
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

Aspect-Combining Functions for Modular
MapReduce Solutions

Cristian Vidal Silva1, Rodolfo Villarroel2, José Rubio3, Franklin Johnson4, Érika Madariaga5, Alberto Urzúa6,
Luis Carter7, Camilo Campos-Valdés*8, Xaviera A. López-Cortés9

1Ingenierı́a Civil Informática, Escuela de Ingenierı́a,
Universidad Viña del Mar, Viña del Mar, Chile

2Escuela de Ingenierı́a Informática, Facultad de Ing.,
Pontificia Universidad Católica de Valparaı́so, Valparaı́so, Chile

3Área Académica de Informática y, Telecomunicaciones,
Universidad Tecnológica de Chile, INACAP, Santiago, Chile

4Depto. Disciplinario de Computación e Informática,
Facultad de Ingenierı́a, Universidad de Playa Ancha, Valparaśo, Chile

5Ingenierı́a Informática, Facultad de Ingenierı́a,
Ciencia y Tecnologı́a, Universidad Bernardo O’Higgins, Santiago, Chile

6Escuela de Kinesiologı́a, Facultad de Salud,
Universidad Santo Tomás, Talca, Chile

7Ingenierı́a Civil Industrial, Facultad de Ingenierı́a,
Universidad Autónoma de Chile, Talca, Chile

8Programa Doctorado en Sistemas de Ingenierı́a, Facultad de Ingenierı́a,
Universidad de Talca, Curicó, Chile

9Depto. de Computación e Industrias, Facultad de Ingenierı́a,
Universidad Católica del Maule, Talca, Chile

Abstract—MapReduce represents a programming framework
for modular Big Data computation that uses a function map
to identify and target intermediate data in the mapping phase,
and a function reduce to summarize the output of the map
function and give a final result. Because inputs for the reduce
function depend on the map function’s output to decrease the
communication traffic of the output of map functions to the input
of reduce functions, MapReduce permits defining combining
function for local aggregation in the mapping phase. MapReduce
Hadoop solutions do not warrant the combining functioning
application. Even though there exist proposals for warranting
the combining function execution, they break the modular nature
of MapReduce solutions. Because Aspect-Oriented Programming
(AOP) is a programming paradigm that looks for the modular
software production, this article proposes and apply Aspect-
Combining function, an AOP combining function, to look for a
modular MapReduce solution. The Aspect-Combining application
results on MapReduce Hadoop experiments highlight computing
performance and modularity improvements and a warranted
execution of the combining function using an AOP framework
like AspectJ as a mandatory requisite.

Keywords—Combining; Hadoop; MapReduce; AOP; AspectJ;
aspects

I. INTRODUCTION

MapReduce represents a computation framework aiming to
solve Big Data and Big Computation issues [1]–[4]. Hadoop
is a MapReduce application tool [4], [5] with two main
components, the Hadoop Distributed File System (HDFS)
for an ‘Infrastructural’ point of view and MapReduce for
the ‘Programming’ aspect. Hence, HDFS is a distributed

and scalable file system designed for running on clusters of
commodity hardware. HDFS follows the write-once, read-
many approach to store huge files using streaming data access
patterns to enable high throughput data access and simplifies
data coherency issues [4], [5]. HDFS abstracts developers of
distribution, coordination, synchronization, faults and failures,
and supervision tasks details. Thus, developers must focus on
two main computation functionalities: map and reduce.

Aspect-Oriented Programming (AOP) corresponds to a
programming methodology for isolating crosscutting concerns
functionalities and data to look for modular solutions [6].
Ideas of obliviousness and advisable classes appear in AOP.
Wampler [7] indicates and demonstrates the AOP support and
refinement of Object-Oriented Design (OOD) principle such
as the Single Responsibility Principle (SRP) and Open-Closed
Principle (OCP) mainly to remark the AOP practical benefits.

Even though MapReduce represents a framework to isolate
a programmer of traditional faults and issues on traditional
distributed programming approaches and frameworks, MapRe-
duce demands to figure out solutions using their main two
functions: map and reduce. Thus, these functions can include
code out of their inner nature which are clear crosscutting
concerns examples according to good modular programming
and AOP principles [7].

Hadoop allows the definition of the combining function on
the map output [5], [8], [9] to optimize the MapReduce frame-
work functioning for local aggregation in the map phase, that
is, a function to aggregate data in the map phase before sending
them to the reduce phase. Even though the combiner function

www.ijacsa.thesai.org 565 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

is an optimization, Hadoop does not provide a guarantee of
how many times it will call defined combining functions [8].
Thus, as a guarantee of combining execution, [8] proposed
the use of the ‘In-Mapper’ Combining function, i.e., the
combining function behavior directly inside the map function.
Nonetheless, this solution does not respect object-oriented
modularity principles such as the SRP [7], [10]. Looking
for a modular application of the MapReduce programming
framework, this article proposes and exemplifies the use of
Aspect-Combining, an AOP application on MapReduce for the
combining functions definition. Thus, the main contributions
of this article are:

• Giving a review of performance and modularity issues
of MapReduce combining solutions.

• Locating and justifying the presence of crosscutting-
concerns in current optimal combining solutions.

• Defining and testing Aspect-Combining functions on
classic case studies for getting more modular and
usually more efficient results.

• Establishing the bases for future works about the
symbiosis of Big Data and AOP solutions.

This article is organized as follows: Section II gives a
description of the MapReduce framework and its main com-
ponents. That section also explains the primary structure and
principles of traditional AOP-AspectJ solutions. Section III
reviews previous ‘In-Mapper’ Combining function and identi-
fies crosscutting concerns issues to define Aspect-Combining
functions. Section IV defines hypothesis and variables to
measure in the experiments, and presents results of the use of
Combining, ‘In-Mapper’ Combining, and Aspect-Combining
proposal on a few application examples to highlight the main
practical pros and cons of the Aspect-Combining function.
Section V discusses validity of the established hypothesis.
Section VI concludes and presents future research work.

II. MAPREDUCE AND AOP

A. MapReduce

MapReduce is a programming model proposed by Google
[1]–[3] for distributed computation on massive amounts of data
(Big Data), that is, MapReduce is an execution framework for
large-scale data processing on clusters of commodity servers.
MapReduce has already enjoyed widespread adoption by the
use of Hadoop, a open-source implementation of MapReduce
[5], [8].

MapReduce can refer to three concepts: 1) a programming
model; 2) an execution framework to coordinates the execution
of programs written in this programming style; 3) the imple-
mentation of 1) and 2), that is, MapReduce is the implemen-
tation of a programming model and its execution framework.
Google is the proprietary of MapReduce implementation [1]–
[3], and Hadoop is an open-source analogue substitute [5], [8].

Hadoop applies the Hadoop Distributed File System
(HDFS), a highly fault-tolerant and distributed file system able
to run on commodity hardware [4], [5], [8]. HDFS provides
high throughput access to application data. HDFS is suitable
for applications with large data sets such as the set of valid
configurations in a Software Product Line (SPL) [9].

MapReduce basic idea is to partition a large problem
into smaller sub-problems possibly independent able to run
in parallel by different workers, that is, either by threads in
a processor core, cores in a multi-core processor, multiple
processors in a multi-processors machine, or many machines
in a cluster [4], [8]. Fig. 1 shows the Hadoop functioning
architecture. Hence, an iteration of a Hadoop solution (a.k.a
job) normally executes in four steps: 1) Slicing to split the
source data in multiples splices and deliver them to each map-
worker or mapper. 2) Map to process the data (each mapper
processes one or more chunks of data and sends the results
to the shufflers). 3) Shuffle to organize the data. 4) Reduce to
compact and write back results to the disk. Thus, intermediate
results from each worker are then combined to yield the final
output.

Fig. 1. MapReduce functioning architecture.

MapReduce allows for commutative and associative map
functions to define combining function, that is, to decrease the
amount of data shuffling between map-workers and reduce-
workers [5], [8]. Combining functions work on the map
functions output; hence, the output of combining functions
represent the input of reduce functions. The MapReduce [1]–
[3] execution framework coordinates functioning of map-
workers and reduce-workers.

Hadoop solutions usually enable for the definition of a
set of dependent jobs, i.e., the output of one job is used
as an input for others and so on. Thus, a set of key-value
records (Kin, Vin) is the input of a map function, and a
list(Kinter , Vinter) corresponds to its output, that is, the
input of a combining function if it were defined or input
for the shuffling process. As was mentioned, the input for
combining functions corresponds to the output of mappers,
and the combining functions output will be the input for the
shuffling process. Shuffling process orders and distributes data
for reduce functions, that is, they get (Kinter, list(Vinter))
as input to produce an output (Kout, Vout) which can be the
input of other map functions, and so on. Fig. 2 illustrates this
described process.

B. Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [6] permits modu-
larizing crosscutting concerns in base classes as aspects in
Object-Oriented Programming (OOP). Aspects advise classes

www.ijacsa.thesai.org 566 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

Fig. 2. A Simplified view of MapReduce.

statically in defined advisable modules and dynamically like
events. AOP like AspectJ [6] defines oblivious advisable
classes and modularizes crosscutting concerns as aspects, that
is, orthogonal methods which are not part of the nature of
advisable classes.

AOP well modularizes homogeneous crosscutting concerns
as aspects [6], [7], [11]–[13]. However, aspects do not reflect
the structure of refined features and the classes cohesion for the
modularization of classes collaboration [14], [15]. Moreover,
AOP languages like AspectJ [13], [16], [17] introduce implicit
dependencies between aspects and advisable classes [18]–[21].
Hence, first, aspects do no respect the information hiding
principle because oblivious classes can experience unexpected
behavior and properties changes, and second, changes on the
firm of advisable behavior can generate spurious and non-
effective aspects. Thus, aspects need to know structure details
about the advisable behavior and classes, a great issue for
independent development.

Next, this article describes main AOP elements.

C. Join points and Pointcuts

A join point represents an event in the execution control
flow of a program, that is, “a thing that happens” [13], [16].
Hence, in AOP [6], [11], a join point is a point of the program
execution in which aspects advise advisable base modules.
Examples of join points in AspectJ are method calls, method
executions, object instantiations, constructor executions, field
references and handler executions

Fig. 3. AspectJ components and functioning.

Fig. 4. AspectJ HelloWorld example.

According to [6], [7], a pointcut is a rule to pick out and
define the join points occurrence and expose data from the
execution context of those join points. Possible components of
pointcut rules definition are call (method pattern), execution
(method pattern), get (field pattern), set (field pattern), iden-
tifiers of time for advisable methods, objects associated to an
advisable method, among others.

Just, for the pointcut definition in AOP like AspectJ
languages of a method execution, two important times exist:
when a methods is called (call time) and when a method is in
execution (execution time). Furthermore, we can differentiate
between target and this objects on the join point event, that is,
the object whose method is in execution and the object that
executes the method on the target object. Thus, this and target
are the same object for pointcut rules of execution methods,
and for call pointcut this is the object that order the target
method execution.

D. Inter-type Declarations and Advices

In essence, inter-type declaration statically injects changes
on fields, properties, and methods into existing advisable
classes in AOP [6].

Advice defines crosscutting behavior regarding pointcut.
Three type of advice in traditional AOP exist [6]: before, after,
and around which determine how an advice runs at every
picked out join point. These kinds of advice determine how
the code injection works over the join points. Thus, in AOP
like AspectJ languages there exist advice instances which run
before their join points, run after their join points, and run in
place of (or “around”) their join points.

www.ijacsa.thesai.org 567 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

Fig. 3 [22] details the AspectJ components and functioning
structure, that is, aspects advise oblivious base modules and
they present implicit dependencies among them.

Fig. 4 [11] illustrates a basic AspectJ example, an advisable
class HelloWorld and an aspect with two advice instances
to inject behavior into the advisable class before and after
calling a void method that starts with the word say in the
class HelloWorld.

AspectJ mainly looks for of modular solutions and respect-
ing modularity principles [16]–[18], [23]. This paper looks for
getting modular MapReduce solutions by the use of AspectJ
on Hadoop solutions.

III. GROUPING DATA LOCALLY IN MAPREDUCE

The MapReduce computation in Hadoop does not require
to put attention on embarrassingly-parallel issues such as syn-
chronization and deadlock [7], [8]. Hadoop and MapReduce
solutions possibly involve large data-intensive transferring
from map-worker to reduce worker instances. Thus, since data
transferring can be of a high cost; for the local aggregation,
combining functions can considerably diminish the map output
records with the same key in the map-workers.

Fig. 5. Traditional Hadoop WordCount example.

In practice, primary map and reduce functions in Hadoop
[9], write intermediate results on local disk before sending
them over the network. Those I/O processes possibly imply
high computing and hardware costs depending on the network-
latency and disk-space costs. Thus, using combining functions
minimizes the amount of intermediate data transferring from
map-workers to reduce-workers. That also allow decreasing
the number and size of key-value pairs to shuffle from map-
workers to reduce-workers for getting improvements on the
MapReduce algorithmic efficiency. Just, combining functions
are named “mini-reducers”. In general, the use of combining
functions seems adequate because map functions recognize
intermediate-key and value pairs to send them for the shuffling
and sorting process in traditional MapReduce solutions. The
output of those processes corresponds to the input for reduce-
worker instances.

Fig. 6. ‘In-Mapper’ Combining Hadoop solution for the WordCount example.

A. Combining and ‘In-Mapper’ Combining

Even though map and reduce functions seem algorith-
mically simple to think and implement, combining function
symbolize improvements performance for cases of high-traffic
of data between map and reduce-workers. Combining functions
act like the reduce functions [8] because they minimize the
amount of intermediate data generated by each map-worker.
For example, WordCount and Average represent two traditional
solutions that support the use of a combining function, in the
first case, functioning likes the reduce function. Nevertheless,
combining functions execution are not always effective [5], [8].
Precisely, ‘In-Mapper’ Combining functions [8] solve those
mentioned issues.

Fig. 5 presents a traditional Hadoop MapReduce solution
for the WordCount example, and Fig. 6 shows an ‘In-Mapper’
Combining function to local aggregate data in the map phase
and reduce the information traffic between map-worker and

www.ijacsa.thesai.org 568 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

Fig. 7. Class Palabra for local aggregation in the Hadoop WordCount
example.

reduce-worker. The input for that example corresponds to a
set of words. Fig. 7 shows a new class Palabra for grouping
values (local aggregation) in the WordCount example. The
main function of the mapper functions in Fig. 5 and 6 look for
identify words only, and to identify words and locally aggre-
gate the already identified words count in the map function,
respectively.

Fig. 8 shows the MapReduce solution for the Average
example that looks for to obtain the average score of each
student in a list of student and grade pairs. Fig. 9 shows an
input example for the Average example. Fig. 10 illustrate the
GradeCount class necessary for the local aggregation in the
Average example.

Note that, for ‘In-Mapper’ Combining solution of the
WordCount example, map function produces the same output
as a traditional MapReduce solution, i.e., reduce function
continues being the same. Nevertheless, as Lin and Dyer [8]
illustrate, map and reduce functions of ‘In-Mapper’ Combining
for the Average example do not produce and receive the same
values such as those of the map and reduce functions in a
traditional MapReduce solution of that example.

Even though the ‘In-Mapper’ Combining approach allows
reducing information traffic from map-workers to reduce-
workers [8], this approach implies to add more code and
responsibilities on map functions. For example, ‘In-Mapper’
Combining of Fig. 6 includes a HashMap definition, and map
function presents two actions in the loop, one to recognize
each word and add them in the HashMap, and another one
to update previous values of existing words; and map outputs
these values after identifying all words and their occurrence
number in the received input value. The number of sending
and receiving messages of this solution would decrease if there
were repeated words in the input. Nevertheless, map function
grows in code and responsibilities, that is, the map function for
‘In-Mapper’ Combining approach is definitely lesser modular
than its original version.

Fig. 8. Traditional Hadoop Average example.

Fig. 9. Input format for the Hadoop Average example.

www.ijacsa.thesai.org 569 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

Fig. 10. Class GradeCount for local aggregation int the Hadoop Average
example.

B. Aspect-Combining

Aspect-Combining represents a combining function as an
AOP aspect on map function. In practice, such as Fig. 11 illus-
trate, AOP solutions would permit add behavior on MapReduce
map methods just to isolate their functioning and nature. Thus,
we propose Aspect-Combining. Aspect-Combining looks for
the inclusion of structural and functioning elements of tra-
ditional ‘In-Mapper’ Combining functions. Hence, Aspect-
Combining preserves the simplicity of the map function and
guarantees the execution of the function combining. Further-
more, Aspect-Combining seems applicable by the use of any

AOP approach over Hadoop. Next, this article describes a few
AspectJ application examples.

Like for traditional combining function, the goal of Aspect-
Combining is to locally aggregate data in map-worker in-
stances to diminish the associated networking traffic in the
map-workers for the shuffling process. Therefore, taking into
account the components and functioning of the ‘In-Mapper’
Combining solutions such as those in Fig. 6; a class that
contains the map function should also contain an attribute
for local aggregation and methods for that process. Thus, in
the WordCount example, it is necessary to know about each
identified word and the number of previous occurrences of
that word for updating its occurrences number. Hence, new
attributes and methods for advisable classes are required by
inter-type declaration in an AOP context. Likewise, in Average
case, for each identified student, it would be necessary to sum
their grades and also to count the number of their grades.

As Fig. 11 shows, three events exist for code injection in
the advisable map method: before starting the execution of a
map method to initialize attributes to group values, around the
execution of a map method to group or create an identified
element for local aggregation, and after the method map
finishes for sending information to the next MapReduce step.
Without considering the injection time for the occurrence of
these events, pointcut rules are definable in AOP and AspectJ
as well as the time for injecting the new behavior code that is
analogue to the definition for AOP advices.

IV. ASPECT-COMBINING APPLICATION AND RESULTS

A. Experiments

Table I shows the hypothesis and use of variables when
conducting experimentation on classic Combining, In-Mapper
Combining, and Aspect-Combining functions on the Word-
Count and Average examples.

For each experiment of Table I, the null hypothesis es-
tablishes that Aspect-Combining neither performs faster nor
is more modular than classic Combining and ‘In-Mapper’
Combining solutions on the analyzed examples.

Fig. 11. Advisable map method of a MapReduce solution.

B. Results

In this section we discuss the results we obtained and
how the null hypothesis has been rejected, thus accepting the
alternative hypothesis.

www.ijacsa.thesai.org 570 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

We perform four experiments on the WordCount example
and three experiments on the Average example to check
the validity of the Aspect-Combining approach for modular
MapReduce solutions in Hadoop.

Fig. 12 and 13 present the definition of pointcut instances
for the Aspect-Combining of the WordCount and Average
examples, in this case, 3 point cuts for each case: one to
start collecting data, one for the collect and write methods
call inside the advised map methods, and one for the end of
the map method execution.

Fig. 14 and 15 show Aspect-Combining inter-type declara-
tion for the WordCount Average examples to add and manip-
ulate the required object collection, ArrayList of class Palabra
and HashMap of class GradeCount instances, respectively.

Finally, for Aspect-Combining in the WordCount and Av-
erage examples, Fig. 16 and 17 present advice instances for
before the method map execution to initialize the attribute for
local aggregation, around the grouping values process, and
after the execution of map method to effectively send the
locally grouped values to the next MapReduce step.

As a practical functioning and results evaluation, Tables
II and III present traditional In-Mapper and Aspect-Combiner
results for the WordCount and Average examples to appreciate
and compare them. We run practical experiments in a single
Lenovo ThinkPad Edge E530 laptop of 2.50 GHz, 16GB of
RAM and a Core i3 processor. For the WordCount examples,
as input files, Words is a text file of 168 bytes, and ebook
is a file of 1.6 MB; whereas for the Average examples, input
files were generated taking in account ten students, and grades
from 0 to 100.

Although these experiments did not run in a cluster of
computing machines, and knowing the main practical improve-
ment of ‘In-Mapper’ and Aspect-Combining is a reduction of
traffic between map-workers and reduce-workers; surprisingly,
Aspect-Combining permits obtaining better modularity and
better performance for big-input examples. Hence, only for
a single and small file, the traditional WordCount solution
without combining approaches obtains the best time. In the
WordCount example, for two files, ‘In-Mapper’ WordCount
solution is the best and Aspect-Combining the 2nd one. For all
other cases, Aspect-Combining presents the best performance.
Thus, in addition to the best modularity, Aspect-Combining
permits getting efficient computation results in one machine
execution. This situation would be the same cluster environ-
ments.

V. DISCUSSION

The null hypothesis establishes that Aspect-Combining
does not improve the modularity for the presence of
crosscutting-concerns issues and the execution-time compared
to the Combining and ‘In-Mapper’ Combining solutions for
testing on the WordCount and Average examples. To refute
that hypothesis, we review the modular code of Aspect-
Combining solutions in which the map function has only
one responsibility, and we analyze the execution-time for
experiments described in Table II and Table III, both tables for
random files of different sizes. For the appreciated results, we
accepted the alternative hypothesis that the Aspect-Combining

Fig. 12. Pointcut definition for Aspect-Combining in the WordCount example.

Fig. 13. Pointcut definition for Aspect-Combining in the Average example.

outperforms the traditional approach of Combining and ‘In-
Mapper’ Combining solutions on the WordCount and Average
case-studies.

The SRP establishes that each module or class should have
one and only one purpose and reason to change since if a
class has more than one responsibility, then the responsibilities
become coupled [10]. According to [7], “The SRP is the OOD
solution to the classic ’separation-of concerns’ problem”. Thus,
Aspect-Combining permits simple map functions and efficient
MapReduce solutions, even though, for the weaving process
of AOP, the code of ‘In-Mapper’ Combining and the final one
of Aspect-Combining should be equivalent.

Fig. 14. Inter-type declaration for Aspect-Combining in the WordCount
example.

www.ijacsa.thesai.org 571 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

TABLE I. HYPOTHESES AND DESIGN OF EXPERIMENTS FOR WORDCOUNT AND AVERAGE MAPREDUCE EXAMPLES

Hypotheses of Experiments 1 and 2
Null Hypothesis (H0) Aspect-Combining solutions neither are faster nor more modular than Combining and ‘In-Mapper’ Combining for the WordCount case-study.
Alt. Hypothesis (H1) Exist cases in which Aspect-Combining solutions performs faster than Combining and In-Mapper Combining and does not present crosscutting

concerns for the WordCount case-study.
files used as input Randomly generated files of words of name and grade. Size of files are from 10KB to 1MB.
Blocking variables In each experiment, we generated a set of files in increasing size.

Hypotheses of Experiment 2
Null Hypothesis (H0) Aspect-Combining solutions neither are faster nor more modular than Combining and ‘In-Mapper’ Combining for the Average case-study.
Working Hypothesis (H1) Exist cases in which Aspect-Combining solutions perform faster than Combining and ‘In-Mapper’ Combining, and Aspect-Combining solutions

do not present crosscutting concerns for the Average case-study.
Files used as input Randomly generated files of pairs of name and grade. Size of files are from 10KB to 1MB.
Blocking variables In each experiment, we generated a set of files in increasing size.

Constants
Hadoop 2.4.1 in Ubuntu Linux
14.02

WordCount and Average solutions implemented in 2016 and 2017, respectively

TABLE II. WORDCOUNT SOLUTIONS - PRACTICAL EVALUATION

Input Traditional
WordCount

In-Mapper
WordCount

Aspect-Combiner Word-
Count

Words file (168B) 2768867581 ns 2797626514 ns 2830724641 ns
Words file (168B)+
ebook (1.6MB)

6474883019 ns 4750820118 ns 5675306443 ns

Words file (168B) + 30
ebook copies (48MB)

36835481761 ns 36011355288 ns 33913147695 ns

Words file (168B) + 50
ebook copies (80MB)

52135395542 ns 58132499534 ns 51053756385 ns

TABLE III. AVERAGE SOLUTIONS - PRACTICAL EVALUATION

Input Traditional Average In-Mapper Average Aspect-Combiner Aver-
age

100 files
(48.1KB)

12208547623 ns 11833383768 ns 13055207744 ns

200 files
(192.6MB)

139049238451 ns 61734379340 ns 68603119714 ns

400 files
(384.1MB)

257664874145 ns 134202559848 ns 129013569364 ns

Fig. 15. Inter-type declaration for Aspect-Combining in the Average example.

VI. CONCLUSIONS

In this section, we present the lessons we learned while
developing the Aspect-Combining solutions:

• Aspect-Combining presents a practical symbiosis be-
tween MapReduce and AOP. In particular, this article
presented a Hadoop and AspectJ for the implementa-
tion of Aspect-Combining.

Fig. 16. Advices for Aspect-Combiner in the WordCount example.

www.ijacsa.thesai.org 572 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

Fig. 17. Advices for Aspect-Combiner in the Average example.

• Thinking on the primary functions of MapReduce
along with their focus, original combining functions
are usually adequate to preserve the map function
nature and simplicity. Nonetheless, this article pointed
out its non-effectiveness and cost. Therefore, ‘In-
Mapper Combining seems more practical, but they
do not respect modularity principles. Hence, this ar-
ticle presented and practically proved the benefits of
Aspect-Combining for modular MapReduce solutions
and, for big data-input, possible more efficient results
than Combining and ‘In-Mapper’ Combining Hadoop
solution.

• Although a class for map-worker permit the producion
of modular solutions, a programmer is in charge
of putting attention on Initializer, Map, and Close
methods, that is, setup(..), map(..), and cleanup(..)
methods in Hadoop which does not permit an indepen-
dent development. Thus, Aspect-Combining approach
separates these functions as advice instances, and
the map-worker focuses only on an oblivious map(..)
method of before(..), around(..) and after(..) advice
instances which operate similar to Initialize, Map, and
Close methods of Fig. 18 [8].

Fig. 18. A modular structure of Mapper class in MapReduce Solutions.

As future work, this research group plans to review more
about AOP on MapReduce applications to figure out the
applicability of other AOP practical approaches such as JPI
[18], [20], [22], [24] and Ptolemy [17] on Hadoop [5], [8] and
Giraph approaches [25], and compare their effectiveness and
practical performance. Giraph also permits defining combining
functions without a guarantee for their execution [25], and
Aspect-Combining seems adequate to guarantee their execu-
tion.

ACKNOWLEDGMENT

This work was partially supported by CONICYT-
CCV/Doctorado Nacional/2018-21181055.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on
Operating Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10–10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251254.1251264

[2] ——, “Mapreduce: Simplified data processing on large clusters,”
Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008. [Online].
Available: http://doi.acm.org/10.1145/1327452.1327492

[3] ——, “Mapreduce: A flexible data processing tool,” Commun.
ACM, vol. 53, no. 1, pp. 72–77, Jan. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1629175.1629198

[4] D. Miner and A. Shook, MapReduce Design Patterns: Building Effective
Algorithms and Analytics for Hadoop and Other Systems, 1st ed.
O’Reilly Media, Inc., 2012.

[5] T. White, Hadoop: The Definitive Guide, 4th ed. O’Reilly Media, Inc.,
2015.

[6] G. Kiczales, “Aspect-oriented Programming,” ACM Comput.
Surv., vol. 28, no. 4es, dec 1996. [Online]. Available:
http://doi.acm.org/10.1145/242224.242420

[7] D. Wampler, “Aspect-oriented design principles: Lessons from object-
oriented design,” Proceedings of the Sixth International Conference on
Aspect-Oriented Software Development, vol. AOSD’07, pp. 615–636,
2007.

[8] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce.
Morgan and Claypool Publishers, 2010.

[9] J. A. Galindo, M. Acher, J. M. Tirado, C. Vidal, B. Baudry,
and D. Benavides, “Exploiting the enumeration of all feature
model configurations: A new perspective with distributed
computing,” in Proceedings of the 20th International Systems
and Software Product Line Conference, ser. SPLC ’16. New
York, NY, USA: ACM, 2016, pp. 74–78. [Online]. Available:
http://doi.acm.org/10.1145/2934466.2934478

[10] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003.

[11] R. Laddad, AspectJ in Action: Enterprise AOP with Spring Applications,
2nd ed. Greenwich, CT, USA: Manning Publications Co., 2009.

[12] R. Miles, AspectJ Cookbook. O’Reilly Media, Inc., 2004.
[13] J. D. Gradecki and N. Lesiecki, Mastering AspectJ: Aspect-Oriented

Programming in Java. New York, NY, USA: John Wiley & Sons,
Inc., 2003.

[14] S. Apel, D. Batory, C. Kstner, and G. Saake, Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer Publishing
Company, Incorporated, 2013.

[15] S. Apel, D. Batory, and M. Rosenmüller, “On the Structure of Cross-
cutting Concerns: Using Aspects or Collaborations?” Oct. 2006.

[16] G. Kiczales and M. Mezini, “Aspect-oriented programming and
modular reasoning,” in Proceedings of the 27th International
Conference on Software Engineering, ser. ICSE ’05. New
York, NY, USA: ACM, 2005, pp. 49–58. [Online]. Available:
http://doi.acm.org/10.1145/1062455.1062482

www.ijacsa.thesai.org 573 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

[17] H. Rajan, G. T. Leavens, R. Dyer, and M. Bagherzadeh, “Modularizing
crosscutting concerns with ptolemy,” in Proceedings of the Tenth
International Conference on Aspect-oriented Software Development
Companion, ser. AOSD ’11. New York, NY, USA: ACM, 2011, pp. 61–
62. [Online]. Available: http://doi.acm.org/10.1145/1960314.1960332

[18] E. Bodden, E. Tanter, and M. Inostroza, “Join Point Interfaces for
Safe and Flexible Decoupling of Aspects,” ACM Trans. Softw. Eng.
Methodol., vol. 23, no. 1, pp. 7:1–7:41, Feb. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2559933

[19] C. Vidal Silva, R. Villarroel, R. Schmal, R. Saens, C. Del Rio, and
T. Tigero, “Aspect-Oriented Formal Modeling: (AspectZ + Object-Z)
= OOAspectZ,” COMPUTING AND INFORMATICS, vol. 34, no. 5/15,
2015.

[20] C. Vidal Silva, R. Villarroel, L. López, M. Bustamante, R. Schmal,
and V. Rea, “JPI UML Software Modeling: Aspect-Oriented Modeling
for Modular Software,” International Journal of Advanced Computer

Science and Application IJACSA, vol. 6, no. 12, 2015.
[21] E. Bodden, “Closure Joinpoints: Block Joinpoints Without Surprises,”

ser. AOSD ’11. New York, NY, USA: ACM, 2011, pp. 117–128.
[Online]. Available: http://doi.acm.org/10.1145/1960275.1960291

[22] C. Vidal Silva, R. Saens, C. Del Rio, and R. Villarroel, “Aspect-Oriented
Modeling: Applying Aspect-Oriented UML Use Cases and Extending
Aspect-Z,” COMPUTING AND INFORMATICS, vol. 32, no. 3, 2013.

[23] ——, “OOAspectZ and aspect-oriented UML class diagrams for
Aspect-oriented software modelling (AOSM),” INGENIERIA E INVES-
TIGACION, vol. 33, no. 3, 2013.

[24] C. Vidal Silva, R. Villarroel, and C. Pereira, “JPIAspectZ: A formal
specification language for Aspect-Oriented JPI applications,” Proceed-
ings of XXXIII International Conference of the Chilean Computer
Science Society, 2014.

[25] R. Shaposhnik, C. Martella, and D. Logothetis, Practical Graph Ana-
lytics with Apache Giraph, 1st ed. Berkely, CA, USA: Apress, 2015.

www.ijacsa.thesai.org 574 | P a g e


