
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

167 | P a g e

www.ijacsa.thesai.org

Developing Communication Strategy for Multi-Agent

Systems with Incremental Fuzzy Model

Sam Hamzeloo, Mansoor Zolghadri Jahromi

Department of Computer Science and Engineering

Shiraz University

Shiraz, Iran

Abstract—Communication can guarantee the coordinated

behavior in the multi-agent systems. However, in many real-

world problems, communication may not be available at every

time because of limited bandwidth, noisy environment or

communication cost. In this paper, we introduce an algorithm to

develop a communication strategy for cooperative multi-agent

systems in which the communication is limited. This method

employs a fuzzy model to estimate the benefit of communication

for each possible situation. This specifies minimal communication

that is necessary for successful joint behavior. An incremental

method is also presented to create and tune our fuzzy model that

reduces the high computational complexity of the multi-agent

systems. We use several standard benchmark problems to assess

the performance of our proposed method. Experimental results

show that the generated communication strategy can improve the

performance as well as full-communication strategy, while the

agents utilize little communication.

Keywords—Multi-agent systems; decentralized partially

observable Markov decision process; communication; planning

under uncertainty; fuzzy inference systems

I. INTRODUCTION

One of the main goals of artificial intelligence is designing
autonomous agents interacting in a domain. A Multi-Agent
System (MAS) includes multiple autonomous agents operating
in an uncertain environment in order to maximize their utility.
In MAS, each agent independently perceives its local
environment and influence the environment by executing its
actions. Many artificial intelligence problems can take
advantage of MAS design such as multiple mobile robots,
sensor networks, disaster response teams, smart city and video
games.

There are two types of problems in MASs, self-interested
and cooperative settings [1]. In self-interested scenario the
agents can have different and even conflicting goals. In
cooperative setting, which we focus on it in this work, the
agents cooperate to reach a shared target. In this case, each
agent individually makes a decision based on its local
observation, but the maximum reward will be achieved when
the individual decisions are coordinated. Communication is an
important factor to preserve coordinated behavior. However,
communication is not always available, especially when the
agents have limit on battery usage or the communication
channel is noisy or limited. Therefore, one of the main
challenges in MASs is to maintain coordination over a long
period of time with minimal communication.

Various mathematical models have been used to
characterize decision-making problems. In a stochastic fully
observable environment, Markov Decision Process (MDP)
provides a powerful modeling tool. Partially Observable
Markov Decision Process (POMDP) is employed in problems
with limited sensing capabilities. Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) is a
powerful framework for collaborative multi-agent planning in
an uncertain environment [2]. In this paper, we use Dec-
POMDP to model cooperative MAS problems.

The strategies of multi-agent problems are categorized in
two categories, finite-horizon and infinite-horizon Dec-
POMDPs. Finite-horizon policies are usually represented by a
decision tree and numerous techniques have been proposed to
obtain or approximate the optimal policies [3]-[5]. Moreover, a
number of methods have been developed to generate
decentralized policies with minimal communication usage [1],
[6]. On the other side, finite state controllers (FSCs) is a major
model to represent infinite-horizon Dec-POMDP policy.
Several optimization techniques have been used to approximate
the parameters of FSCs, for example, Linear programming [7],
nonlinear programming [8] and expectation-maximization [9],
[10]. However, identifying best situations for communication
has not been considered by existing methods. This paper
focuses on solving this issue.

One of the powerful function approximators are fuzzy
systems that can approximate any non-linear system to an
arbitrary accuracy. A fuzzy system is capable of handling high
level of uncertainty by a compact fuzzy rule-base. Therefore,
presenting fuzzy model is desirable to solve a MAS in previous
studies [11]. In [12] an incremental fuzzy controller has been
introduced to find a solution of large MASs.

Our aim in this paper is to present an algorithm to identify
best situations for making communication in MASs modelled
by infinite-horizon Dec-POMDP. This method develops a
strategy that helps the agents to maintain coordination with
minimal communication. This communication policy is
developed centralized in a training phase, where the
communication is not restricted. The agents use this policy
decentralized in a test environment that the communication
channel is limited. This paper presents an incremental method
to estimate the benefits of communication in every possible
situation that the agents can have. Based on this estimation, the
agents can decide when the communication has the most
impact on the improvement of the final performance. The
results show that the performance of the presented

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

168 | P a g e

www.ijacsa.thesai.org

communication strategy is almost the same as the full
communication.

The organization of the rest of paper is as follows.
Section 2 formally defines the infinite-horizon Dec-POMDP
and gives an overview of the Dec-POMDP solution methods.
Section 3 presents the details of the proposed method. In
Section 4 we evaluate the proposed communication strategy on
several well-known Dec-POMDP problems. Finally, the
conclusions are given in Section 5.

II. BACKGROUND AND RELATED WORKS

In this paper, we consider a group of agents cooperate with
each other in an uncertain environment over infinite time steps.

At each time step t, the agents take joint action
ta


 (action

t
ia

for i-th agent) that causes the state of the environment to
change from s

t
 to s

t+1
. After that, each agent perceives its

observation and receives a global reward from the
environment. This cycle repeats over infinite steps. This type
of MAS problems is properly modelled by infinite-horizon
Dec-POMDP [12]. Fig. 1 displays the interaction of the agents
and the environment.

Fig. 1. Dec-POMDP Setup.

A. Infinite-Horizon Dec-POMDP

In infinite-horizon Dec-POMDP, a group of agents are
considered that operate in an uncertain environment over
infinite steps. Infinite-horizon Dec-POMDP is a tuple

,,,,},{},{,, 0bROPASI ii  where I is a finite set of agents

and S is a finite set of states. Each state determines the specific

situation of the environment. The number of agents is
IN and

SN is the number of states. Ai and i specify the finite set of

actions and observations available for agent i.

INaaa ,...,1 denotes a joint action (iIi AA 


) and

INooo ,...,1


 denotes a joint observation (iIi  


). If

the agents take joint action
ta


in time step t, the state of the

environment is transitioned from s
t
 to s

t+1
 with probability

),|(1 ttt assP


. The probability of the joint observation
1to



in state s
t+1

 after the agents perform joint action
ta


 is

),|(11 ttt asoO
 

. At the end of each time step, the

environment gives the agents the global reward),(asR


 for

taking the joint action a


in the state s. The initial state

distribution is
0b . The belief vector  t

Ni
t
i

t
i

S
bbb

,1, 

determines the belief of i-th agent about the state of the

environment in time step t. In fact,
t
ib is a probability

distribution over S such that
t
nib , specifies the belief of i-th

agent that the state of the environment is sn. The belief space is
an Ns-dimensional space defined by the belief vector.

For infinite-horizon Dec-POMDP problems with the initial

state distribution
0b , the solution is a joint policy  that

maximizes the expected infinite-horizon discounted reward














0

0

),(basRE
t

ttt 
 , where a discount factor  (0≤ < 1)

limits the summation of rewards in the infinite-horizon.

Finding the optimal solution for the infinite-horizon Dec-
POMDP may not be practical, because of unbounded number
of steps [13]. Previous researches have tried to find a sub-
optimal solution by using a bounded policy representation. The
most common policy representation is finite state controllers
(FSCs). Several approaches have presented to estimate the
parameters of FSCs such as linear programming [7], nonlinear
programming [8] and expectation-maximization [9], [10].
Value function is another approach to represent the policy in
infinite-horizon Dec-POMDP problems [14]. In our previous
work [12] we have introduced an incremental method to learn a
fuzzy model as a value function. It generates a compact fuzzy
rule-base as a solution that offers scalability for large MAS
problems.

As stated before, obtaining minimal communication to
coordinate the behavior of the agents is one of the main
challenges in cooperative MAS problems. Therefore, several
methods have been introduced to determine the communication
strategy. Most of these algorithms work for finite-horizon Dec-
POMDP cases [15], [6]. F. Wu et al. [1] introduced an online
planning approach to reduce the computational complexity. To
cope with limited bandwidth, the agents communicate only
when history inconsistency is detected. The presented method
in [16] calculates divergence between the agents’ belief to
evaluate communication. Since this method has considered an
imprecise assumption for calculating belief divergence, it
cannot accurately estimate the value of communication.

B. Incremental Learning

An incremental learning is a method that creates a model
by recursively extracting required information from sequence
of incoming data. This learning method is able to start learning
―from scratch‖. Its parameters and structure are tuned
incrementally according to current information without
memorizing previous observation. Thus, the model can be
created using low computational complexity and limited
memory size. Evolving fuzzy [17] and neuro-fuzzy [18]
systems are the most popular approaches for incremental
learning. Shahparast et al. in [19] proposed two fast methods
for adapting certainty factors of fuzzy rules, based on the
reinforcement learning and reward and punishment. In [20] a
simple and fast method is proposed that uses gradient decent to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

169 | P a g e

www.ijacsa.thesai.org

tune the structure and parameters of a fuzzy classifier. D.
Kangin et al. in [21] and [22] have introduced a group of
incremental methods called TEDA that can be used for
clustering, regression and classification. Incremental methods
are also employed to find a policy for infinite-horizon Dec-
POMDP. An incremental reinforcement learning algorithm is
presented in [12] to create a compact fuzzy model as a solution
of large MASs.

III. OUR PROPOSED METHOD

In this paper, we introduce a method to find a
communication strategy for cooperative MAS problems in
which the communication is expensive or limited. This method
estimates the benefit of communication by computing the
effect of communication on increasing accumulated reward for
each situation. This can be used to obtain minimal
communication that is necessary for successful joint behavior.

In this paper, we extend our previous method presented in
[12]. In that method, each agent makes use of an individual
fuzzy rule-base to interact with the environment. These rule-
bases that map the belief space to the value of the actions, are
created and tuned by an incremental reinforcement learning
algorithm regarding experiences of the agents.

In this paper, two phases are considered, learning and
execution phase. In the learning phase, communication
between the agents is not limited and the algorithm freely
shares the information of the agents to tune the communication
strategy. However, there is limited bandwidth in the execution
phase and the agents use the learned strategy to identify the
situations where the communication can be beneficial to
improve the performance.

A. Learning Phase

In this phase, the agents interact with the environment and
in addition to tuning their behavior according to the response of
the environment, the communication strategy is adjusted. To
do this, each agent has an individual decision making system to
select the best action in every time step and there is a shared
communication rule-base, that is used to learn the benefit of
communication for each situation.

The benefit of communication,
t
cQ , is computed by

comparing the outcomes of two different agent-environment
interactions in the particular state of the environment. Since the
state of the environment is not available in Dec-POMDPs, we
approximate it with the belief vectors of the agents. In each
time step, once, the agents select the action without using
communication and once again, the actions are selected after
sharing information. The difference between the value of these
two selected actions (i.e. immediate reward plus the expected
accumulation of future rewards) determines the benefit of
communication. Therefore, there is a tuple for each time step
that contains two parts: particular situation of the environment,

which specified by belief vector and
t
cQ , the benefit of

communication for this situation. We call this tuple an
experience. Fig. 2 illustrates the process of producing an
experience in time step t.

Since the agents interact with the environment many times
and an experience is achieved for each time step, there is a
sequence of experiences (one element for each time step). The
communication rule-base is created and tuned using this
sequence. The sequence of experiences theoretically is infinite
in infinite-horizon Dec-POMDP problems. Therefore, we have
introduced an incremental algorithm to develop
communication strategy. We describe the process of producing
an experience and updating mechanism according to an
experience in following two sub-sections.

1) Producing an experience: At each time step t, first, the

agents interact with the environment, using only local

information. Each agent updates its previous belief vector 1t
ib

to local belief vector t
ib that is computed based on its

previous action 1t

ia and local observation t

io .

   

  

   



  





 



 







Ss Aa Oo Ss

t
i

ttt

Aa Oo Ss

t
i

ttt

t
i

i
t
i i

t
i

i
t
i i

t
i

sbassPasoO

sbassPasoO

sbSs

1

1

)(),|(),|(

)(),|(),|(

)(,

111

111

 

  

Fig. 2. The process of producing an Experience in time Step t.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

170 | P a g e

www.ijacsa.thesai.org

Where,
t
io


 and

1

t

ia


 are the joint observation and the

joint action of all agents except agent i respectively. Also, iO

and iA are all possible joint observations and all possible

joint actions for the other agents,  
t
i

t
i

t ooo


, and

 


 111 , t
i

t
i

t aaa


.

Then, according to
t
ib , the agent selects the best action.

As stated before, we used our previuos work presented in [12]
to determine the behavior of the agents. In this method, each
agent has individual fuzzy rule-base to estimate the value of the
actions according to its belief vector. In fact, fuzzy rule-base

of i-th agent determines),(m

t

ii abQ , the expected value of

action m. At each time step, the agents estimate the value of
their actions and perform the action having maximum value.

),(maxarg m
t
ii

a

t abQa

m
i




After obtaining
t

i
a , the same process is done to determine

the appropriate joint action if the agents share their local

information. To do this, the algorithm considers
commtb ,

 as

global belief vector and update it by using joint action 1ta


and joint observation to


.

 



 












Ss Ss

commtttt
Ss

commtttt

commt

sbassPasoO

sbassPasoO

sbSs

)(),|(),|(

)(),|(),|(

)(,

,111

,111

,





 

Using global belief vector
commtb ,

, each agent selects the

best action
commt

ia ,
:

),(maxarg ,,
m

commt
i

a

commt
i abQa

m

  

Therefore, there are two joint actions in each time step for
interacting with the environment; if the agents communicate to

each other,
commta ,

 is selected and if they make decision based

on the local information,
ta


 is selected. The difference

between the outputs of these two joint actions, determines the
value of the communication in time step t.

Assume
comm
tr and

commto ,1
are global reward and joint

observation if the agents take joint action
commta ,

; and if the

agents perform joint action
ta


, they receive tr and

1to


 from

the environment. The difference between the outputs of these
two joint actions is calculated as follow:

   )()(1,1   t
t

commt
i

comm
t

t
c ibVrbVrQ   

Where 1t
ib is updated for each agent using

t
ia

,
1t

io
 and

(1), and also
commt

ib ,1

 is updated using
commt

ia ,

,
commt

io ,1

and

same equation.
)(,1 t

ibV
 (i.e.

)()(,11 commt
i

t
i bVorbV 

) is the

estimated value of the incoming situation. In fact,)(,1 t
ibV

estimates accumulated reward that will be achieved in the

future steps.
)(,1 t

ibV
 is easily obtained by one-step look-

ahead:

),(max)(,1,1 abQbV t
ii

Aa

t
i

i

 



  

In this manner, whenever each agent has the same belief

vector as
t

ib , the benefit of the communication is t
cQ (i.e.

communication can increase the accumulated reward by t
cQ).

Our proposed algorithm uses this tuple  t
c

t
i Qb , as an experience

to tune the communication rule-base.

2) Updating mechanism: In the learning phase, the agents

interact with the environment many times and an experience is

achieved for each time step. Hence, there is a sequence of

experiences that our algorithm uses to create and tune the

communication rule-base. The proposed method combines the

information of experiences by clustering the similar

experiences, in which center of each cluster identifies a

communication rule. Since the number of experiences in the

learning phase is huge, we introduce an incremental approach

to cluster the experiences. In the following, we present the

incremental process of tuning the communication strategy

according to an experience:

Each rule specifies the benefit of communication for a
region of belief space. The j-th rule in communication rule-

base,
comm

jR , have a following form:

comm
j

comm
j

t
i

comm
j QQthenBlikeisbifR :  

Where  comm
Nj

comm
j

comm
j

S
BBB

,1,  is a reference belief

vector [12] of rule j that specifies the center of the region and

Q represents the expected benefit of communication for this

region.

Assume the i-th agent has an experience  t
c

t
i Qb , in the time

step t. The algorithm identifies the most similar reference belief

vector to
t
ib . To do this, the similarity of

t
ib to the reference

belief vector of all existing rules in the communication rule-
base is computed as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

171 | P a g e

www.ijacsa.thesai.org

   






ss

s

N

k

comm
kj

N

k

t
ki

N

k

comm
kj

t
ki

comm
j

t
i

Bb

Bb

BbCosSim

1

2

,
1

2

,

1
,,

),( 

Where),(comm
j

t
i BbCosSim is the cosine similarity of these

two vectors.

If maximum similarity of t
ib to the existing rules is less

than thershold minSim , i.e. t
ib considerably different with all

reference belief vectors, so we consider  t
c

t
i Qb , as a new

experience. In this case, the proposed method adds a new rule

to the communication rule-base, according to  t
c

t
i Qb , . The

reference belief vector of the new rule is set to t
ib (

t
i

comm
newRule bB ) and the consequent part of the new rule is set

to t
cQ (t

cnewRule QQ ). It is noteworthy that if there is no rule

in the communication rule-base, the same procedure is done to
add the first rule.

Otherwise, if there is a similar reference belief vector to t
ib ,

the nearest rule to t
ib is determined:

 ),(maxarg comm
j

t
i

j

BbCosSimw   

Where, w is the index of the most similar rule. Each rule is

identified by averaging all similar experiences that agents have
during the learning phase. Since the number of these
experiences is huge, we use recursive formula to calculate the

mean of group of similar experiences. For adjusting
comm
wR

according to the experience  t
c

t
i Qb , , the antecedent of

comm
wR is

updated regarding
t
ib by following recursive equation [21]:

k

bBk
B

t
i

comm
oldwcomm

neww




)(
)(

)1(
  

Where
comm

oldwB)(and
comm

newwB)(are the reference belief vectors

of
comm
wR , before and after updating, respectively. Similarly,

the consequent of
comm
wR is updated as follow:

k

QQk
Q

t
c

comm
oldwcomm

neww




)(
)(

)1(
  

B. Execution Phase

The generated strategy is performed in the execution phase
in which communication is limited. In this phase, the agents

estimate the benefit of communication and if it is recognized
beneficial, the agents share their local information.

In each time step, the agents compute the benefit of
communication according to its belief vector as follow:

Assume the belief vector of i-th agent in time step t is t
ib .

Firing strength of all rules in communication rule-base are
calculated using:





S

ni
comm

nj

N

n

t

B

t
j b

1

)(
,,

   

Where
t
j is the firing strength of the rule j. These firing

strengths are then used to calculate the benefit of
communication:










r

r

N

j

t
j

N

j

comm
j

t
j

t
icomm

Q
bQ

1

1
)(




  

Where Nr is the number of rules in the communication rule-

base and)(t
icomm bQ denotes the benefit of communication

from the perspective of i-th agent. This agent propagates
communication request if the estimated benefit is more than

predefined threshold commC :

comm
t
icomm CbQ )(  

The values of commC depends on the characteristics of each

problem. In the real-world problems, this parameter can be set
according to the percentage of access to the communication.
Also, in an application with the communication cost, this
parameter can be used to balance the communication costs with
the coordination benefits.

If communication is available, each agent propagates its
sequence of action-observation from previous communication,
up to the current time step. By sharing this information, the
belief vectors of all agents are equivalent and thus the
coordinated behaviours are guaranteed. In the absence of
communication, the agent postpones its request until the
communication is allowed. By using this strategy, the
behaviours of the agents maintain coordinated with little
communication.

IV. EXPERIMENTAL RESULTS

We evaluated our proposed algorithm on several
benchmark problems that have been widely used to rate multi-
agent planning methods. These problems are Broadcast
Channel [3], Meeting in a Grid 3×3 [4], Cooperative Box
Pushing [5] and Stochastic Mars Rover [23]. We reported the
accumulated discounted reward (Reward), percentage of
communication (Comm. (%)) and the number of generated

rules with different values of commC . In the real-world

problems, commC can be set regarding the amount of access to

the communication. Lower value of commC increases the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

172 | P a g e

www.ijacsa.thesai.org

communication usage. In an application with the

communication cost, commC can be used to balance

communication costs with coordination benefits. The discount
factor is set to 0.9 and the results are averages over 50 runs.

To the best of our knowledge, this is the first attempt to
find the communication behaviour in infinite-horizon Dec-
POMDP problems. Therefore, we compare the performance of
our communication strategy to the full-communication (Full-
Comm.) strategy as an upper bound and the no-communication
(No-Comm.) strategy as a lower bound. Since in real-world
MAS problems the communication is limited, the main
purpose of the experiments is to test whether our proposed
communication behaviour can help the agents to approach the
performance of full-communication, while using little
communication.

A. Broadcast Channel Problem

In the Broadcast Channel problem two agents are
connected in a network. In each time step, only one of them
can use the connection and sends its message. To avoid
collision, each agent has to decide whether send a message or
not. This problem has 4 states, 2 actions and 5 observations.
The results in Table I show that Broadcast Channel problem is
very simple such that the agents can easily cooperate.
Therefore, the performance of the various percentage of
communication is almost the same and different values of

commC

have no effect on the performance.

TABLE I. BROADCAST CHANNEL RESULTS

Broadcast
channel

Ccomm Reward Comm. (%)
No. of
rules

|S|=4 No-Comm. 9.1 0 -

|Ai|=2 0.5 9.11 0.0 2

|Oi|=5 0.1 9.18 83.16 1.16

 Full-Comm. 9.2 100 -

B. Meeting in a Grid Problem

In Meeting in a Grid problem, there are two agents on a
3×3 grid. They can move up, down, left or right, or stay on
previous square. Each agent can sense whether there are walls
around by noisy sensors with a 0.9 chance to perceiving the
right observation. The goal of the agents is to spend as much
time as possible on the same square. This problem has 81
states, 7 observations, 5 actions. The results in Table II show
that low percentage of communication cannot significantly
improve accumulated reward, however the performance of full-
communication strategy can be achieved by making
communication in almost half of time steps. Since the agents in
Meeting in a Grid problem need the future planning
information to cooperate, and in our method, the action-
observation sequence is transferred, the proposed
communication strategy cannot maintain the agents
coordinated for a long time.

TABLE II. MEETING IN A 3×3 GRID RESULTS

Meeting in a
3×3 Grid

Ccomm Reward Comm. (%)
No. of
rules

|S|=81 No-Comm. 4.19 0 -

|Ai|=5 0.7 4.22 14.13 27.62

|Oi|=7 0.5 5.71 57.99 27.94

 Full-Comm. 5.82 100 -

C. Cooperative Box Pushing Problem

In Cooperative Box Pushing problem, there are three boxes
(two small and one large) on a 3×4 grid and two agents that can
move the boxes. Each agent can push a small box alone.
However, for moving the larger box, the agents need to
cooperate. Whenever one of the boxes reaches into a goal area,
a trial ends. If it is one of the small boxes, the agents gain a
reward of +10, and if the large box move into the goal area,
they get a reward of +100. However, if a box smashes into a
wall or the large box is pushed by one agent, a penalty of -5 is
received. The Box Pushing problem has 4 actions, 5
observations, 4 goal states and 96 non-goal states (100 states in
total). According to the definition of this problem,
communication has a significant impact on the performance.
The reported results in Table III show the proposed
communication strategy did significantly improve the
performance with low percentage of communication. While the
achieved accumulated reward with no communication is
177.11, this value can be increased to 218.97 by
communicating in only 6.13% of time steps. Also, the
accumulated reward has reached 225.19 by communicating in
one third of time steps whereas it is 232.25 for the full-
communication case.

Fig. 3 demonstrates the effect of different values of

parameter commC on the percentage of communication and the

accumulated reward in solving Cooperative box pushing
problem. In order to better illustration of the performance of
our method, the values of the accumulated reward are shown
between the achieved reward of the No-Comm. strategy as a
lower bound and the Full-Comm. strategy as an upper bound.
As stated before, the percentage of communication and

accumulated reward are increased by decreasing commC .

Moreover, regarding these figures it is obvious that the
accumulated reward is significantly increased with a small
increase in percentage of communication.

TABLE III. COOPERATIVE BOX PUSHING RESULTS

Cooperative
box pushing

Ccomm Reward Comm. (%)
No. of
rules

|S|=100 No-Comm. 177.11 0 -

|Ai|=4 30 198.63 1.82 26.34

|Oi|=5 20 218.97 6.13 26.34

 10 225.19 33.86 26.56

 Full-Comm. 232.25 100 -

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

173 | P a g e

www.ijacsa.thesai.org

(a)

(b)

Fig. 3. The Effect of commC on (a) the Percentage of Communication and

(b) the Accumulated Reward in Cooperative Box Pushing Problem.

D. Mars Rover Problem

We evaluate the performance of our proposed method with
a larger problem, Mars Rover problem. In This problem, there
are two rovers experimenting at a 2×2 grid by independently
drilling or sampling at each site or moving around. Two of the
sites just need one agent to sample, while in the other sites,
both agents must drill at the same time in order to get the
maximum reward. The agents get a large penalty, if a site is
drilled while it only needs to be sampled. When at least one
experiment is performed at each site, the problem is reset. This
problem has 256 states, 6 actions and 8 observations. As can be
seen from Table IV, proposed communication strategy did very
well for Mars Rover problem as a large MAS problem. The
method achieves almost the same performance as the case of
full-communication by making communication in less than one
fifth of time steps (17.51%).

We have also demonstrated the results of accumulated
rewards and the percentage of communication with different

values of commC in solving Mars rover problem in Fig. 4.

Fig. 4(a) illustrates the effect of commC on the percentage of

communication and Fig. 4(b) shows the effect of this parameter
on the accumulated reward. Again, in Fig. 4(b), the values of
accumulated reward are shown between the reward of the No-
Comm. strategy and the Full-Comm. strategy as the lower and
upper bound, respectively. Fig. 4 clearly shows that with a
small increase in percentage of communication, the
accumulated reward is significantly increased.

TABLE IV. MARS ROVER RESULTS

Mars
Rover

Ccomm Reward Comm. (%) No. of rules

|S|=256 No-Comm. 23.55 0 -

|Ai|=6 3 23.5 0.7 8.06

|Oi|=8 2 26.05 12.19 8.02
 1 27.09 17.51 8.24
 Full-Comm. 28.77 100 -

(a)

(b)

Fig. 4. The Effect of commC on (a) the Percentage of Communication and

(b) the Accumulated Reward in Mars Rover Problem.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

174 | P a g e

www.ijacsa.thesai.org

To summarize, our proposed algorithm to develop the
communication strategy, performed very well in all the
benchmark problems. Using this strategy can heavily reduce
the amount of communication necessary for successful
coordinated behaviour.

V. CONCLUSION

We introduced an algorithm to develop a communication
strategy for cooperative multi-agent systems in which the
communication is limited. This strategy identifies best
situations for making communication in MASs modelled by
infinite-horizon Dec-POMDP. This communication policy is
developed centralized in a training phase, which the
communication is not restricted. The agents use this policy
decentralized in a test environment that the communication
channel is limited. Our method generates a fuzzy model to
approximate the benefit of communication for each situation.
The agents can use this fuzzy model to obtain minimal
communication that is necessary for coordinated behavior. We
also introduced an incremental method to create and tune this
fuzzy model. Our incremental method has reduced the high
computational complexity of the multi-agent systems by
constructing a compact fuzzy rule-base. We used several
standard benchmark problems to evaluate the performance of
our proposed method. Experimental results show that this
communication strategy can help the agents to achieve almost
the same performance as the full-communication strategy by
using little communication. Therefore, in the real-world MAS
problems that the communication is usually limited, our
proposed algorithm can heavily reduce the amount of
communication necessary for successful coordinated
behaviour.

Many AI domains can take advantage of MAS design such
as multiple mobile robots and disaster response teams.
Developing a group of intelligent players or agents in video
games is another interesting field in AI research. In our future
work, we intend to customize our incremental model to create
human-like players for real-time strategy games who can act
and react intelligently against virtual environment and even
real players.

REFERENCES

[1] E Wu, S. Zilberstein and X. Chen, "Online Planning for Multi-Agent
Systems with Bounded Communication," Artificial Intelligence, vol.
175, no. 2, p. 487–511, 2011.

[2] D. S. Bernstein, R. Givan, N. Immerman and S. Zilberstein, "The
complexity of decentralized control of Markov decision processes," in
Mathematics of Operations Research 27, 2002.

[3] D. . S. Bernstein , . E. . A. Hansen and S. Zilberstein , "Bounded policy
iteration for decentralized POMDPs," in Proceedings of the 19th
international joint conference on Artificial intelligence , 2005 .

[4] C. Amato , J. S. Dibangoye and S. Zilberstein, "Incremental Policy
Generation for Finite-Horizon DEC-POMDPs," in Proceedings of the
19th International Conference on Automated Planning and Scheduling,
Thessaloniki, Greece, 2009.

[5] S. Seuken and S. Zilberstein, "Improved Memory-Bounded Dynamic
Programming for Decentralized POMDPs," in Proceedings of the 23rd

Conference on Uncertainty in Artificial Intelligence (UAI), Vancouver,
British Columbia, 2007.

[6] M. Roth, R. Simmons and M. Veloso, "Reasoning about joint beliefs for
execution-time communication decisions," in AAMAS '05 Proceedings
of the fourth international joint conference on Autonomous agents and
multiagent systems, 2005.

[7] D. S. Bernstein, C. Amato, E. A. Hansen and S. Zilberstein, "Policy
Iteration for Decentralized Control of Markov Decision Processes,"
Journal of AI Research (JAIR), vol. 34, pp. 89-132, 2009.

[8] C. Amato , D. S. Bernstein, and S. Zilberstein, "Optimizing fixed-size
stochastic controllers for POMDPs and decentralized POMDPs," Journal
of Autonomous Agents and Multi-Agent Systems (JAAMAS), vol. 21,
no. 3, p. 293–320, 2010.

[9] J. K. Pajarinen and J. Peltonen, "Periodic Finite State Controllers for
Efficient POMDP and DEC-POMDP Planning," in the 25th Annual
Conference on Neural Information Processing Systems (NIPS 2011),
2011.

[10] A. Kumar and S. Zilberstein, "Anytime Planning for Decentralized
POMDPs using Expectation Maximization," in Proceedings of the 26th
Conference on Uncertainty in Artificial Intelligence (UAI), Catalina
Island, California, 2010.

[11] R. Sharma and M. T. J. Spaan , "Bayesian-Game-Based Fuzzy
Reinforcement Learning Control for Decentralized POMDPs," IEEE
Transactions on Computational Intelligence and AI in Games, vol. 4, no.
4, pp. 309 - 328 , 2012.

[12] S. Hamzeloo and M. Zolghadri Jahromi, "An incremental fuzzy
controller for large dec-POMDPs," in Artificial Intelligence and Signal
Processing Conference (AISP) , Shiraz, Iran, 2017.

[13] F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized
POMDPs, Springer International Publishing, 2016.

[14] H. Kurniawati, D. Hsu and W. S. Lee, "Efficient point-based POMDP
planning by approximating optimally reachable belief spaces," in In
Proc. Robotics: Science and Systems, 2008.

[15] R. Emery-Montemerlo, Game-theoretic control for robot teams,
Doctoral Dissertation, Robotics Institute, Carnegie Mellon University,
August 2005.

[16] S. A. Williamson, E. H. Gerding and N. R. Jennings, "Reward shaping
for valuing communications during multi-agent coordination," in
AAMAS '09 Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems - Volume 1 , Budapest,
Hungary, May 10 - 15, 2009.

[17] P. P. Angelov and X. Zhou, "Evolving Fuzzy-Rule-Based Classifiers
From Data Streams," IEEE Transactions on Fuzzy Systems, vol. 16, no.
6, 2008.

[18] S. Schliebs and N. Kasabov, "Evolving spiking neural network—a
survey," Evolving Systems, vol. 4, no. 2, p. 7–98, 2013.

[19] H. Shahparast, S. Hamzeloo and M. Zolghadri Jahromi, "A Self-Tuning
Fuzzy Rule-Based Classifier for Data Streams," International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 22, no. 2,
2014.

[20] H. Shahparast and E. G. Mansoori , "An online fuzzy model for
classification of data streams with drift," in Artificial Intelligence and
Signal Processing Conference (AISP) , Shiraz, Iran, 25-27 Oct. 2017 .

[21] D. Kangin, P. Angelov and J. A. Iglesias, "Autonomously evolving
classifier TEDAClass," Information Sciences, vol. 366, p. 1–11, 2016.

[22] D. Kangin and P. Angelov, "Evolving clustering, classification and
regression with TEDA," in International Joint Conference on Neural
Networks (IJCNN), 2015.

[23] C. Amato and S. Zilberstein , "Achieving goals in decentralized
POMDPs," in Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems , 2009.

