
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

307 | P a g e

www.ijacsa.thesai.org

Soft Error Tolerance in Memory Applications

Muhammad Sheikh Sadi, Md. Shamimur Rahman, Shaheena Sultana, Golam Mezbah Uddin, Kazi Md. Bodrul Kabir

Department of Computer Science and Engineering

Khulna University of Engineering & Technology

Khulna, Bangladesh

Abstract—This paper proposes a new method to detect and

correct multi bit errors in memory applications using a

combination of a clustering approach, Bit-Per-Byte error

detection technique, and Majority Logic Decodable (MLD) codes.

The likelihood of soft errors accelerates with system complexity,

reduction in operational voltages, exponential growth in

transistor per chip, increases in clock frequencies, breakdown of

memory reliability and device shrinking. Memories are the

sensitive part of a computer system. Soft errors in memories may

cause an instruction to malfunction. Several techniques are

already in practice to mitigate the soft errors. Majority logic

decodable codes are proved as effective for memory applications

because of their ability to correct a massive number of errors.

Since memories are used to hold large number of bits that’s the

restraint of Majority logic decodable codes method, so we

emphasize on the size of data word in this method. The proposed

method aims to detect and correct up to seven bit errors with

lesser computational time. It works in an efficient manner in case

of adjacent errors which is not possible in Majority logic

decodable codes (MLD). It is delineated by Experimental reviews

that the proposed approach outperforms existing dominant

approach with respect to number of erroneous bit detection and

correction, and computational time overhead.

Keywords—Soft error tolerance; bit-per-byte; majority logic

decodable codes; clustering; adjacent errors

I. INTRODUCTION

The unusual condition of multifaceted nature, and the way
that the software and hardware are so unpredictably
connected, denotes that the system might be extremely
delicate to soft errors. In particular, soft errors are a matter of
great concern when planning high accessibility systems or
systems utilized as a part of electronic-antagonistic situations
[1]-[4]. In memory applications, soft error can change an
instruction or any data value [3]-[5]. Almost all system chips
have embedded memories like ROM, DRAM, SRAM, flash
memory etc. But soft errors in such memory applications are
increasing alarmingly as technology these days is focusing on
smaller dimension of devices which leads to the integration of
circuits [6]. Integrated circuits are prone to particle strike or
radiation which can cause the memory cell to change its state
and obtain a different value than what was desired. Small size
of transistors, capacitors and low operating voltages are also
the reasons for soft error in memories. So, fault tolerant
technique in memory architecture is fundamental issue to
ensure its reliability to the users. A small flaw or glitch in a
memory cell can change an instruction or can cause a whole
program to work incorrectly leading to inappropriate
information or loss of valuable data.

There are some existing dominant approaches to provide
fault tolerance in memory applications. For example, for
satellite applications, hamming code and parity codes are used
to secure memory devices. There are some other methods for
error detection and correction such as Error Correction Code
(ECC) [7]-[9], Euclidean geometry low-density parity check
(EG-LDPC) codes [10], [11], etc. However, almost all of these
methods are facing area, and time overhead, and significant
power consumption penalty. Also these methods have low
error detection and correction rate and exhibits lower
performance while working with large data word. To
overcome these barriers, we came up with a fault tolerant
technique which can work with larger data word and consume
lesser processing time.

In this paper, an error detection and correction technique is
proposed to protect the memory applications. This method
combines the salient features of clustering approach [12], Bit-
Per-Byte error detection technique, and Majority Logic

Decodable (MLD) codes [13]-[16]. Majority Logic Decodable
codes are used because of their ability to detect multiple bit
upsets; Bit-per-byte technique minimizes the required time to
detect the error; and the clustering approach works in a very
efficient manner in case of adjacent errors. The proposed
method provides high efficiency for error detection and
correction and can correct up to 7-bit upsets in a 49-bits‟ data
block.

The rest of this paper is presented as follows. Section 2
provides several related work in this area of research. The
proposed methodology and associated examples are discussed
in Section 3. Experimental analysis is shown in Section 4.
Section 5 concludes the paper.

II. RELATED WORK

First Several techniques are already in practice to provide
error detection and correction. Some of them are discussed
below.

Naeimi et al. [8] proposed a fault-tolerant memory
architecture which can tolerate faults both in the storage unit
and in the encoder or decoder. A fast and compact error
correcting technique is proposed in that paper which is known
as one step majority logic correction. One step majority logic
correction works in a way that it corrects every erroneous bit
at each step and will output the correct code word after full
processing. This method requires the same number of cycles
as the number of bits for both detection and correction which
is a major degrade in performance in terms of access time in
memory.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

308 | P a g e

www.ijacsa.thesai.org

Shih-Fu et al. [7] presented an error detection method for
different set cyclic codes using majority logic decoding
scheme. Majority logic decodable codes are most appropriate
for memory applications because they deal with large number
of errors but it may lower the memory performance with
excessive decoding time. MLD was first introduced for Reed-
Muller codes. They described a plain majority logic decoder
(MLD) whose circuit arrangement includes four components:
i) a cyclic shift register; ii) an XOR matrix; iii) a majority
gate; and iv) an XOR for correcting the code word bit under
decoding. It can correct multiple bit-flips depending on the
number of parity check equations [6]. They proposed a
modified version of MLD which is known as Majority Logic
Detector/Decoder. The MLDD technique needs 15 cycles to
correct an error. However, it can detect and correct only two
bit errors from a 15-bitdata word and the time requirement of
this method is high enough to degrade its performance in
terms of access time in memory.

Jayalakshmi et al. [5] came out with a modified
representation of MLDD. It overcomes the existing techniques
by detecting errors in lesser cycles. They used additional logic
which results in an area overhead. Another limitation is that
this method needs additional three cycles to correct any error.

III. PROPOSED METHODOLOGY TO DETECT AND CORRECT

ERRORS

In this chapter, the proposed method will be discussed and
explained elaborately. The chapter will take you step by step
through our method to have a better understanding about the
method. Some examples along with pictorial representation
will be provided with the method explanation.

A. Memory with MLDD

The existing MLDD [5] is modified to improve its
performance. Euclidean Geometry Low Density Parity Check
Codes (EG-LDPC) [6] works behind the existing MLDD. The
following Fig. 1 shows how the MLDD modification proposed
by us will be used in a memory system.

Fig. 1. Proposed Structure of a Memory System with MLDD.

B. Encoder Architecture

The design of encoder is generated from the EG-LDPC
codes. The following parameter are in the function of EG-
LDPC for any integer t >= 2, where t is the number of errors
that the code can correct.

 Information bits, k = 22t – 3t

 Code word Length, n = 22t – 1

 Minimum distance, dmin = 2t + 1

Let‟s consider t=2 and if the other parameters are
determined accordingly then we would have a (15, 7, 5) EG-
LDPC code which will have a generator matrix like Fig. 2 and
if Fig. 3 the architecture of an encoder circuit [7] for (15, 7, 5)
EG-LDPC code is shown. The information bits are indicated
from i0…i6. The check bits are calculated using linear sum
(XOR) operation of the information bits. The information bits
are copied to the encoded vector from c0….c6 and the check
bits are copied from c7….c14. Thus the encoded matrix is
generated.

Fig. 2. Generator Matrix of (15, 7, 5) EG-LDPC code [8].

Fig. 3. Architecture of an Encoder Circuit for the (15, 7, 5) EG-LDPC code.

C. Design Structure of Corrector

One-step majority-logic is a fast and efficient error-
handling technique [10]. There is a class of ECCs that are one-
step-majority correctable. Type-I two-dimensional EG-LDPC
is one of the example of one-step-majority correctable codes.
In this section, the one-step majority-logic corrector for EG-
LDPC codes is shown.

Fig. 4. Serial One-Step Majority Logic Structure to Correct Last Bit (Bit

14th) of 15-bit (15, 7, 5) EG-LDPC code [8].

A linear sum named Parity-Checksum can be formed by
computing the internal product of the received vector and a
row of a parity-check matrix. The principle of the one-step
majority-logic corrector is generating parity-check sums from
the defined rows of the parity-check matrix. These steps
correct a potential error in one bit e.g., cn-1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

309 | P a g e

www.ijacsa.thesai.org

1) Generate parity-check sums by calculating the inner

product of the received vector and the defined rows of parity-

check matrix.

2) The check sums are fed into a majority gate. If the

output of majority gate is “1”, then the bit cn-1 is corrected by

inverting the value of cn-1.

The architecture of a serial one-step majority logic
corrector for (15, 7, 5) EG-LDPC code is shown in Fig. 4.

D. Fundamental Concepts of Proposed Methodology

The proposed methodology uses the MLDD [5] technique
described above as a part of correction method. Our proposed
method is tested for a 49-bit data block and it can correct up to
7 bit errors. We proposed a clustering idea to divide
consecutive seven bit placed in different cluster. That‟s why
this proposed method can be applied where there is need to
detect and correct adjacent multiple cell upset (MCU).
Because adjacent bits are in different cluster and change in
adjacent bits can detect easily and correct. The method is
discussed below:

1) At first the data word which has the size of 49 bit, is

clustered into 7 clusters keeping distance 7 between the data

bits or information bits. We will keep 7 bits in each cluster. So

this will result in 49/7=7 clusters. Now each cluster will have

the information as shown in Fig. 5. The 49 data bits are

represented as a1, a2, a3..., a49. Then form 7 different clusters

such as a1, a8, a15, a22, a29, a36, a43 and adjacent bits like a1, a2,

a3 are placed in different clusters.

2) Each cluster has 7 information bits. Now we calculate

even parity for each cluster. It is quite similar to the idea of

bit-per-byte technique. If we consider each cluster as a byte

(although each cluster here has 7 bits and a byte is formed of 8

bits) then we can apply the bit per byte technique on the

clusters like a bit-per-cluster. We have used even parity

technique here to assign parity to the clusters. Even parity

means the number of 1‟s must be even. If number of 1‟s is

even then parity is 0, otherwise parity is 1to make number of

1‟s is even. So after this step, each cluster has it corresponding

parity which will be sent with the information bits. We can

visualize it as shown in Fig. 6.

Fig. 5. Architecture of Seven Clusters with 49 Information Bits.

Fig. 6. Calculated Parity Bits for Each Cluster.

3) Now we are going to apply Majority Logic Detector

Decoder (MLDD) scheme for each cluster. Let‟s consider

each cluster has information bits denoted as i0…. i6. Then

according to the MLD [7] we have generated the check bits

from the information bits which are the checksums (XOR) of

information bits. The check bits are generated as shown in

Fig. 7.

Fig. 7. The Architecture to Generate Cheek Bits.

Now the clusters have 7 information bits and 8 check bits
which is 15 bits.

4) In this step, the information bits will be sent to the

receiving side in the form which was seen at the first step like

a1, a2, a3…., a49. With the information bits, parity bits of each

cluster will also be sent which was calculated using odd

parity. Along with these, the check bits for each cluster are

also sent to the receiving end. So, the following information

are sent from the sending end.

 Information bits (a1, a2, a3, …., a49)

 Parity bits for each cluster (p0, p1, p3, …, p6)

 Check bits generated for each cluster (C7, C8, C9, …,
C14)

5) This information is sent to the receiving side. While

transmitting the above information, any bit may flip and

change the state from 0 to1 or 1 to 0 resulting in misleading

information. At the receiving end the information bits will be

received but they may not be error free. Let the received

information bits are a1, a2, a3, …, a49)

6) At the receiving end, we will form clusters like we did

in step 1. So we will have 7 clusters keeping distance as 7

among the information bits of each cluster. Finally, the

generated clusters are- Cluster1, Cluster2, Cluster3, …,

Cluster 7.

7) After forming the clusters, we will calculate the parity

bits for each cluster using odd parity. So the parity of each

cluster at the receiving end may look like- parity (Cluster1),

parity (Cluster2), parity (Cluster3) … parity (Cluster7).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

310 | P a g e

www.ijacsa.thesai.org

8) In this step parity of each cluster of sending end will be

compared with the parity of receiving end‟s cluster. If a

mismatch is found at any cluster, then that cluster will be

taken under consideration and that cluster is assumed to have

error in its bits. Now let‟s assume Cluster (i) have a mismatch

and it has errors. Now check bits will be generated for that

cluster using the technique as described in step 3. So after

generating the check bits (C7, C8, C9, …, C14) we will have

total 15 bits to apply the majority logic decoding. The

information bits are copied to C0, C1, …, C6. So the code word

will be like: C0, C1, C3…, C14.

9) The process of majority logic decoding is outlined

shortly as follows:

Step 1: Initialize counter variable to 0.

Step 2: Calculate majority values Bj as follows:

B1 = C3⊕ C11⊕ C12⊕ C14 Eq. (1)

B2 = C1⊕ C5⊕ C13⊕ C14 Eq. (2)

B3 = C0⊕ C2⊕ C6⊕ C14 Eq. (3)

B4 = C7⊕ C8⊕ C10⊕ C14 Eq . (4)

Step 3: If majority value is greater than 2 then go to step
4, else go to step 5.

Step 4: Inverse the 14
th

 bit. Store the counter which is the
erroneous bit position. Go to step 5

Step 5: Perform one-bit cyclic left shift.

Step 6: Increment the counter

Step 7: If counter variable equals to 8 then go to step 8
else go to step 2

Step 8: End

10) Now we have the positions where bit flip in a cluster

has occurred during transmission and those erroneous bits are

corrected. We store those positions in a cluster to determine

the actual positions in the data word. Next we examine other

clusters to fine errors (if any) and find their positions in the

corresponding cluster and thereby correct them. If we follow

this method, then we would be able to detect and correct

adjacent bit upsets which is a common issue in memory

applications. Let‟s walk through an example to describe our

method with sending end code word of Fig. 8 and receiving

end code word of Fig. 9. Sending code word is the original

data with parity bits and receiving code word is the erroneous

collection of original code word.

For the above example, total seven clusters can be formed
with the above forty-nine data bits. Now, the parity bits of
receiving clusters are compared with those of the sending
clusters.

Fig. 8. Sending Code Word.

Fig. 9. Receiving Code Word.

Fig. 10. Parity Bits of Sending Part.

Fig. 11. Parity Bits of Receiving Par.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

311 | P a g e

www.ijacsa.thesai.org

Fig. 12. Calculate Cheek Bits when Mismatching in Sending and Receiving

Parity Bits.

If there is any mismatch, then only for this cluster we will
generate 8-bit parity using Majority Logic Detector Decoder
(MLDD) scheme.

As shown in Fig. 10 and 11, we can observe that in second
cluster there is a mismatch and for this cluster we will
generate 8-bit parity using the following architectures shown
in Fig. 12.

Then for the erroneous cluster, the size of the code word
will be 15-bit. i.e. C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10,
C11, C12, C13 and C14.In this case, it will be 011011101000111.

Using majority decoding circuit, we will perform eight left
cyclic shift. At each step of shift operation, the majority values
B1, B2, B3, and B4 will be calculated. If the majority values
are 1 then it is confirmed that the current bit under decoding is
erroneous. Then an inverter is added to the 14

th
 bit position in

the register. The whole procedure of eight cycles is shown in
Fig. 13.

Fig. 13. Performing Eight Left Cyclic Shift for Acquiring the Error Free Code Word.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

312 | P a g e

www.ijacsa.thesai.org

Fig. 14. Flow Chart of the Proposed Method.

In cycle 1, calculate B1, B2, B3 and B4 using the above (1),
(2), (3) and (4). Then check the majority and this cycle we get
B1=0, B2=0, B3=1 and B4 = 0. So majority is 0 and performs
one bit cyclic shift and goes to cycle 2. The values of B1, B2,
B3 and B4 are again calculated and this time majority is 1. So
according to the proposed algorithm, the 14

th
 bit is inversed

and goes to cycle 3. This procedure is repeated till cycle 8
with the two possibilities, one is majority 0 then perform one
bit cyclic shift and another is majority 1 then inverse the 14

th

bit.

After the 8
th

 cycle we can see the original 7 information
bits are in last 7 position. Hence, if we do seven right shift
then we will get the corrected code word

The corrected code word is: 1 1 1 0 1 1 1 0 1 0 0 0 1 1 1.

After going through the whole process, we will get original
information bits as expected to be received. Then from the
clusters we obtain the information bits of the form a1, a2, a3, …,
a49. Now the overall workflow of the proposed method is

shown in Fig. 14 as a flow chart which provides a better
overview of the method.

IV. EXPERIMENTAL ANALYSIS

This proposed methodology is experimented through a
simulation procedure. The simulation process includes „error-
detection‟ phase and „error-correction‟ phase. It identifies the
soft error through the detection phase and appropriately
recovers it so that the original stored data is retrieved. In this
section, the experimental results of proposed method and other
existing methods are represented and discussed. The
effectiveness of the proposed method is evaluated in this
section.

A. Experimental Tools

The following tools are used for the evaluation process of
the proposed method.

 Intel(R) Core i5-2430M CPU @ 2.40 GHz

 CPU RAM 6GB

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

313 | P a g e

www.ijacsa.thesai.org

 Language: Python 3.4

 IDE PyCharm 5.0.1

B. Experimental Result

The outcomes of the experiments are shown in this section
along with some comparisons with the existing methods. The
results ultimately indicate how the proposed method performs
better in terms of the amount of cyclic shift needed. Also it
shows that the proposed method performs better to deal with
common mode errors or adjacent bit errors while the existing
methods are not suitable for this purpose. Fig. 15 shows the
comparison of cycle needed for error detection by the plain
MLD [8] and existing MLDD [5], and the proposed method.

In all cases MLD [8] occupy 15 cycles to detect errors. In
case of MLDD [5], if there is no error then it takes only three

cycles to confirm that one. But if there is error, then it takes
larger cycles. However, the proposed method requires fewer
cycles than MLD [8] and MLDD [5] to detect any error for
14-bitcode word using bit per byte and clustering approach.

Fig. 16 shows the comparison of cycle needed for error
correction by the plain MLD [8], existing MLDD [5] and the
proposed method.

If an error is detected, MLD takes 15 cycles need to run
the entire decoding process. The existing MLDD needs 18
cycles. The existing MLDD has same procedure. However,
rather than 15 cycles, three additional cycles are required. The
proposed method needs (15+3)/2 cycles that means 9 cycles.

If two-bits error are detected, MLD [8] needs 15 cycle for
correction. MLDD [5] needs (15+3) cycles that means 18
cycles but the proposed clustering method it needs 16 cycles.

Fig. 15. The Comparison among Plain MLD [6], the Method Proposed by Jayarani et al. [3], and the Proposed Method for Error Detection.

Fig. 16. The Comparison among Plain MLD [8], the Method Proposed by Jayarani et al. [5], and the Proposed7Method for Error Correction.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

314 | P a g e

www.ijacsa.thesai.org

V. CONCLUSIONS

The proposed methodology focuses on the architecture of a
Majority Logic Decoder/Detector (MLDD) with the utilization
of bit-per-byte and clustering approaches for fault detection
and correction, with decreased cycles. Along with this, the
proposed method is very much useful when there are errors in
adjacent bits because each adjacent bit is formed in different
cluster. So that errors can be easily detected. So, those systems
where much possibility to occur adjacent bit error then this
proposed method perform better than any other MLDD system
with minimum cycle. The proposed method is designed in a
way so that it could deal with larger data block. Experiments
are performed for large data word to prove its efficiency. To
show better performance with larger data block our clustering
based approach may consume more time than other methods
which are good for smaller data word. The proposed method
can detect and correct multiple adjacent cell upsets whereas,
the existing cannot perform that. The main limitation is that
when multiple errors occur in same cluster then the proposed
method can‟t detect these faulty bits. This proposed method is
only focused to detect adjacent error and minimum cycle than
the exiting. In the later work, we try to detect and correct
errors in same cluster and work with large data block quite
faster that this proposed method.

REFERENCES

[1] Shanshan Liu , Jiaqiang Li, Pedro Reviriego , Marco Ottavi, and Liyi
Xiao “A Double Error Correction Code for 32-Bit Data Words With
Efficent Decoding” in IEEE TRANSACTIONS ON DEVICE AND
MATERIALS RELIABILITY, VOL. 18, NO. 1, MARCH 2018.

[2] Jiaqiang Li, et al, “Efficient Implementations of 4-Bit Burst Error
Correction for Memories” IEEE Transactions on Circuits and Systems
II: Express Briefs.

[3] J. Yang et al., "Radiation-Induced Soft Error Analysis of STT-MRAM:
A Device to Circuit Approach," in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 35, no. 3, pp. 380-
393, March 2016.

[4] Jing Guo; Liyi Xiao; Tianqi Wang; Shanshan Liu; Xu Wang; Zhigang
Mao, "Soft Error Hardened Memory Design for Nanoscale

Complementary Metal Oxide Semiconductor Technology,", IEEE
Transactions on Reliability, vol.64, no.2, pp.596,602, June 2015.

[5] K.Jayalakshmi, B.Sivasankari, “Reduction of Decoding Time in
Majority Logic Decoder for Memory Applications”, “International
Journal of Innovative Research in Computer and Communication
Engineering”, Vol.2, Special Issue 1, March 2014.

[6] R.Meenaakshi Sundhari, C.Sundarrasu, M.Karthikkumar, “An Efficient
Majority Logic Fault Detection to reduce the Accessing time for
Memory Applications”,“International Journal of Scientific and Research
Publications”, Volume 3, Issue 3, March 2013.

[7] Shih-Fu Liu, Pedro Revingo, and Juan Antonio Meastro “Efficient
majority fault detection with difference set codes for memory
applications”, IEEE Trans. Very Large Scale Integration. (VLSI)
Syst., vol. 20, no. 1, pp. 148–156, Jan. 2012.

[8] H. Naeimi and A. DeHon, “Fault secure encoder and decoder for Nano
Memory applications,” IEEE Trans.Very Large Scale Integration.
(VLSI) Syst., vol. 17, no. 4, pp.473–486, Apr. 2009.

[9] R.C.Baumann,“Radiation-induced soft errors in advanced
semiconductor technologies, ” IEEE Trans. Device Mater.Reliabil. ,
vol. 5, no.3, pp. 301–316, Sep. 2005.

[10] C. W. Slayman, “Cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations,”IEEE
Trans. Device Mater. Reliabil., vol. 5, no. 3, pp. 397–404, Sep. 2005.

[11] Y Kato and T. Morita, “Error correction circuit using difference-set
cyclic code,” Proceedings of the ASP-DAC Asia and South Pacific
Design Automation Conference, 2003.

[12] Costas A. Argyrides, Pedro Reviriego, Dhiraj K. Pradhan and Juan
Antonio Maestro “Matrix-Based Codes for Adjacent Error Correction”
IEEE Transaction on Nuclear Science (Vol. 57 No.4), August 2010.

[13] Pedro Reviriego, Juan A. Maestro, and Mark F. Flanagan, “Error
Detection in Majority Logic Decoding of Euclidean Geometry Low
Density Parity Check (EG-LDPC) Codes,”IEEE Transactions On Very
Large Scale Integration (Vlsi) Systems 1.

[14] R. J. McEliece, The Theory of Information and Coding.
Cambridge,U.K.: Cambridge University Press, 2002.

[15] R. Lucas, M. P. C. Fossorier, Yu Kou, Shu Lin, “Iterative decoding of
one-step majority logic deductible codes based on belief propagation”,
IEEE Transactions on Communications (Volume:4 Issue: 6), June
2000.

[16] Y. Kou, S. Lin, M. P. C. Fossorier, “Low-density parity-check codes
based on finite geometries: a rediscovery and new results”, IEEE
Transactions on Information Theory (Volume:47 , Issue: 7), Nov 2011.

