
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

424 | P a g e

www.ijacsa.thesai.org

Implementation of a Formal Software Requirements

Ambiguity Prevention Tool

Rasha Alomari

Computer Science Department

Faculty of Computing & Information Technology

King Abdulaziz University, Jeddah, Saudi Arabia

Hanan Elazhary

Computer Science Department

Faculty of Computing & Information Technology

Jeddah University, Jeddah, Saudi Arabia

Computers and Systems Department

Electronics Research Institute, Cairo, Egypt

Abstract—The success of the software engineering process

depends heavily on clear unambiguous software requirements.

Ambiguity refers to the possibility to understand a requirement

in more than one way. Unfortunately, ambiguity is an inherent

property of the natural languages used to write the software user

requirements. This could cause a final faulty system

implementation, which is too expensive to correct. The basic

requirements ambiguity resolution approaches in the literature

are ambiguity detection, ambiguity avoidance, and ambiguity

prevention. Ambiguity prevention is the least tackled approach

because it requires designing formal languages and templates,

which are hard to implement. The main goal of this paper is to

provide full implementation of an ambiguity prevention tool and

then study its effectiveness using real requirements. Towards this

goal, we developed a set of Finite State Machine (FSMs)

implementing templates of various requirement types. We then

used Python to implement the ambiguity prevention tool based

on those FSMs. We also collected a benchmark of 2460 real

requirements and selected a random set of forty real

requirements to test the effectiveness of the developed tool. The

experiment showed that the implemented ambiguity prevention

tool can prevent critical requirements ambiguity issues such as

missing information or domain ambiguity. Nevertheless, there is

a tradeoff between ambiguity prevention and the effort needed to

write the requirements using the imposed templates.

Keywords—Software requirements; requirements ambiguity;

natural language ambiguity; ambiguity prevention; controlled

languages; finite state machines

I. INTRODUCTION

Software engineering passes through several subsequent
stages. One of the preliminary stages is requirements elicitation
from stakeholders. Unfortunately, elicited user requirements
typically suffer from some imprecision challenging issues such
as inaccuracy, inconsistency, incompleteness and ambiguity
[1].

One of the most challenging issues is requirements
ambiguity, which is an inherent characteristic of natural
languages that are mostly used in writing software user
requirements. Ambiguity occurs when an expression could
have more than one way to be interpreted or understood.
Consequently, it can lead to critical errors that pass through
subsequent stages and end up with faulty software behavior [2,
3]. Paying attention to solving ambiguity problems in the

requirements elicitation stage is much easier and less expensive
than correcting later software errors. For that, many research
studies in the literature attempted to tackle this problem. There
is no unified terminology in the literature for classifying
techniques for ambiguity resolution. Accordingly, we adopt the
following definitions:

 Ambiguity avoidance: denotes using rules and best
practices while writing the requirements such as those
proposed by Wiegers [3, 4].

 Ambiguity prevention: refers to forcing the users to
write the requirements by filling in patterns or
boilerplates corresponding to different types of
requirements like the work of Stalhane and Wien [5]
and Arora et al. [6].

 Ambiguity detection: refers to automatically detecting
ambiguities after the user requirements are written like
the work of Gleich et al. [7] and Wang et al. [8].

 Ambiguity correction: refers to semi-automated tools
that interact with the user to make the needed
corrections such as the work of Gill et al. [9].

One of the least tackled approaches is ambiguity
prevention. A major drawback is that we could hardly find a
fully implemented tool for this purpose, hindering its use in
practice. Additionally, there is a shortage in empirical
evaluations of such techniques [10]. The reason is that this
approach requires developing and implementing formal
representations. Hence, this is the main concern of the paper.
The rest of the paper discusses related work in the literature.
After that, the ambiguity prevention tool is detailed. Next, the
experiment and discussion are provided; followed by the
conclusion and future work.

II. RELATED WORK

In this section, we discuss some of the most prominent
research studies in each of ambiguity avoidance, prevention,
detection, and correction.

A. Ambiguity Avoidance

In ambiguity avoidance studies, the main methods used are
rules and best practices. In this direction, Wiegers [3, 4]
provided rules to avoid ambiguity, such as mentioning some

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

425 | P a g e

www.ijacsa.thesai.org

ambiguous words and expressions that should be avoided. Jain
et al. [11] proposed a tool that can be implicitly considered an
avoidance tool since it enforces requirements documentation
best practices such as using standardized syntaxes and the
consistent use of terminology; though it mainly falls into the
ambiguity prevention class as discussed below.

B. Ambiguity Prevention

As previously noted, ambiguity prevention efforts use
controlled natural languages such as templates, patterns, and
boilerplates. For example, Jain et al [11] proposed a
Requirements Analysis Tool (RAT) that uses templates to
enforce requirements documentation best practices. RAT is
comprised of a set of Finite State Machines (FSMs). It
classifies the requirements into several types and then verifies
that the requirements follow one of the best practice syntaxes
supported by the tool. It then produces warning messages
explaining where requirements are ambiguous and displays
suggestions to fix them. This tool has been adopted in [12] for
the Arabic language, and its full implementation is the main
concern of this paper.

Denger et al. [13], on the other hand, proposed natural
language patterns to be used by requirements authors when
writing embedded systems requirements to prevent ambiguity.
Farfeleder et al. [14] presented a tool that uses ontology-based
reasoning to guide the requirements engineers and enforced
this guidance by using boilerplates.

C. Ambiguity Detection

Gleich et al. [7] proposed a tool to automate the ambiguity
detection process and explain the sources of detected
ambiguities. It considers lexical, syntactic, semantic, and
pragmatic ambiguity in addition to vagueness and language
errors. This work uses part of speech tagging and regular
expression search techniques for ambiguity detection.
Similarly, the work of Wang et al. [15] automated the lexical
ambiguity detection process focusing on overloaded and
synonymous lexical ambiguity sources. The detection
procedure goes through two main steps. In the first step, the C-
value statistical method is used for terms extractions [16]. In
the second step, the extracted terms are ranked according to the
ambiguity score. The authors proposed features-based methods
to estimate ambiguity scores. The ranking aims to help the
requirements engineer to decide which ambiguities are more
serious for time saving. Yang et al. [17] focused on one type of
ambiguity, which is anaphoric ambiguity. Anaphoric ambiguity
occurs when a linguistic expression may refer to two or more
antecedent candidates. In this work, the authors introduced an
architecture of an automated system to determine nocuous
ambiguity and help requirements analysts to resolve it while
discarding innocuous ambiguity that is unlikely to be
misunderstood. Their approach relied on collecting human
interpretations of instances of ambiguity, using heuristics to
model human interpretations, and using machine learning to
train the heuristics.

D. Ambiguity Correction

An example of ambiguity correction is the work of Gill et
al. [9], who proposed a framework to develop semi-automatic
tools for ambiguity correction in open source software

requirements. They discussed some challenges in open source
requirements that make it a special case.

III. AMBIGUITY PREVENTION TOOL

As previously noted, ambiguity prevention approach uses
controlled natural language such as templates, patterns, and
boilerplates to prevent as much as possible ambiguity sources.
We adopt the approach of Jain et al. [11], who uses templates,
glossaries, and FSMs for this purpose. Templates are defined
for six requirement classes. For each template, there is a
matching FSM to analyze each requirement syntactically.
Nevertheless, the authors provided merely details of the
implementation of one requirements type. Hence practical use
and adoption of the tool was hindered. We provide details of
the implementation of all the FSMs.

In the following subsections, we explain the different
requirement classes, the templates, the FSMs, the glossaries,
and how the tool processes an input requirement through
lexical analysis and syntactic analysis phases.

A. Requirements Classes

According to academic researchers and field experts,
requirements can be classified into six classes. The six classes
and their proposed syntaxes are shown and discussed below.

1) Solution requirements: This type of requirements

expresses what an intended system or subsystem must do; for

example:

Req01: The system shall display completed work list items
to the lab manager.

2) Enablement requirements: Enablement requirements

state what capabilities a proposed system or subsystems must

provide to the users. There are two subcategories of

enablement requirements. The first subcategory includes

requirements that show an ability that should be provided by

the software but does not decide which subsystem will provide

it to the user. This is used when it is early to specify an exact

ability provider; for example:

Req02: Lab manager shall be able to create work list
items.

The second subcategory, on the other hand, includes more
detailed requirements that state which system or subsystem
should provide an ability to the user; for example:

Req03: The system shall allow the lab manager to display
work list items assigned to him, based on ID.

3) Action constraint requirements: Those requirements

define how the proposed system or subsystem is expected to

act. There are two subcategories of action constraint

requirements. The first subcategory includes requirements that

state that the proposed system or some of its subsystems are

allowed or not to do some action; for example:

Req04: The loan subsystem may only delete a lender if
there are no loans in the portfolio associated with this lender.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

426 | P a g e

www.ijacsa.thesai.org

The second subcategory, on the other hand, includes
requirements that state business rules regarding how agents
take some specific actions; for example:

Req05: Only library staff may perform the loan
transactions.

4) Attribute constraint requirements: This requirements

type is used to express constraints on an entity attributes or

attribute values; for example:

Req06: Search options must always be one of the
followings: Price, Destination, Restaurant type, and Specific
dish.

5) Definition requirements: This category is suitable to

define entities as needed; for example:

Req07: The expected profit of a fixed rate loan is defined
as the amount of interest received over the remaining life of the
loan.

6) Policy requirements: This requirements type is used to

illustrate the policies that must be followed by the system; for

example:

Req08: Loan is not computed in more than one bundle.

B. Templates and Finite State Machines

Each requirements type has a specific template in addition
to a corresponding FSM to determine whether an input token
stream follows the syntax. We describe the FSMs using the
following variables:

 Q denotes the set of states of a given FSM based on the
syntax.

 S0 is the start state, which is the same for all FSMs.

 F is the set of final states indicating that the input token
stream was based on one of the syntaxes.

 E is the set of error states indicating that the input token
stream did not follow any of the syntaxes.

 S denotes the alphabet set. It includes a set of modal
phrases and keywords that differentiate the various
FSMs. It also includes phrases from the entity and
action glossaries described below. It is the same for all
FSMs.

 δ is the transition function.

1) Solution requirements FSM: The solution requirements

have one accepted template as follows; its FSM is depicted in

Fig. 1:

2) Enablement Requirements FSMs: Enablement

requirements have two accepted templates and therefore two

FSMs. The first template is as follows:

StartState

NonAgent
Entity State

MissingAgent
State

State5
Unknown

Agent State

AgentState modalState

Unknown
Action State

Missing
 Action

State

Action State

Entity Phrase

 -{Agent Phrase}

Agent phrase shall | must Action phrase

 shall| must

 shall | must -{Action phrase}

End of Requirement

Fig. 1. Solution Requirements FSM.

<Agent Phrase> <“shall” | “must” | “will”> <Action

Phrase>

<Agent Phrase> <“shall” | “must” | “will”> <“be able to”>

<Action Phrase>

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

427 | P a g e

www.ijacsa.thesai.org

The corresponding FSM is depicted in Fig. 2. It can be
described as follows:

 Q = {Start State, Action State, Modal State, Agent
State, Missing Agent State, Missing Action State,
Unknown Action State, Unknown Agent State, Non-
Agent Entity State}

 F = {Action State}

 E = {Non-Agent Entity State, Missing Agent State,
Unknown Action State, Missing Action State,
Unknown Agent State}

The second accepted template of enablement requirements is as
follows:

The corresponding FSM is depicted in Fig. 3. It can be
described as follows:

 Q = {Start State, Action State, Modal State, Agent
State, Missing Agent State, Missing Action State,
Unknown Action State, Unknown Agent State, Non-
Agent Entity State}

 E = {Non-Agent Entity State, Missing Agent State,
Unknown Action State, Missing Action State,
Unknown Agent State}

 F = {Action State}

startState AgentState modalState EnableState ActionStateAgent Phrase shall | must | will be able to Action phrase

NonAgent

Entity State

MissingAgent
State

State5
Unknown

Agent State

Unknown
Action State

Missing
Action State

 shall | must | will

End of Requirement

 -{Action phrase}Entity

 Phrase

 -{Agent Phrase}

 shall | must | will

StartState

Fig. 2. Enablement Requirements FSM (1).

startState AgentState modalState
Permetion

State
ActionStateAgent Phrase shall | must | will allow | permit Agent phrase

NonAgent

Entity State MissingAgent
State

State5
Unknown

 Agent State

Unknown
 Action State

Missing
 Action State

 shall | must | will

End of Requirement

 -{Action phrase}
Entity

 Phrase

 -{Agent Phrase}

 shall | must | will

 To
Agent2

State

Entity

 Phrase

State10

 -{Agent Phrase}

 To

StartState

Fig. 3. Enablement Requirements FSM (2).

<Agent Phrase> <”shall” “must”|”will”> <”allow” |

“permit”> <Agent Phrase><”to”> <Action Phrase>

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

428 | P a g e

www.ijacsa.thesai.org

3) Action constraint requirements FSMs: Action

constraint requirements have two accepted templates. The first

one is as follows:

The corresponding FSM is depicted in Fig. 4. It can be
described as follows:

 Q = {Start State, Action State, Modal State, Agent
State, Missing Agent State, Missing Action State,
Unknown Action State, Unknown Agent State, Non-
Agent Entity State}

 F = {Action State}

 E = {Non-Agent Entity State, Missing Agent State,
Unknown Action State, Missing Action State,
Unknown Agent State}

The second accepted template of action constraint
requirements is as follows; the corresponding FSM is shown in
Fig. 5:

4) Attribute Constraint Requirements FSM: Attribute

constraint requirements have one accepted template:

startState Entity State modalState
Attribute

State

Value
Phrase

Entity Phrase
 must

 { always | never | not } be | have Value phrase

State4

Unknown
Entity State

Missing
value State

End of Requirement

 -{Entity Phrase}

 must

Missing Entity
State

 must

Fig. 4. Action Constraint Requirements FSM (1).

Fig. 5. Action Constraint Requirements FSM (2).

<Agent Phrase> <“shall” | “will” | “may”> <”only” | “not”>

<Action Phrase> <”when” | “if”> <condition>

“Only” <Agent Phrase> <“may”| “may be”> <Action

Phrase>

<Entity Phrase | Agent Phrase> “must” <”always“|

“never” | “not”> <”be” | “have”> <Value Phrase>

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

429 | P a g e

www.ijacsa.thesai.org

startState Entity State modalState Attribute State Value PhraseEntity Phrase
 must { always |
 never | not }

 be | have
Value
phrase

State4
Unknown

Entity State

Missing
value State

End of Requirement
 -{Entity Phrase}

 must

Missing Entity
State

 must

Fig. 6. Attribute Constraint Requirements FSM.

The corresponding FSM is depicted in Fig. 6. It can be
described as follows:

 Q = {Start State, Action State, Modal State, Agent
State, Missing Agent State, Missing Action State,
Unknown Action State, Unknown Agent State, Non-
Agent Entity State}

 F = {Action State}

 E = {Non-Agent Entity State, Missing Agent State,
Unknown Action State, Missing Action State,
Unknown Agent State}

5) Definition requirements FSM: Definition requirements

have one accepted template as follows:

The corresponding FSM is depicted in Fig. 7. It can be
described as follows:

 Q = {Start State, Action State, Modal State, Agent
State, Missing Agent State, Missing Action State,
Unknown Action State, Unknown Agent State, Non-
Agent Entity State}

 F = {Action State}.

 E = {Non-Agent Entity State, Missing Agent State,
Unknown Action State, Missing Action State,
Unknown Agent State}

6) Policy requirements FSM: Policy requirements have

one accepted template as follows:

The corresponding FSM is depicted in Fig. 8. It can be
described as follows:

 Q = {Start State, Action State, Modal State, Agent
State, Missing Agent State, Missing Action State,
Unknown Action State, Unknown Agent State, Non-
Agent Entity State}

 F = {Action State}.

 E = {Non-Agent Entity State, Missing Agent State,
Unknown Action State, Missing Action State,
Unknown Agent State}.

C. The Glossaries

The glossaries are an essential component of the
implemented tool. The program consults user-defined
glossaries to determine whether an input requirement uses
predefined accepted terminology or not. Moreover, glossaries
are necessary for lexical and syntactic analysis as described
below.

We use two glossaries: an entity glossary and an action
glossary. The entity glossary contains an entry for each
accepted entity in the requirements document. Table I shows
an example of an entity glossary content. The glossary
determines whether each entity is an agent or not. An agent
entity is the one that can do an action such as „booking user‟ or
„library stuff‟, while a non-agent entity is an entity that does
not perform an action such as „the loan‟. An action glossary, on
the other hand, contains an entry for every accepted action
phrase. Table II shows an example content of an action
glossary.

<Entity Phrase | Agent Phrase> <“is” | “will be”> <“defined

as” | “classified as”> < Entity Phrase>

<Entity Phrase | Agent Phrase> <”is | “is not”> <Action

Phrase>

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

430 | P a g e

www.ijacsa.thesai.org

startState Entity State modalState Definition State Entity2 State
Entity

Phrase
 is | will be

 defined as |
 classified as

Entity phrase

State4
Unknown

Entity State

Missing Entity2
State

End of Requirement
 -{Entity Phrase}

 is | will be

Missing Entity
State

 is | will | be

Missing
definition

stste

End of Requirement

Unknown
Entity2

- {Entity Phrase}

Fig. 7. Definition Requirements FSM.

startState Entity State modalState Action State
Entity

Phrase
 is | is not Action phrase

State4
Unknown

Entity State

Missing
Action
Phrase

End of Requirement

 -{Entity Phrase}

 is | is not

Missing
Entity State

 is | is not

Unknown
Action State

- {Action Phrase}

Fig. 8. Policy Requirements FSM.

TABLE I. EXAMPLE OF ENTITY GLOSSARY CONTENT

Entity Descriptor Explanation Is Agent

Borrower

The recipient of money from
a lender. Borrowers may
receive loans jointly; that is,
each loan may have multiple
borrowers.

Yes

HR User
User from human resource
department

Yes

Protocol
the exact methodology used
to analyze samples

No

ProdID
Product Identification; unique
identifier of each product

No

Product Sample
A small amount of product
taken from a specific product

No

TABLE II. EXAMPLE OF ACTION GLOSSARY CONTENT

Action Descriptor Explanation

process orders Action for processing orders

Display Rendering an item on screen

send contracts data Action for transfer of contract data

inform administrator
Action for sending e-mail notification to
administrator

process payroll Action for processing of payroll

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

431 | P a g e

www.ijacsa.thesai.org

TABLE III. TOKEN TYPES AND TAGS

Token Type Tag

Label Lbl

Entity phrase En

Agent phrase Ag

Action phrase Ac

Modal phrase Mod

Constant phrase Const

Unknown Un

D. Lexical Analysis

In the lexical analysis phase, the program consults the
glossaries to tokenize a given requirement statement and then
classify and tag each token into “entity phrase”, “agent
phrase”, “action phrase”, “modal phrase”, “constant phrase”, or
“unknowns” as depicted in Table III. The term constant phrase
indicates phrases that do not fall into any of the other token
types such as “be able to”, “only”, and “permit”. Stop words
such as “the”, “a”, “an”, “for”, “too” and “up” are ignored in
the process.

As an example, to clarify the tokenization, classification,
and tagging processes, consider the following requirement
statement:

Req00: The user must be able to display the PDF rendition
of associated documents.

The output of lexical analysis will be as follows:

Req0
0

Use
r

mu
st

be able
to

display the PDF rendition of associated
documents

Lbl Ag
Mo
d

Const Ac

E. Syntactic Analysis

The tokenized tagged requirement from the previous phase
is input to the syntactic analysis phase. Syntactic analysis
passes through the following process:

1) Reading each tokenized requirement.

2) Classifying the requirement into one of the six

requirement classes depending on the modal phrase. The goal

of this step is to decide which of the FSMs to use.

3) Using the suitable FSM to check whether the

requirement statement follows the corresponding accepted

syntax and to generate useful warning massage as needed.

According to the final state the parser reaches, the user
receives useful warnings as needed. Fig. 9 shows a screenshot
of the tool depicting example input and output.

Fig. 9. A Screenshot of the Ambiguity Avoidance Tool; Example Input and Output.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

432 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENT AND DISCUSSION

A. Experimental Settings

We used Python version 3.6 to implement the ambiguity
prevention tool. Then, we built a benchmark of 2460 real
requirements. From the benchmark, we selected a random
sample of forty real requirements. We classified each
requirement in the sample into one of the six requirement
classes mentioned above. We then transformed each classified
requirement into the corresponding template and defined
entities, agents, and actions in the glossaries. The purpose of
this process is to emulate a real user writing the requirements
before processing them through the tool.

B. Results and Discussion

From the experiment, it was clear that this approach can
prevent some types of requirements ambiguity. Example issues
that could be prevented using this approach are: missing
information like missing an agent or missing an action; domain
ambiguity like an unknown agent or an unknown entity; and
non-best practices syntax like missing an action or an invalid
syntax.

But on the other side, it was clear that classification and
transformation processes are not straightforward. For example,
some requirements had to be split into two requirements of
different classes and templates.

Moreover, it was clear that the overall requirements writing
process consumes more time and effort than using an un-
controlled natural language. In other words, there is a tradeoff
between the effort needed to write the requirements following
the predefined templates and ambiguity avoidance.

V. CONCLUSION AND FUTURE WORK

This paper presented details of a full implementation of a
software requirements ambiguity prevention tool. This tool
classifies the software requirements into one of six classes:
solution, enablement, action constraint, attribute constraint,
definition, or policy requirements. For each requirement class,
there is an accepted defined template. To check whether the
requirements adhere to the correct templates, the tool uses a
FSM for each template.

We used Python to implement and test this approach. We
selected forty random requirements sample out of 2460 real
software requirements. We noted that the selected approach has
some advantages and disadvantages as discussed above. But to
judge this approach precisely, we need to compare it with other
prominent approaches in our future work. It is important
because we need to compare different approaches from some
aspects such as: effectiveness in term of types and number of
ambiguities resolved. We also need to compare the usability of
the different approaches.

REFERENCES

[1] G. Sandhu, "Analysis of modeling techniques used for translating
natural language specification into formal software requirements,"
International Journal of Computer Applications, vol. 113, no. 1, 2015.

[2] H. Elazhary, "REAS: An interactive semi-automated system for
software requirements elicitation assistance," International Journal of
Engineering Science and Technology, vol. 2, no. 5, pp. 957-961, 2010.

[3] K. Wiegers, "Karl Wiegers describes 10 requirements traps to avoid,"
Software Testing & Quality Engineering, vol. 2, no. 1, 2000.

[4] K. Wiegers, "Writing quality requirements," Software Development,
vol. 7, no. 5, pp. 44-48, 1999.

[5] T. Stalhane and T. Wien, "The DODT tool applied to sub-sea software,"
in 2014 IEEE 22nd International Requirements Engineering Conference,
2014, pp. 420-427.

[6] C. Arora, M. Sabetzadeh, L. Briand, F. Zimmer, and R. Gnaga,
"Automatic checking of conformance to requirement boilerplates via
text chunking: An industrial case study," in 2013 ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement, 2013, pp. 35-44.

[7] B. Gleich, O. Creighton, and L. Kof, "Ambiguity detection: Towards a
tool explaining ambiguity sources," Requirements Engineering:
Foundation for Software Quality, pp. 218-232, 2010.

[8] Y. Wang, I. L. M. Gutiérrez, K. Winbladh, and H. Fang, "Automatic
detection of ambiguous terminology for software requirements," in
Natural Language Processing and Information Systems: Springer, 2013,
pp. 25-37.

[9] K. D. Gill, A. Raza, A. M. Zaidi, and M. M. Kiani, "Semi-automation
for ambiguity resolution in open source software requirements," in 2014
IEEE 27th Canadian Conference on Electrical and Computer
Engineering, 2014, pp. 1-6.

[10] M. Bano, "Addressing the challenges of requirements ambiguity: A
review of empirical literature," in 2015 IEEE 5th International
Workshop on Empirical Requirements Engineering (EmpiRE), 2015, pp.
21-24.

[11] P. Jain, K. Verma, A. Kass, and R. G. Vasquez, "Automated review of
natural language requirements documents: Generating useful warnings
with user-extensible glossaries driving a simple state machine," in 2nd
India Software Engineering Conference, 2009, pp. 37-46.

[12] H. Elazhary, "Translation of Software Requirements," International
Journal of Scientific and Engineering Research, vol. 2, no. 5, pp. 1-7,
2011.

[13] C. Denger, D. M. Berry, and E. Kamsties, "Higher quality requirements
specifications through natural language patterns," in IEEE International
Conference on Software: Science, Technology and Engineering, 2003,
pp. 80-90.

[14] S. Farfeleder, T. Moser, A. Krall, T. Stålhane, I. Omoronyia, and H.
Zojer, "Ontology-driven guidance for requirements elicitation," The
semanic web: Research and applications, pp. 212-226, 2011.

[15] Y. Wang, I. L. M. Gutiérrez, K. Winbladh, and H. Fang, "Automatic
detection of ambiguous terminology for software requirements," in
International Conference on Application of Natural Language to
Information Systems, 2013, pp. 25-37.

[16] K. T. Frantzi and S. Ananiadou, "Extracting nested collocations," in 16th
Conference on Computational Linguistics, vol. 1, 1996, pp. 41-46.

[17] H. Yang, A. De Roeck, V. Gervasi, A. Willis, and B. Nuseibeh,
"Analysing anaphoric ambiguity in natural language requirements,"
Requirements engineering, vol. 16, no. 3, p. 163, 2011.

javascript:void(0)

