 3 demonstrates the effect of different values of 

parameter commC  on the percentage of communication and the 

accumulated reward in solving Cooperative box pushing 
problem. In order to better illustration of the performance of 
our method, the values of the accumulated reward are shown 
between the achieved reward of the No-Comm. strategy as a 
lower bound and the Full-Comm. strategy as an upper bound. 
As stated before, the percentage of communication and 

accumulated reward are increased by decreasing commC . 

Moreover, regarding these figures it is obvious that the 
accumulated reward is significantly increased with a small 
increase in percentage of communication. 

TABLE III.  COOPERATIVE BOX PUSHING RESULTS 

Cooperative 
box pushing 

Ccomm Reward Comm. (%) 
No. of 
rules 

|S|=100 No-Comm. 177.11 0 - 

|Ai|=4 30 198.63 1.82 26.34 

|Oi|=5 20 218.97 6.13 26.34 

 10 225.19 33.86 26.56 

 Full-Comm. 232.25 100 - 
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Fig. 3. The Effect of commC  on (a) the Percentage of Communication and 

(b) the Accumulated Reward in Cooperative Box Pushing Problem. 

D. Mars Rover Problem 

We evaluate the performance of our proposed method with 
a larger problem, Mars Rover problem. In This problem, there 
are two rovers experimenting at a 2×2 grid by independently 
drilling or sampling at each site or moving around. Two of the 
sites just need one agent to sample, while in the other sites, 
both agents must drill at the same time in order to get the 
maximum reward. The agents get a large penalty, if a site is 
drilled while it only needs to be sampled. When at least one 
experiment is performed at each site, the problem is reset. This 
problem has 256 states, 6 actions and 8 observations. As can be 
seen from Table IV, proposed communication strategy did very 
well for Mars Rover problem as a large MAS problem. The 
method achieves almost the same performance as the case of 
full-communication by making communication in less than one 
fifth of time steps (17.51%). 

We have also demonstrated the results of accumulated 
rewards and the percentage of communication with different 

values of commC  in solving Mars rover problem in Fig. 4. 

Fig. 4(a) illustrates the effect of commC on the percentage of 

communication and Fig. 4(b) shows the effect of this parameter 
on the accumulated reward. Again, in Fig. 4(b), the values of 
accumulated reward are shown between the reward of the No-
Comm. strategy and the Full-Comm. strategy as the lower and 
upper bound, respectively. Fig. 4 clearly shows that with a 
small increase in percentage of communication, the 
accumulated reward is significantly increased. 

TABLE IV.  MARS ROVER RESULTS 

Mars 
Rover 

Ccomm Reward Comm. (%) No. of rules 

|S|=256 No-Comm. 23.55 0 - 

|Ai|=6 3 23.5 0.7 8.06 

|Oi|=8 2 26.05 12.19 8.02 
 1 27.09 17.51 8.24 
 Full-Comm. 28.77 100 - 

 
(a) 

 
(b) 

Fig. 4. The Effect of commC  on (a) the Percentage of Communication and 

(b) the Accumulated Reward in Mars Rover Problem. 
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To summarize, our proposed algorithm to develop the 
communication strategy, performed very well in all the 
benchmark problems. Using this strategy can heavily reduce 
the amount of communication necessary for successful 
coordinated behaviour. 

V. CONCLUSION 

We introduced an algorithm to develop a communication 
strategy for cooperative multi-agent systems in which the 
communication is limited. This strategy identifies best 
situations for making communication in MASs modelled by 
infinite-horizon Dec-POMDP. This communication policy is 
developed centralized in a training phase, which the 
communication is not restricted. The agents use this policy 
decentralized in a test environment that the communication 
channel is limited. Our method generates a fuzzy model to 
approximate the benefit of communication for each situation. 
The agents can use this fuzzy model to obtain minimal 
communication that is necessary for coordinated behavior. We 
also introduced an incremental method to create and tune this 
fuzzy model. Our incremental method has reduced the high 
computational complexity of the multi-agent systems by 
constructing a compact fuzzy rule-base. We used several 
standard benchmark problems to evaluate the performance of 
our proposed method. Experimental results show that this 
communication strategy can help the agents to achieve almost 
the same performance as the full-communication strategy by 
using little communication. Therefore, in the real-world MAS 
problems that the communication is usually limited, our 
proposed algorithm can heavily reduce the amount of 
communication necessary for successful coordinated 
behaviour. 

Many AI domains can take advantage of MAS design such 
as multiple mobile robots and disaster response teams. 
Developing a group of intelligent players or agents in video 
games is another interesting field in AI research. In our future 
work, we intend to customize our incremental model to create 
human-like players for real-time strategy games who can act 
and react intelligently against virtual environment and even 
real players. 
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